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Neurocraft: software for microscale 
brain network dynamics
Dimitris Fotis Sakellariou1,2,3*, Angeliki Vakrinou2,3, Michalis Koutroumanidis3 & 
Mark Phillip Richardson2

The brain operates at millisecond timescales but despite of that, the study of its functional networks 
is approached with time invariant methods. Equally, for a variety of brain conditions treatment is 
delivered with fixed temporal protocols unable to monitor and follow the rapid progression and 
therefore the cycles of a disease. To facilitate the understanding of brain network dynamics we 
developed Neurocraft, a user friendly software suite. Neurocraft features a highly novel signal 
processing engine fit for tracking evolving network states with superior time and frequency 
resolution. A variety of analytics like dynamic connectivity maps, force-directed representations 
and propagation models, allow for the highly selective investigation of transient pathophysiological 
dynamics. In addition, machine-learning tools enable the unsupervised investigation and selection 
of key network features at individual and group-levels. For proof of concept, we compared six 
seizure-free and non seizure-free focal epilepsy patients after resective surgery using Neurocraft. 
The network features were calculated using 50 intracranial electrodes on average during at least 
120 epileptiform discharges lasting less than one second, per patient. Powerful network differences 
were detected in the pre-operative data of the two patient groups (effect size = 1.27), suggesting the 
predictive value of dynamic network features. More than one million patients are treated with cardiac 
and neuro modulation devices that are unable to track the hourly or daily changes in a subject’s 
disease. Decoding the dynamics of transition from normal to abnormal states may be crucial in the 
understanding, tracking and treatment of neurological conditions. Neurocraft provides a user-friendly 
platform for the research of microscale brain dynamics and a stepping stone for the personalised 
device-based adaptive neuromodulation in real-time.

The brain switches very rapidly between different brain states, characterised by specific activity in networks of 
neurons and brain regions, many times per second. Some diseases and conditions affecting the brain involve rapid 
dynamic switching between normal and abnormal network states which may be characterised by short-lived 
electrophysiological features. For example, in epilepsy, a key role in the formation and evolution of abnormal 
states and their pathogenic networks is thought to be played by Interictal Epileptiform Discharge (IED)1. IEDs 
are microscale EEG elements, typically consisting of single or multiple cycles of spikes or spikes-and-waves, 
lasting from a few milliseconds to a couple of seconds. Despite that numerous neurophysiological events in the 
temporal microscale have been widely documented and linked to a variety of abnormal states and neurological 
 conditions2–7, their dynamic network features remain largely unexplored.

There is much evidence to suggest that the common mechanistic principle across the numerous causes of 
epilepsy is either the abnormal neuronal population dynamics, or the abnormal connectivity between neuronal 
populations or  both8. This evidence strongly suggests that epilepsy is a disease of abnormal network organization 
of brain areas and the connections between  them9. Typically, analyses of abnormal states are derived from long 
EEG-epochs (seconds-minutes) that include abnormal but also normal brain activity. Therefore, any “brain state” 
existing in the temporal microscale is likely to be hidden amongst many other brain states and not optimally 
represented by a multi-second average.

Multiple academic software packages exist for the calculation of functional connectivity from electrophysi-
ological signals, of which  EEGLAB10,  Fieldtrip11,  Brainstorm12 and  MNE13 are the most widely used. However, 
only some of these packages allow for the time-locked temporal and spectral decomposition of connectivity 
estimates. Furthermore despite the fact that network theory is a mainstay in EEG  analysis14–16, only a couple of 
 toolboxes17 exist specifically for the investigation of graph theoretical measures. Some existing challenges in the 
estimation of EEG networks are (a) analysis for targeted time–frequency windows (b) temporal evolution of 
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networks (c) estimation of centrality measures that characterise network under investigation and (d) propagation 
models for the approximation of zones related to investigated EEG event.

As a first step towards addressing the above challenges, Neurocraft aims to provide a user-friendly platform 
for exploratory data analysis and hypothesis construction beyond descriptive statistics. In order to achieve this, 
and end to end user interface is supported for the (a) the estimation of connectivities that characterise very 
brief brain states with ultra-high time and frequency resolution combined with seamless integration for (b) the 
complex dynamic network investigation tailored for electrophysiological brain signals. In this manuscript we 
describe a novel method that is featured by Neurocraft and which was developed for the selective estimation of 
time–frequency connectivity with ultra-high resolution. Furthermore, we describe the comprehensive set of tools 
Neurocraft features for the metanalysis and manipulation of the complex dynamic network data. These network 
tools include influence metrics, dynamic centrality investigation, network characterisation and propagation 
mapping amongst others.

For proof of concept, we investigated network differences between Focal Epilepsy (FE) patients with good and 
poor outcome from resective surgery (N = 6). We describe in the results section powerful differences in Global 
Microscale Connectivity (GMC) that were found between the FE patient groups and which required methods 
available in Neurocraft for their demonstration.

Methods and results
Basic functions. Neurocraft features a novel connectivity method for the network characterization of elec-
trophysiological datasets at ultra-high time–frequency resolution. Furthermore, this connectivity method is 
mapped onto robust methodology from graph theory and machine learning and packaged in a comprehensive 
user-friendly graphical user interface (Fig. 1).

Data pre‑processing. Neurocraft allows reading of data, event information and channel location from European 
standard EDF + and Neuroscan formats. Standard data processing functions include selection of channels for 
analysis, resampling, baseline removal and extraction of data epochs time-locked to annotated events of interest.

Short-lived connectivity dynamics. In principle, neurobiological phenomena occur at millisecond 
 timescales18. The investigation of such short-lived microscale events is the primary focus of Neurocraft, which 
facilitates the event-selective examination of microscale networks dynamics. To enable the estimation of dynam-
ically varying connectivities between EEG signals here we developed an original method to the authors best 
knowledge, that.

– Enables optimal time–frequency trade-off for data driven investigations, using continuous wavelet transform.
– Is only sensitive to meaningful synchronisations, by deploying the imaginary part of wavelet transform 

coherency.
– Features a robust framework for protection against noise, edge effect and random synchronisation by making 

use of ensemble techniques and bootstrap statistics.

