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There is long-standing evidence for rhythms in locomotor activity, as well as various 
other aspects of physiology, with periods substantially shorter than 24 h in organisms 
ranging from fruit flies to humans. These ultradian oscillations, whose periods frequently 
fall between 2 and 6 h, are normally well integrated with circadian rhythms; however, 
they often lack the period stability and expression robustness of the latter. An adap-
tive advantage of ultradian rhythms has been clearly demonstrated for the common 
vole, suggesting that they may have evolved to confer social synchrony. The cellular 
substrate and mechanism of ultradian rhythm generation have remained elusive so 
far, however recent findings—the subject of this review—now indicate that ultradian 
locomotor rhythms rely on an oscillator based on dopamine, dubbed the dopaminergic 
ultradian oscillator (DUO). These findings also reveal that the DUO period can be length-
ened from <4 to >48 h by methamphetamine treatment, suggesting that the previously 
described methamphetamine-sensitive (circadian) oscillator represents a long-period 
manifestation of the DUO.

Keywords: dopaminergic ultradian oscillator, biological rhythms, circadian clock, dopamine transporter, 
rest:activity

inTRODUCTiOn

Many species on earth have evolved a self-sustaining timing system, likely to facilitate robust 
24-h rhythms in physiology and behavior despite non-24-h variations in the environment. This 
timing system, the circadian clock, has been studied in detail over the past decades, uncovering 
its cellular and molecular basis (1, 2). In addition to 24-h variations, there are also numerous 
accounts of cyclic changes in physiology and behavior with periods much shorter than 24 h, i.e., in 
the ultradian range. Ultradian rhythms with periods of 2–6 h have been reported in the context of 
locomotion, sleep, feeding, body temperature, and serum hormones levels, in species from the fruit 
fly to humans (3–13). However, in sharp contrast to circadian rhythms, the biological substrate  
and mechanistic basis of ultradian rhythm generation has remained elusive.

Ultradian Behavior in voles and Mice: Hourglass vs. Oscillator
While ultradian range rhythms are often found to be labile when compared to circadian/diurnal 
rhythms (14, 15), a particular overt and robust expression of ultradian behavior is exhibited by the 
common vole (Microtus arvalis) (Figure 1A) (5). This is thought to be due to evolutionary pres-
sures resulting in the emergence of synchronous ultradian day time foraging as a strategy to reduce 
predation risk: by emerging from the burrows during the daytime every 2–3 h in synchrony, the  
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FigURe 1 | Ultradian rhythms and their manipulation from voles to humans. (A) Locomotor activity (LA) rhythms in the common vole in the presence of a running 
wheel; red bar indicates days when the wheel was blocked; bar on top indicates periods of lights on (white) and off (black); adapted from Ref. (16) with permission. 
(B) Activity record of a preterm infant based on ankle-actigraphy; arrow indicates day of hospital discharge; adapted from Ref. (8) with permission. (C) Recording of 
ambulatory activity in the mouse by telemetry implants; right, average daily activity based on primary data shown on the left; yellow shading indicates lights on. (D) 
Running wheel activity of a DAT−/− mouse; yellow area, lights on; red bar indicates the emergence of a second rhythmic component, supported by periodogram 
analysis (right). (e) Gradual ultradian locomotor period lengthening by increasing methamphetamine concentration in the drinking water of Bmal1−/− mice in constant 
darkness. (F) Extracellular dopamine measured by microdialysis in the striatum fluctuates synchronously with ultradian LA in Bmal1−/− under constant dim red light. 
Graphs shown in D, E, F are adapted from Ref. (20).
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voles are less likely to fall prey to a kestrel (5). Ultradian rhythm 
expression does not require the circadian timer as rhythms persist 
in the vole after lesioning of the suprachiasmatic nucleus (SCN), 
the central circadian pacemaker site (16). While such ultradian 
behavior could be the output of a discrete rhythm generator, it 
may as well be driven by physiological demand, such as energy 
depletion or sleep debt. However, food, water, or sleep depriva-
tion does not affect ultradian locomotor activity (LA) of the vole 
in substantial ways (5, 17). For instance, if—in the laboratory 

cage setting—food access is blocked, the voles still engage the 
food access bar at the same ultradian period as under conditions 
of ad libitum food access (17). Equally, forced lengthening of the 
active phase by rest deprivation does not lead to a proportional 
increase in subsequent rest time, which consequentially would 
result in ultradian period lengthening (17). It appears instead 
that sleep rebound is facilitated by an increased rest:activity 
ratio within a given ultradian cycle, instead of changing the 
cycle length per  se. Taken together, these data argue against a 
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role of behavioral output to define or regulate ultradian period 
but favor an endogenously generated, self-sustained oscillatory 
process that does not require a “driver,” as would be the case if 
the ultradian rhythmicity is based on an hourglass mechanism 
(18, 19).