Figure 1.  Neurocraft end to end user interface and analysis pipeline (neurocraft 0.1.0, https:// www. neuro craft. 
co. uk/# downl oad).

https://www.neurocraft.co.uk/#download
https://www.neurocraft.co.uk/#download
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Continuous wavelet transform. In principle, neurophysiological signals are non-stationary processes whose 
statistical properties change with time. The dynamic spectral properties of non-stationary processes can tra-
ditionally be estimated using either the Short-Time Fourier Transform (STFT) which is a windowed Fourier 
transform trading off resolution in frequency to achieve resolution in time, or Continuous Wavelet Transform 
(CWT) which is a function that is localised in both frequency and time. Generally, CWT is considered a means 
for optimal time–frequency analysis (TFA) of non-stationary signals when the investigation is exploratory and 
not hypothesis  driven19 (Appendix A).

Wavelet transform coherency. The time–frequency relationship between two non-stationary processes can be 
detected by the use of time–frequency coherency, which can either be based on STFT or CWT. Nonetheless, the 
CWT based coherency appears to be advantageous due to CWT’s compact support and the optimal trade-off 
between frequency and time in its resulting Heisenberg  boxes20. Specifically, localised smoothing allows the 
Wavelet Transform Coherency (WTC) to be estimated even for a single trial in contrast with the STFT Coher-
ency (STFC), which needs to be estimated by averaging across trials to enable localisation in both time and 
 frequency21. Importantly, WTC exhibits better frequency and time resolution compared to  STFC22, at the cost 
of higher processing load.

To estimate time–frequency coupling interactions with state of the art resolution, here we make use of WTC 
(Appendix B).

In principal, coherency is strongly influenced by linearity in  phase20 and non-linear fluctuations in power. 
These properties of coherency allow for the quantification of dependencies between two time series with regards 
to their simultaneous values and also to their leading, lagged and smoothed relationships. The sensitivity of 
coherency and consequently WTC to phase, requires the mother wavelet used for its calculation to be complex.

The Morlet  wavelet23 is a complex sine wave within a Gaussian envelope and is defined as

where ω0 = 2π f0 is the non-dimensional frequency. The Morlet wavelet has been widely used in EEG  TFA24 and 
offers an intuitive bridge between frequency and time information. Here, the calculation of WTC computation 
(Appendix B) uses the analytic Morlet wavelet. The spread of the wavelet’s energy in time and frequency deter-
mines the minimum and maximum  scales25, here taken to beω0 = 6 to satisfy the admissibility  condition2626. 
The valid range of number of octaves is between 1 and 

⌊

log2(fs�t)
⌋

− 1 where fs and Δt the sampling frequency 
and duration of a x(t) signal. Moreover, neurocraft uses 12 voices per octave and an equal number of scales to 
smooth. The scales are discretized using the specified number of voices per octave.

Ensemble wavelet transform coherency. The EEG signal to noise ratio can often be too low to reliably analyse 
single events. Many EEG studies use averaging across epochs of realisations of the same event or stimuli to 
statistically enhance results by implicitly assuming that noise is a zero-mean random variable independent of 
repetition.

For experimental designs that are event-related (e.g. time-locked repetitions of a trial or investigation of 
occurrences of a specific neurophysiological phenomenon), neurocraft automatically switches to an ensemble 
calculation of WTC i.e. estimated WTC, by taking into account n epochs of the same random process (Eq. 2).

where n = 1, . . . , N the number of event epochs. In principle, when a number of repetitive realisations of the 
same random process is present it is sufficient to rely on ergodicity, with stationarity not being anymore a pre-
requisite to estimate coherency 27,28.

The imaginary part wavelet transform coherency. In EEG, spurious connectivity measurements can occur due 
to the “volume conduction” effect, where a single source of activity can contribute to measurements in adjacent 
electrodes. This spread of activity despite being measurable by multiple sources will principally have a zero shift 
in inter-area synchrony measurements, as a signal cannot be time-lagged to itself. Other noise sources can evade 
EEG recordings in the form of inter-area zero-phase activations.

For this reason, and in order to interpret coherency as a measure that reflects neuronal interaction between 
areas, we use here the Imaginary part of WTC (IWTC)29.

Cone of influence. The CWT estimate at lower frequencies may suffer from edge effects, as the broader wave-
lets extend to areas outside the data  window30 (Zhan et al., 2006b). This phenomenon is referred to as the cone 
of influence (COI)20, it is equal to half of the wavelet length at each scale. Neurocraft automatically plots the COI 
with a dashed line in the time–frequency connectivity graphs i.e. connectivity maps (Fig. 2).

Significance testing against random coherency. Neurocraft makes use of WTC to measure when two processes 
exhibit stable phase relation on a certain scale for a certain time interval. However, processes in natural systems 
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often exhibit power in a wide range of scales with similar phase evolution patterns. Consequently, while two 
processes may be mathematically coherent by exhibiting consistency in phase they are not necessarily coupled 
for real-world reasons.

Additional to ensemble WTC, to statistically identify intrinsic coupling between brain areas we apply non-
parametric bootstrapping by constructing surrogate data using randomly selected background EEG epochs 
under the null hypothesis of  independence31. Subsequently, connectivity values exceeding a certain quantile of 
the surrogate distribution signify intrinsic  properties32. This methodology is (a) flexible in the selection of back-
ground EEG epochs to model and test against random connectivity and therefore (b) minimises assumptions 
underlying the surrogate model. A variety of experimental EEG setups and systems can hence be supported in 
minimising influences from systemic systemic artefactual signal synchronisations.

In specific, this is a user-driven approach to test significance against systemic coherency. The EEG epochs 
for the construction of surrogate data models are selected by the user under the null-hypothesis (i.e. independ-
ence) along with the number of bootstrap  resamples32. In connectivity maps, significant connectivity values are 
highlighted in black contour bands.