In contrast to voles, ultradian components in LA are less overt 
but still detectable in circadian intact laboratory mice, exhibiting 
periods of 3–5 h (7, 20) (Figure 1C). Elimination of the master 
circadian pacemaker by SCN lesion or genetic manipulation 
renders them readily observable, however, murine ultradian 
locomotor rhythms are typically less robust compared to the 
vole, exhibiting a wider frequency range with substantial inter- 
but also intra-animal variation (20–22).

Ultradian Activity in Humans
Overt ultradian behavior has been also reported for human 
infants (8, 23–25). Activity recordings based on ankle-actigraphy 
revealed clear ultradian rhythmicity in preterm infants regard-
less of whether they were exposed to constant dim light or a 
24 h light:dark (LD) cycle (Figure 1B) (23). While the periodic 
activity bouts could potentially result from rhythmic interfer-
ence by nursing staff, sleep diary recordings of term infants by 
mothers who breastfed at the infant’s will also revealed ultradian 
patterns in feeding and sleep (25). Of note, these ultradian pat-
terns within the first few months of postnatal life were observed 
in the majority of the infants tested. These reports also suggest 
that—in humans—the circadian and/or diurnal control of 
sleep:wake rhythmicity only establishes over the course of weeks 
to months postnatally, thereby permitting an “unobstructed” 
view on ultradian rhythms in the 2–6 h range during this early 
postnatal period. The actigraphy and sleep diary data suggest 
that once the circadian and/or diurnal control of sleep:wake is 
established, both the ultradian and 24-h rhythmic components 
integrate in a harmonic fashion (see, e.g., Figure  1B, bottom 
half of the record) (8). The resulting compound pattern that is 
distinctly observable in some cases supports the idea that an 
ultradian rhythm generator has perhaps evolved or has been 
evolutionary adopted to promote social synchrony in gregari-
ous species, precipitating for instance a frequency of three major 
meals per day, which seems to dominate the temporal structure 
of human food intake.

A CASe FOR A DOPAMineRgiC 
OSCiLLATOR DRiving ULTRADiAn 
BeHAviOR

Monoamines and the Ascending  
Arousal Pathway
The monoamines histamine, norepinephrine, serotonine, and 
dopamine have all been associated with the ascending arousal 
pathway and are considered to be key elements of wakefulness 
promotion (26, 27). Interestingly however, genetic manipulation 
of monoamine levels by disrupting their biosynthesis or reuptake 
systems has only relatively mild effects on LA (28–32) except in 
the case of dopamine (33, 34). DA reuptake blockade (35) leads 
to a profound hyperlocomotor (33) phenotype and abolishing 

dopamine synthesis by tyrosine hydroxylase gene disruption 
selectively in DA neurons leads to an almost complete loss of 
spontaneous LA (34, 36). Thus, among the monoamines asso-
ciated with the ascending arousal pathway, dopamine has the 
strongest link to LA, which is highly associated with the wake 
state (37).

DAT Removal Lengthens Ultradian Period
When running wheel activity is monitored long-term, mice 
deficient of the dopamine transporter (DAT; official gene name, 
Slc6a3) exhibit less consolidated, rather erratic activity that 
nevertheless remained largely confined to the dark period of the 
LD cycle when compared to wild-type littermates (Figure 1D) 
(20). However, upon switching to constant darkness (DD), 
periodogram analysis revealed the emergence of a second com-
ponent of rhythmic activity that persisted over several cycles 
with a period longer than 24 h, while the primary or circadian 
component exhibited periods below 24 h as expected for endog-
enous circadian pacemaking of the C57BL/6J laboratory mouse 
strain that served as genetic background for the DAT−/− mouse 
line (Figure 1D). Further examination revealed that this second 
component does not result from a phase dissociation within the 
SCN clock cell ensemble, which has been shown to account for 
the split locomotor rhythm observed in hamsters exposed to 
constant light (38), or for the two component pattern in rats 
exposed to a 22 h LD cycle (39). If the second, >24 h component 
observed in DAT−/− animals indeed results from the very oscil-
lator that normally accounts for ultradian activity, then upon 
elimination of the circadian pacemaker, these mice would be 
expected to show lengthened ultradian activity cycles. Indeed, 
when running wheel activity of DAT−/− mice is monitored in 
constant darkness following SCN-lesion or genetic disruption 
of the circadian clock, a profound lengthening of the ultradian 
locomotor period is observed, from the typical 2- to 4-h period 
to ~12 h (20).