Visualisation of microscale connectivity dynamics. At this subject level, the time–frequency connectivity bivari-
ate interactions are visualised via connectivity maps (Fig. 2). In the subplot boxes of each map, the evolution of 
connectivity in time and frequency for a pair of electrodes is captured in terms of strength and directionality 
i.e. relative phase relationship. The pair of electrodes relevant to each subplot are denoted in the x and y axes of 
the master graph. Strength of connectivity for each pair of areas is coded cold (green) and warm (red) colours. 
Additionally, the relative phase relationship between a pair of areas is shown as arrows; (a) Up and down-wards 
arrow direction denotes information from the electrode on the X master axis towards the Y and vice versa (b) 
from right to left direction denoting in-phase to anti-phase synchronisation.

Microscale networks: meta-analysis of interregional dynamic connectivity. The subject-specific 
connectivity maps contain a vast amount information over the time, frequency and space domains. To enable 
the detailed examination of these complex dynamic datasets, neurocraft features a network metanalysis module.

Figure 2.  Subject-level connectivity map. Areas in X–Y axes and connection strength between x–y pairs of 
electrodes indicated in warm and cold colours. Up and down-ward direction of arrows indicative of information 
flow from the electrodes on the X axis towards the ones in Y and vice versa. The connectivity for a pair of 
electrodes is estimated over the time and frequency domains (x and y axis of subgraphs) allowing for the 
characterisation of micro-scale network dynamics around and EEG event (t = 0 s).
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Comprehensive network metanalysis is enabled by user-based time–frequency range targeting, subject and 
group level analysis, node influence and centrality metrics, network simulations and propagation models as well 
as dynamic network analysis.

Time–frequency targeting. As network, we define here a static representation of the dynamic connectivity val-
ues within a time–frequency window selected by the user. Within this targeted window, the set of discrete EEG 
areas that exhibit significant  synchronicity33 and are causal with each other are defined as nodes of the static 
network or otherwise snapshot.

We define a network snapshot as

during a finite time epoch [ tstart , tend ] and frequency range [ flow , fhigh ] that consists of V vertices and time–fre-
quency edges (u, ν)k,li,j ∈ Et,f  that exist between u and ν in a time interval [ i, j ] such that i ≤ tend and j ≥ tstart 
and in a frequency range [ k, l ] such that k ≤ fhigh and l ≥ flow . The network snapshot is calculated by averaging 
connectivity values of all existing edges within the targeted time–frequency window.

Subject and group level analysis. Apart from subject-specific analysis, multiple connectivity datasets can be 
introduced into neurocraft for group network metanalysis. For the calculation of measures across multiple data-
sets, grand average is used as a default. Specifically, the grand average is calculated as the mean of connectivity 
values across subjects within the user defined time–frequency window for each inter-area comparison.

Cross-subject network investigation. Despite being commonly used, grand-averaging across subjects may dis-
tort results and fail to account for the internal group variability of connectivity results.

Additional to grand averaging, traditional pattern recognition methodology can optionally be used to iden-
tify network modules. Neurocraft makes use of Principal Components Analysis (PCA) to identify important 
subnetworks in relation to the group data variance, as previously  demonstrated16. Specifically, the first three 
components of PCA are calculated along with the group variance that each component accounts for. PCA is 
applied to G ∈ Rn×m , where n rows correspond to subjects and m columns to the connectivity values of each 
possible pair of electrodes after subject-specific mean normalisation calculated according to the methodology 
described above. Generally, PCA is calculated as the orthogonal linear transformation of the original, possibly 
correlated variables into a set of linearly uncorrelated variables i.e. principal components (PC)34. Here we use 
the singular value decomposition for the calculation of PCs. To identify the pattern of connections i.e. network 
module each PC is associated with, the coefficients of the PCs are down-projected onto the network variables. 
Importantly, each network module accounts for a percentage of the overall variance of the group of datasets.

Centrality measures and nodal influence. Many systems in nature are made by a large number of highly inter-
connected dynamical  units35. In such systems, certain nodes have a special role and can be seen as central with 
respect to a given role and a variety of centrality measures have been heuristically developed. Centrality meas-
ures map to specific roles and can be used to quantify node importance within the network under investigation.

Here, we make available 10 well-established centrality measures for detecting important nodes in weighted 
non-directed and directed graphs. Non-directed measures include weighted degree, closeness and eigenvec-
tor centralities. Directed centrality measures include weighted indegree, outdegree, incloseness, outcloseness, 
betweenness, hubs and pagerank centralities. The formulas for each measure are given in Appendix A.

Characteristic centrality. The importance of detecting influential nodes in complex systems has brought a 
wide-scale adoption of network theory in diverse scientific disciplines. However, successful means for node 
detection may vary between network systems depending on their intrinsic attributes such as topology, direction-
ality, partitioning or connection weight. Therefore, the selection of a centrality measure to appropriately rank 
nodes according to their importance can be challenging considering the great variety of benchmark influence 
metrics.

Neurocraft makes use of traditional dimensionality reduction methodology to address the above. In specific, 
we provide a statistical framework for comparing and prioritising centrality measures based on contribution 
criteria. Specifically, centrality measures are being considered as variables for the calculation of a PCA. PCA 
takes place across all available connections in the network. In this way, we estimate which centrality measures 
are correlated with principal components and therefore hold the most information for the connections of the 
investigated network. Effectively, we denote centrality features as of key importance in relation to their respec-
tive contribution to the principal component that account for the most of the variance in the network dataset. 
The sorted contributions of variables i.e. measures of centrality are visualised and signify the ones that account 
for the bigger part of the data variance.

The above process is a data-driven approach for choosing a centrality measure according to which influential 
nodes can be appropriately detected, in terms of contribution criteria. It is important to note that each central-
ity measure is linked with specific node attributes of the network under investigation. Therefore, characteristic 
centrality can also serve as a descriptive measure for the network as a whole.

Network models and visualisation. A variety of topographical and nodal visualisations are available through 
neurocraft in order to observe, manipulate and analyse network snapshots:

(4)GD

t,f = (V , Et,f )
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• Heatmaps: Rows and columns represent nodes to reflect node to node connectivity levels in colour, for all 
available nodal pairs.

• Graph model: Pictorial representation of the nodes and edges for the selected network snapshot. The topo-
graphical positioning of nodes is determined according to a force-directed layout to reflect inherent sym-
metry and centrality features of the  system36. Centrality values are expressed in nodal size and colour, for 
the selected centrality measure. Connectivity levels between a pair of areas are expressed in edge thickness. 
Additionally, optional trimming of non-significant edges is available, along with manual edge thresholding 
for weaker connections. For directed graphs, directionality for a pair of connections is represented in arrows.

• Dendrogram model: For directed networks, a hierarchical network representation in which the nodes are 
drawn in horizontal directionality layers with the edges generally directed  downwards37. In its ideal form, this 
model would depict the propagation patterns for the transmitted information across the directed network, in 
which all edges maintain a consistent direction and no pairs of edges cross. However, cycles are expected to 
exist in graphs and especially in those representing dynamic natural systems. Layered graph layout systems 
attempt to minimise the number of edges that cross along with inconsistent directionalities. Nonetheless, this 
problem is NP-hard38 and therefore this depiction is highly experimental and should be interpreted always 
in context of the classical heatmap and force-directed models.

Dynamic network and centrality modelling. While microtargeting offers a means to estimate network “snap-
shots”, these representations are built by collecting information over a period of time and are static despite their 
microscale attributes. However, brain dynamics switch very rapidly between different brain states many times 
per  second18. A dynamic representation of the network structure aggregates information from multiple snap-
shots over time and in complex brain networks such representations can leverage not only structural/spatial 
features but also their temporal progression. To enable time-resolved investigation of network properties, we 
introduce the dynamic centrality feature.

We define as a dynamic network observation as:

during a finite time epoch [0, T], where tstart = 0 and tend = T without loss of generality, that consists of V 
vertices and temporal edges (u, ν)i,j ∈ E0,T that exist between u and ν in a time interval [i,j] such that i ≤ T and 
j ≥ 0 . Essentially, we define here as a dynamic network representation a set of V vertices with a set of edges that 
change over time.

This discretisation of temporal dynamics into a sequence of network snapshots is necessary to apply graph 
theoretical analysis in a dynamic manner and has been adopted in a variety of network theory fields in the 
 past39. The time period is divided in fixed discrete steps {1, . . . , n} with w = T/n denoting the window size and 
Gt = {G1, . . . , Gn} with 1 ≤ t ≤ n the aggregate graph consisting of V vertices and temporal edges (u, ν) ∈ Et 
that exist between u and ν in a time interval [i,j] such that i ≤ w · t and j > w · (t− 1) . Essentially, Gt is the tth 
temporal snapshot of GD

0,T at the tth time window. Consequently, centrality is calculated across all Gt snapshots 
and dynamic centrality is presented as either a multi-nodal time resolved graph or as a time resolved central-
ity mean over all nodes. All of the available measures can be used for the dynamic centrality estimation. The w 
window size can be defined by the user, for a flexible time resolution versus computational cost trade-off.

Results
In silico demo of WTC and IWTC . We demonstrate the usability of WTC and its imaginary part in synthe-
sised signals. WTC and IWTC is tested for a pair of non-stationary time series defined as

and

with ψ a white noise process of random uncorrelated variables, at 0.05 scales.
In Fig. 3, the co-occurrence of similar oscillatory activity (fast 45Hz and slow 10Hz ) in the pair of signals are 

accurately captured by the WTC and IWTC, as presented in the relevant graphs. Additionally, the onset/offset 
of sync activations is accurate with millisecond precision. In terms of phase, the vertical arrows accurately depict 
the ϕ = π

/

2 shift between x and y. The upward arrow direction correctly suggests a directional relationship for 
the pair from y (red) to x (blue), since fast and slow rhythms are initially present in y and later become appar-
ent in x. Random sync activations irrelevant to the content of the pair of signals, can safely be attributed to the 
ψ white noise processes. Such activations appear to be less apparent in IWTC, which is generally less prone to 
type I errors.

Focal epilepsy: real world data. We sought to test the applicability of our tools in six exemplar Mesial 
Temporal Lobe Epilepsy (MTLE) patients who had undergone epilepsy surgery at King’s College Hospital, Lon-
don, UK. In groups of patients with good (Engel I: free of disabling seizures; Engel II: rare disabling seizures 

(5)GD

0,T = (V , E0,T)

x =

{

cos (2π · 10t)+ ψ , t ≥ 0.5 and t < 1.1

cos (2π · 45t)+ ψ , t ≥ 0.2 and t < 1.4

y =

{

sin(2π · 10t)+ ψ , t ≥ 0.7andt < 1.2
sin(2π · 45t)+ ψ , t ≥ 0.5andt < 1.6
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(“almost seizure-free”)) and poor (Engel III: worthwhile improvement; Engel IV: no worthwhile improvement) 
post-operative outcome, we examined the functional connectivity features (Table 1).

ECoG was used in pre-surgical evaluation, and here we define a functional connectivity network based upon 
ECoG recordings. On average, 62 intracranial temporal and frontal electrodes were available, covering success-
fully the epilepsy-related areas as identified and targeted by the clinicians. Preoperative ECoG lasted ten days on 
average. In the preoperative data, we identified per patient at least 120 Interictal Epileptiform Discharge (IED), 
a hallmark graphoelement of epileptic EEG. IEDs are thought to play a key role in the formation and evolution 
of pathogenic networks in  epilepsy40.

All procedures were carried out in accordance with guidelines and protocols approved by the Ethical Com-
mittee of King’s College Hospital (reference number 99–017), including acquisition of informed consent for all 

Figure 3.  Wavelet coherence simulations. (Top) In blue and red, synthesised non-stationary signals. (Middle) 
WTC and IWTC graphs depict the co-occurrences of 45Hz and 10Hz rhythms in the pair of signals. Arrows 
depict the phase shift between a pair of signals, here vertical with upward direction suggesting a shift of 
ϕ = π

/

2 flow of information from the y (red) towards the x (blue) signal. (Bottom) True WTC and estimated 
95% confidence bounds with the bootstrap approach (dot dashed).
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subjects of the study. The data can be accessed upon request from the authors, according per the Ethical Com-
mittee agreement.