Striatal Dopamine Fluctuates in Step  
with Ultradian Activity
It was further found that extracellular dopamine levels in the 
striatum of Bmal1−/− mice kept in DD fluctuate in synchrony with 
ultradian LA (Figure 1F), and that extracellular levels of striatal 
DA strongly correlate with ultradian period (20). Together, 
these findings are in support of dopamine acting as an ultradian 
oscillator output and at the same time as a period determinant, 
arguing for a central role of dopamine in the ultradian rhythm 
generation process. Hence, the name dopaminergic ultradian 
oscillator (DUO) was coined (20).

DA neUROnS, SiTe OF ULTRADiAn 
RHYTHM geneRATiOn?

As DAT is only found in DA neurons and given that selective 
chemogenetic stimulation of DAT-expressing midbrain neurons 
leads to ultradian locomotor period lengthening (20), and because 
of the observation of striatal, extracellular dopamine fluctuating 
at ultradian periods, midbrain DA neurons could plausibly act as 
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the site of ultradian locomotor rhythm generation. However, the 
current data are also consistent with an ultradian rhythm gen-
erator located elsewhere, which regulates extracellular dopamine 
levels by, for instance, rhythmic metabolic conversion, and whose 
period depends on dopamine tone. However, the DA degrading 
enzyme catechol-O-methyltransferase (COMT), which converts 
DA into 3-methoxytyramine and which is found in various brain 
regions including the striatum, seems not to have a significant 
role in clearing striatal extracellular DA upon evoked dopamine 
overflow based on the study of COMT deficient mice (40). As the 
striatum has been the site of detection of ultradian DA fluctua-
tions (20), this finding argues against extracellular DA enzymatic 
conversion as a means to convey ultradian oscillator output. 
Interestingly, lesions to the retrochiasmatic, paraventricular, 
and/or arcuate nucleus regions greatly perturbs or even abolishes 
ultradian rhythm generation in the common voles, indicating that 
these brain areas either participate in rhythm generation or affect 
oscillator output (16, 41). Because DAT-expressing dopamine 
neurons are also found in the arcuate nucleus region (42, 43) and 
along the walls of the hypothalamic third ventricle (44), it is pos-
sible that these hypothalamic DA neurons contribute to rhythm 
generation as part of a network of DA neuronal populations that 
together make up the DUO oscillator (Figure  2A). However, 
selective and chronic in vivo activation of midbrain DA neurons 
using a chemogenetic strategy (20) led to a sustained lengthen-
ing of the ultradian period, suggesting that extra-midbrain DA 
neurons are not critical for ultradian rhythm generation/period 
determination.

Of note, gonadotropin-releasing hormone (GnRH) is 
released in a pulsatile fashion by GnRH neuron terminals at the 
portal vessels of the median eminence, a structure located at 
the base of the arcuate nucleus (45). Interestingly, serum levels 
of luteinizing hormone, whose release is controlled by GnRH, 
have been shown to fluctuate with an ultradian period of 2–3 h 
in male rhesus monkeys (12, 46) and luteinizing hormone lev-
els were shown to rise about every 6 h in the mid luteal phase 
of the menstrual cycle in women (47). Given that the GnRH 
projections originating from the preoptic area traverse the 
retrochiasmatic area and arcuate nucleus to reach the median 
eminence, it is conceivable that the hypothalamic lesions affect 
ultradian rhythmicity in the vole by severing GnRH neuronal 
processes, and thus their ability to contribute to the ultradian 
locomotor rhythm generation by means of their role in pulse 
generation. However, the LH pulse frequency has been shown 
to differ substantially between female [1 pulse per 1  h (48)] 
and male [1 pulse per 2–3 h (49, 50)] mice. Because no such 
sexual dimorphism is reported for the ultradian locomotor 
periodicity, these findings argue against a key role of the GnRH 
pulse generator in ultradian locomotor rhythm generation. 
Pulsatory secretion is also a key characteristic of the hypo-
thalamic–pituitary–adrenal axis (HPA) (51). Corticotrophin-
releasing hormone (52, 53), adrenocorticotropic hormone 
(54, 55), as well as the glucocorticoids (CORT) (56, 57) are 
all rhythmically secreted into the circulation with pulse fre-
quencies typically in the hourly range in rat (56–58) and man 
(59–61). Thus, as in case of GnRH/LH, also HPA axis pulse 
generation may not be involved in the production of ultradian 

locomotor rhythm which are characterized by multi-hour  
periodicities.