IED network differences in focal epilepsy. Powerful network organisation differences were discovered between 
good and poor outcome MTLE patient groups. Specifically in the preoperative intracranial ECoG recordings of 
each subject, a 2 s period around IED events [− 2,2]sec was selected (Neurocraft > microtargeting > Time > ”Full”) 
with a frequency window of [0, 122]Hz (Neurocraft > microtargeting > frequency > ”Full”) and the respective 
the Global Microscale Connectivity (GMC) was calculated (Neurocraft > levels tab > Global Connectivity Lev-
els > ”calculate”). GMC levels related to IEDs were found to be significantly different between groups, with an 
effect size of 1.271 (Fig. 4). The significant differences in GMC, signifies that the microscale networks associ-
ated with short epoch surrounding IEDs are much more strongly coupled in the group that did not have a good 
outcome from surgery, suggesting that strong coupling was retained even after resection. Crucially, the network 
features in the MTLE groups were calculated in preoperative data and predicted postoperative outcome.

Discussion
There is growing evidence that the common mechanistic principle across many neurological disorders (such 
as epilepsy and movement disorders) is disruption to normal neuronal network dynamics. Here, we propose 
a novel method for decoding neuronal network dynamics in terms of temporal variation, frequency band and 
location can potentially reveal network markers for disease detection. Additionally, a variety of exploratory net-
work analysis pipelines are proposed for the first time to our knowledge. These methodologies are packaged in a 
user friendly suite with a standalone MATLAB UI: neurocraft. This end-to-end network dynamics tool features 
flexible modules for importing data, significance testing and visualising network results. We demonstrate the 
usability of neurocraft in an exemplar epilepsy dataset where differences are identified between the networks of 
good and bad surgery outcome patients.

Table 1.  Details of patients with Mesial Temporal Lobe Epilepsy. Num of seizures: number of seizures during 
intracranial EEG investigation as identified by visual inspection.

Gender Age MRI diagnosis Num of Channels
Recording duration 
(days) Num of seizures Engel Simple

Good outcome

1 Male 32 Normal-unspecific 63 9 8 Favourable (I-II)

2 Male 25 Normal-unspecific 24 3 5 Favourable (I-II)

3 Male 18 Normal-unspecific 99 11 7 Favourable (I-II)

Bad outcome

4 Male 20 Normal-unspecific 62 6 3 Not favourable (III-IV)

5 Male 50 Normal-unspecific 60 16 5 Not favourable (III-IV)

6 Female 27 Normal-unspecific 60 14 3 Not favourable (III-IV)

Figure 4.  Comparison MTLE patients in groups of positive and negative resective surgery outcome. The 
presented force-directed simulations were calculated in preoperative recordings and predicted postoperative 
outcome. The networks activated during IEDs are much more strongly coupled in the negative outcome group, 
sustaining more connections and widespread structure.
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Continuous wavelet coherency. The widely adopted Short Time Fourier Transform (STFT) performs 
“uniform tiling” over the time–frequency domain which enables expert frequency resolution for a user-specified 
band. In this way STFT is well suited for the analyses of signals whose frequency is known a-priori. However, 
STFT is less than ideal for investigations where certain frequency activations are not known and remain yet to 
be discovered. As opposed to STFT, CWT features a “wavelet dyadic tiling” which segments the time–frequency 
domain flexibly providing a better time–frequency trade-off. In this way, CWT and consequently its coherency 
measures allow tracking of activities at the entirety of the frequency range providing a better platform for the 
data-driven investigation of brain networks.

Significance testing against random coherency. When the underlying mechanism of a process is 
well understood, significance can be tested against realisations generated by simulation models. While this para-
metric methodology is for many scenarios well suited e.g. geophysical time series and Monte Carlo methods 
against red noise, it may not as appropriate in the context of EEG. EEG signals vary wildly between systems and 
setups, subjects, their cognitive state and the pathophysiology that may underlie them. For this reason instead of 
attempting to simulate the EEG processes, a non-parametric framework is proposed here that uses the data dis-
tribution of each study to test against random connectivity. This model-agnostic approach enables significance 
testing for a variety of EEG setups and recordings that may vary from the routine EEG experiment.

Dimensionality reduction. A collection of issues arise together with the increase of the feature space, 
making the analysis of high-dimensional datasets challenging. Essentially in such datasets, the average and mini-
mum distance between datapoints is increased because of this “dilation” across the high number of dimensions. 
This sparsity in the data makes datapoints to appear distant and dissimilar making the detection with similar 
properties among them challenging. The EEG network space often is high-dimensional and to tackle relevant 
issues neurocraft employs PCA to detect patterns that potentially characterise the majority of a group of subjects 
under investigation. In this way the plethora of activated network connections are distilled down to their most 
important projections so that the network patterns are simplified without losing important traits.

Weaknesses, gaps and future plans. Neurocraft currently consists of two separate UI views, primarily 
due to limitations from MATLAB. Although data size limits will depend on computational budget, a number 
of neurocraft methods are not optimised for speed and memory handling. To provide with a more flexible and 
effective solution in this respect, we aim refactor a significant part of neurocraft so that distributed comput-
ing and multithreading is more widely supported. Moreover, the inter-area connectivity matrices are currently 
stored in MATLAB cells. The process of storing and reading these datasets is not optimised for its memory 
handling. In the future we aim at improving the memory footprint of these functions to reduce execution times 
and space usage of the export files, making the overall user experience smoother. Finally, although Quality 
Assurance (QA) has been thoroughly performed in development, Quality Control (QC) was limited to abide 
publisher rules. We aim at performing thorough QA/QC as the user base grows after the publication of the 
platform. Finally, neurocraft uses standard PCA for a variety of tasks however this method is not able to address 
nonlinear dimensionality reduction tasks and therefore such tools may benefit from methods like kernel PCA 
or multi-layer autoencoders.

Potential applications. Outputs from neurocraft could help to inform dynamically-modulated brain 
therapy. For example, in neuromodulation such as Deep Brain Stimulation for a range of brain conditions, the 
therapy remains static over weeks/months however patients’ disorders and symptoms are unique and change 
over minutes/hours. In tackling these issues, adaptive neuromodulation systems attempt to identify pathologi-
cal signatures and adapt the stimulation output in order to stabilise the pathogenic circuit in a closed  loop41–43. 
However, a particular challenge in adaptive systems is what signal should be  tracked44. Neurocraft’s ultra-high 
time resolution allows the discovery of “fast” neural signatures reflecting brain network dynamics, allowing 
to quickly track abnormalities as they take place. This rapid abnormality detection could potentially provide a 
powerful framework for personalised adaptive neurostimulation treatment in an automated, homeostatic loop.

ERP studies could also benefit from neurocraft tools and pipelines. In many neurological conditions, like 
Parkinson’s  disease45,  dystonia46 and attention deficit hyperactivity  disorder47 brain functionality is evaluated by 
means of stereotyped electrophysiological responses to a stimulus. Beyond amplitude and morphology, these neu-
ral responses could be further investigated with neurocraft to estimate the network response to a stimuli, the areas 
that being engaged and how those evolve in the peri-stimuli epoch. Furthermore, neurocraft applications could 
generalise to other multichannel series data such as EEG-EMG48 and can contribute in the analytical characteri-
sation of topological and spectral patterns of synchronisations and how these evolve at short temporal scales.

Beyond the application of these tools as a descriptive tool for clearly defined neurophysiological events, neu-
rocraft provides a platform for exploratory investigations at distant peri-event timepoints; Network behaviour 
leading up to the onset of an annotated event can be tracked and characterised based on nodal activity or at 
group-level networks can be investigated for potentially important subnetworks in relation to the group data 
variance. Beyond descriptive statistics, these pipelines essentially suffice exploratory data analysis and are aimed 
at hypothesis construction by collecting experimental observations.
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Conclusion
A variety of remarkable EEG tools have been developed in the last decade enabling the large-scale adoption of 
computational tools by the neuroscience community. Along the lines of these contributions, neurocraft aims 
to bridge the plethora of steps from EEG clinical records to network analytics and modelling, providing an 
end-to-end unified platform. Importantly, along a user-friendly interface, neurocraft features a variety of novel 
methodologies to address important questions that often arise in the study of large real-world brain networks 
and their dynamics. We hope this is a first step of an open source medium that connects clinical and engineering 
experts in the study of brain network dynamics and disorders.

Received: 27 January 2021; Accepted: 28 June 2021

References
 1. Tangwiriyasakul, C. et al. Dynamic brain network states in human generalized spike-wave discharges. Brain J. Neurol. 141, 2981–

2994. https:// doi. org/ 10. 1093/ brain/ awy223 (2018).
 2. Knoblauch, V., Martens, W. L., Wirz-Justice, A. & Cajochen, C. Human sleep spindle characteristics after sleep deprivation. Clin. 

Neurophysiol. 114, 2258–2267 (2003).
 3. Fogel, S. M. & Smith, C. T. The function of the sleep spindle: A physiological index of intelligence and a mechanism for sleep-

dependent memory consolidation. Neurosci. Biobehav. Rev. 35, 1154–1165 (2011).
 4. Beniczky, S. et al. Unified EEG terminology and criteria for nonconvulsive status epilepticus. Epilepsia 54(Suppl 6), 28–29 (2013).
 5. Pizzo, F. et al. When spikes are symmetric, ripples are not: Bilateral spike and wave above 80 Hz in focal and generalized epilepsy. 

Clin. Neurophysiol. 127, 1794–1802 (2016).
 6. De Gennaro, L. et al. The fall of sleep K-complex in Alzheimer disease. Sci. Rep. 7, 39688 (2017).
 7. Sakellariou, D. F., Richardson, M. P., Kostopoulos, G. K. & Koutroumanidis, M. Topography of generalized periodic epileptiform 

discharges in post-anoxic non-convulsive status epilepticus. Epilepsia Open https:// doi. org/ 10. 1002/ epi4. 12073 (2017).
 8. Richardson, M. P. Large scale brain models of epilepsy: Dynamics meets connectomics. J. Neurol. Neurosurg. Psychiatry 83, 

1238–1248. https:// doi. org/ 10. 1136/ jnnp- 2011- 301944 (2012).
 9. Terry, J. R., Benjamin, O. & Richardson, M. P. Seizure generation: The role of nodes and networks. Epilepsia 53, e166-169. https:// 

doi. org/ 10. 1111/j. 1528- 1167. 2012. 03560.x (2012).
 10. Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent 

component analysis. J. Neurosci. Methods 134, 9–21. https:// doi. org/ 10. 1016/j. jneum eth. 2003. 10. 009 (2004).
 11. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and 

invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869. https:// doi. org/ 10. 1155/ 2011/ 156869 (2011).
 12. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: A user-friendly application for MEG/EEG analysis. 

Comput. Intell. Neurosci. 2011, 879716. https:// doi. org/ 10. 1155/ 2011/ 879716 (2011).
 13. Gramfort, A. et al. MNE software for processing MEG and EEG data. Neuroimage 86, 446–460. https:// doi. org/ 10. 1016/j. neuro 

image. 2013. 10. 027 (2014).
 14. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–

1069. https:// doi. org/ 10. 1016/j. neuro image. 2009. 10. 003 (2010).
 15. Schmidt, H., Petkov, G., Richardson, M. P. & Terry, J. R. Dynamics on networks: The role of local dynamics and global networks 

on the emergence of hypersynchronous neural activity. PLoS Comput. Biol. 10(11), e1003947. https:// doi. org/ 10. 1371/ journ al. 
pcbi. 10039 47 (2014).

 16. Sakellariou, D. F., Koutroumanidis, M., Richardson, M. P. & Kostopoulos, G. K. Cross-subject network investigation of the EEG 
microstructure: A sleep spindles study. J. Neurosci. Methods 312, 16–26. https:// doi. org/ 10. 1016/j. jneum eth. 2018. 11. 001 (2019).

 17. Mijalkov, M. et al. BRAPH: A graph theory software for the analysis of brain connectivity. PLoS ONE 12, e0178798. https:// doi. 
org/ 10. 1371/ journ al. pone. 01787 98 (2017).

 18. Li, J. et al. High transition frequencies of dynamic functional connectivity states in the creative brain. Sci. Rep. 7, 46072 (2017).
 19. Bruns, A. Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches?. J. Neurosci. Methods 137, 

321–332 (2004).
 20. Torrence, C., Compo, G.P., J B. of the A.M. society. A practical guide to wavelet analysis 79, 61–78 (1998).
 21. Gurley, K., Kijewski, T. & Kareem, A. First- and higher-order correlation detection using wavelet transforms. J. Eng. Mech. 129, 

188–201. https:// doi. org/ 10. 1061/ (ASCE) 0733- 9399(2003) 129: 2(188) (2003).
 22. Zhan, Y., Halliday, D., Jiang, P., Liu, X. & Feng, J. Detecting time-dependent coherence between non-stationary electrophysiologi-

cal signals—A combined statistical and time–frequency approach. J. Neurosci. Methods 156, 322–332. https:// doi. org/ 10. 1016/j. 
jneum eth. 2006. 02. 013 (2006).

 23. Kronland-Martinet, R., Morlet, J. & Grossmann, A. Analysis of sound patterns through wavelet transforms. Int. J. Pattern Recognit. 
Artif. Intell. 01, 273–302. https:// doi. org/ 10. 1142/ S0218 00148 70002 05 (1987).

 24. van Vugt, M. K., Sederberg, P. B. & Kahana, M. J. Comparison of spectral analysis methods for characterizing brain oscillations. 
J. Neurosci. Methods 162, 49–63. https:// doi. org/ 10. 1016/j. jneum eth. 2006. 12. 004 (2007).

 25. Lilly, J. M. & Olhede, S. C. Higher-order properties of analytic wavelets. IEEE Trans. Signal Process. 57, 146–160. https:// doi. org/ 
10. 1109/ TSP. 2008. 20076 07 (2009).

 26. Farge, M. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395–457. https:// doi. org/ 10. 1146/ 
annur ev. fl. 24. 010192. 002143 (1992).

 27. Klein, A., Sauer, T., Jedynak, A. & Skrandies, W. Conventional and wavelet coherence applied to sensory-evoked electrical brain 
activity. IEEE Trans. Biomed. Eng. 53, 266–272. https:// doi. org/ 10. 1109/ TBME. 2005. 862535 (2006).

 28. Sakellariou, D., Koupparis, A. M., Kokkinos, V., Koutroumanidis, M. & Kostopoulos, G. K. Connectivity measures in EEG micro-
structural sleep elements. Front. Neuroinformatics 10, 5. https:// doi. org/ 10. 3389/ fninf. 2016. 00005 (2016).

 29. Nolte, G. et al. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. Off. J. 
Int. Fed. Clin. Neurophysiol. 115, 2292–2307. https:// doi. org/ 10. 1016/j. clinph. 2004. 04. 029 (2004).

 30. Zhan, Y., Halliday, D., Jiang, P., Liu, X. & Feng, J. Detecting time-dependent coherence between non-stationary electrophysiological 
signals–a combined statistical and time-frequency approach. J. Neurosci. Methods 156, 322–332. https:// doi. org/ 10. 1016/j. jneum 
eth. 2006. 02. 013 (2006).

 31. Schreiber, T. & Schmitz, A. Surrogate time series. Phys. Nonlinear Phenom. 142, 346–382. https:// doi. org/ 10. 1016/ S0167- 2789(00) 
00043-9 (2000).

 32. Maraun, D., Kurths, J. & Holschneider, M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and sig-
nificance testing. Phys. Rev. E 75, 016707. https:// doi. org/ 10. 1103/ PhysR evE. 75. 016707 (2007).

https://doi.org/10.1093/brain/awy223
https://doi.org/10.1002/epi4.12073
https://doi.org/10.1136/jnnp-2011-301944
https://doi.org/10.1111/j.1528-1167.2012.03560.x
https://doi.org/10.1111/j.1528-1167.2012.03560.x
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/879716
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1371/journal.pcbi.1003947
https://doi.org/10.1371/journal.pcbi.1003947
https://doi.org/10.1016/j.jneumeth.2018.11.001
https://doi.org/10.1371/journal.pone.0178798
https://doi.org/10.1371/journal.pone.0178798
https://doi.org/10.1061/(ASCE)0733-9399(2003)129:2(188)
https://doi.org/10.1016/j.jneumeth.2006.02.013
https://doi.org/10.1016/j.jneumeth.2006.02.013
https://doi.org/10.1142/S0218001487000205
https://doi.org/10.1016/j.jneumeth.2006.12.004
https://doi.org/10.1109/TSP.2008.2007607
https://doi.org/10.1109/TSP.2008.2007607
https://doi.org/10.1146/annurev.fl.24.010192.002143
https://doi.org/10.1146/annurev.fl.24.010192.002143
https://doi.org/10.1109/TBME.2005.862535
https://doi.org/10.3389/fninf.2016.00005
https://doi.org/10.1016/j.clinph.2004.04.029
https://doi.org/10.1016/j.jneumeth.2006.02.013
https://doi.org/10.1016/j.jneumeth.2006.02.013
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1103/PhysRevE.75.016707


11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:20716  | https://doi.org/10.1038/s41598-021-99195-y

www.nature.com/scientificreports/

 33. Nunez, P. L. et al. EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and inter-
pretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515. https:// doi. org/ 10. 1016/ S0013- 4694(97) 00066-7 
(1997).

 34. Jolliffe, I. T. Principal Component Analysis 2nd edn. (Springer Series in Statistics, 2002).
 35. Bar-yam, Y. Dynamics of Complex Systems 1st edn. (CRC Press, 1999).
 36. Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164. https:// 

doi. org/ 10. 1002/ spe. 43802 11102 (1991).
 37. Bastert, O. & Matuszewski, C. Layered Drawings of Digraphs. In Drawing Graphs: Methods and Models, Lecture Notes in Computer 

Science (eds Kaufmann, M. & Wagner, D.) 87–120 (Springer, 2001). https:// doi. org/ 10. 1007/3- 540- 44969-8_5.
 38. Dujmović, V. et al. On the parameterized complexity of layered graph drawing. Algorithmica 52, 267–292. https:// doi. org/ 10. 1007/ 

s00453- 007- 9151-1 (2008).
 39. Kim, H., Tang, J., Anderson, R. & Mascolo, C. Centrality prediction in dynamic human contact networks. Comput. Netw. 56, 

983–996. https:// doi. org/ 10. 1016/j. comnet. 2011. 10. 022 (2012).
 40. Morrell, F. Secondary epileptogenic lesions. Epilepsia 1, 538–560. https:// doi. org/ 10. 1111/j. 1528- 1157. 1959. tb042 88.x (1959).
 41. Ruge, D. et al. Deep brain stimulation effects in dystonia: Time course of electrophysiological changes in early treatment. Mov. 

Disord. Off. J. Mov. Disord. Soc. 26, 1913–1921. https:// doi. org/ 10. 1002/ mds. 23731 (2011).
 42. Bergey, G. K. et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 

84, 810–817. https:// doi. org/ 10. 1212/ WNL. 00000 00000 001280 (2015).
 43. Brittain, J.-S. & Cagnan, H. Recent trends in the use of electrical neuromodulation in Parkinson’s disease. Curr. Behav. Neurosci. 

Rep. 5, 170–178. https:// doi. org/ 10. 1007/ s40473- 018- 0154-9 (2018).
 44. Hartshorn, A. & Jobst, B. Responsive brain stimulation in epilepsy. Ther. Adv. Chronic Dis. 9, 135–142. https:// doi. org/ 10. 1177/ 

20406 22318 774173 (2018).
 45. Seer, C., Lange, F., Georgiev, D., Jahanshahi, M. & Kopp, B. Event-related potentials and cognition in Parkinson’s disease: An 

integrative review. Neurosci. Biobehav. Rev. 71, 691–714. https:// doi. org/ 10. 1016/j. neubi orev. 2016. 08. 003 (2016).
 46. McClelland, V. M. et al. Somatosensory evoked potentials and central motor conduction times in children with dystonia and their 

correlation with outcomes from deep brain stimulation of the globus pallidus internus. Clin. Neurophysiol. Off. J. Int. Fed. Clin. 
Neurophysiol. 129, 473–486. https:// doi. org/ 10. 1016/j. clinph. 2017. 11. 017 (2018).

 47. Heinrich, H., Hoegl, T., Moll, G. H. & Kratz, O. A bimodal neurophysiological study of motor control in attention-deficit hyperac-
tivity disorder: A step towards core mechanisms? Brain. J. Neurol. 137, 1156–1166. https:// doi. org/ 10. 1093/ brain/ awu029 (2014).

 48. McClelland, V., Cvetkovic, Z., Lin, J.-P., Mills, K. & Brown, P. P24-S Abnormal patterns of corticomuscular and intermuscular 
coherence in acquired and idiopathic/genetic childhood dystonias. Clin. Neurophysiol. 130, e101–e102. https:// doi. org/ 10. 1016/j. 
clinph. 2019. 04. 563 (2019).

Author contributions
D.F.S. conceived the ideas under the guidance of M.R. and M.K. D.F.S. developed the methods, software and user 
interface. A.V. and D.F.S. reviewed, annotated and preprocessed EEG signals for consumption by neurocraft. 
D.F.S. wrote the MS. M.R., A.V. and M.K. amended and reviewed the manuscript.

Funding
Dr Sakellariou is supported by the Medical Research Council Confidence in Concept grant [MC_PC_16048] 
and Nvidia Corporation GPU Grant.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 99195-y.

Correspondence and requests for materials should be addressed to D.F.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1016/S0013-4694(97)00066-7
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/3-540-44969-8_5
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1007/s00453-007-9151-1
https://doi.org/10.1016/j.comnet.2011.10.022
https://doi.org/10.1111/j.1528-1157.1959.tb04288.x
https://doi.org/10.1002/mds.23731
https://doi.org/10.1212/WNL.0000000000001280
https://doi.org/10.1007/s40473-018-0154-9
https://doi.org/10.1177/2040622318774173
https://doi.org/10.1177/2040622318774173
https://doi.org/10.1016/j.neubiorev.2016.08.003
https://doi.org/10.1016/j.clinph.2017.11.017
https://doi.org/10.1093/brain/awu029
https://doi.org/10.1016/j.clinph.2019.04.563
https://doi.org/10.1016/j.clinph.2019.04.563
https://doi.org/10.1038/s41598-021-99195-y
https://doi.org/10.1038/s41598-021-99195-y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Neurocraft: software for microscale brain network dynamics
	Methods and results
	Basic functions. 
	Data pre-processing. 

	Short-lived connectivity dynamics. 
	Continuous wavelet transform. 
	Wavelet transform coherency. 
	Ensemble wavelet transform coherency. 
	The imaginary part wavelet transform coherency. 
	Cone of influence. 
	Significance testing against random coherency. 

	Visualisation of microscale connectivity dynamics. 

	Microscale networks: meta-analysis of interregional dynamic connectivity. 
	Time–frequency targeting. 
	Subject and group level analysis. 
	Cross-subject network investigation. 

	Centrality measures and nodal influence. 
	Characteristic centrality. 
	Network models and visualisation. 
	Dynamic network and centrality modelling. 



	Results
	In silico demo of WTC and IWTC. 
	Focal epilepsy: real world data. 
	IED network differences in focal epilepsy. 


	Discussion
	Continuous wavelet coherency. 
	Significance testing against random coherency. 
	Dimensionality reduction. 
	Weaknesses, gaps and future plans. 
	Potential applications. 

	Conclusion
	References