THe MeTHAMPHeTAMine-SenSiTive 
(CiRCADiAn) OSCiLLATOR (MASCO) 
RHYTHM ReFLeCTS A SPeCiFiC  
STATe OF THe DUO

Several decades ago, it was found that treatment with the psy-
chostimulant methamphetamine via the drinking water leads 
to the expression of a second rhythmic component in addition 
to the daily circadian component. Because this component 
exhibited periods in the circadian range (62) it was dubbed 
the MASCO (63). As SCN lesion (62) or genetic disruption of 
clock function (64) does not prevent the expression of meth-
amphetamine-dependent rhythmicity, it was concluded that 
the MASCO rhythm expression does not require the known 
circadian clock machinery (64, 65). When methamphetamine-
treated SCN-lesioned rats were given timed intraperitoneal 
injections with the antipsychotic haloperidol, which binds to 
the dopamine receptor 2 found on midbrain dopamine neu-
rons, it shifted the rhythm phase, with the directionality of the 
shift depending upon the relative time point (with regard to 
activity onset) of haloperidol injection (66). Notably, this early 
finding already pointed to a critical role of dopamine in the 
oscillator process driving these methamphetamine-induced 
rhythms.

The observation that methamphetamine is not only capable 
of gradually lengthening the ultradian locomotor period of 
Bmal1−/− mice from ~4 to ≥48 h (Figure 1E) (20), but to similarly 
affect the ultradian oscillator in circadian intact mice, causing 
the 3 night-time activity peaks to transition into 2 and then 1 
single peak (20) now argues that the methamphetamine-induced 
rhythmicity described earlier in fact represents a long period 
manifestation of a highly tunable ultradian oscillator, the DUO.

inTeRACTiOn OF THe DUO AnD  
SCn CiRCADiAn TiMeR

Studies on the SCN-intact common vole specifically in constant 
darkness showed that the ultradian rhythms in LA and feeding 
are phase-locked with the circadian clock, indicating coupling 
of the two oscillator systems (67). It was suggested that the 
ultradian rhythm is reset daily by the circadian clock and that 
it is not directly sensitive to light cues, and that phase resetting 
by light is instead mediated through the circadian timer. Further 
support for interaction between the SCN and ultradian timer 
comes from the observation of a phase-dependent change in 
oscillator speed, which is also known as relative coordination if 
the speed change does not lead to stable entrainment between 
two oscillatory processes (68, 69). For instance, under conditions 
of methamphetamine treatment: the second (>24 h) locomotor 
component frequently seems to “slow down” when overlapping 
with the “primary,” SCN-driven bout in methamphetamine-
treated animals (63, 70) (see Figure  2C,c for illustration).  
In addition to an influence of the circadian clock on the ultradian 
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oscillator, there is also evidence for the inverse: the emergence of 
the second long period (>24 h), likely DUO-driven component, 
in DAT−/− mice is associated with a simultaneous period length-
ening of the SCN-driven (~24  h) component (Figure  1D, DD 
portion of the graph). Similar observations have been made in 
methamphetamine-treated animals where the SCN-component 
delays its phase in the presence of the second (methamphetamine 
dependent) component (63). Thus, it seems as if both the DUO 
and SCN clock produce signals for their reciprocal entrainment 
which may or may not lead to full entrainment between both 
oscillators. Of note, mice with reduced expression of DAT have 
been reported to exhibit a lengthened circadian LA period (71). 
While ultradian rhythmicity has not been explicitly probed, the 
authors did not rule out the possibility that the observed period 
lengthening could be due to the action of a dysregulated DUO as 
proposed by Blum et al. (20).

Genetic ablation of the orexins have been reported to 
attenuate the ultradian amplitude in daily locomotor behavior, 
heart rate, and body temperature (72), suggesting a modulating 
role of these peptides on DUO function. As with the mono-
aminergic systems, orexins and the orexin-expressing neurons 
are part of the ascending arousal pathway (26), receiving input 
from the SCN via the dorsomedial hypothalamic nucleus, and 
projecting to the midbrain area where the DA neurons reside 
(73). Orexins could thus serve as mediators of circadian clock 
control onto the DUO.

ULTRADiAn AnD CiRCADiAn 
OSCiLLATOR LOCOMOTOR  
OUTPUT inTegRATiOn

The data presented in Blum et  al. (20) suggest that a second 
oscillator is operative in the mammalian brain (Figure  2B) 
which fundamentally differs from the circadian timer due to 
its high, frequency tunability. Figure  2C illustrates how this 
feature can explain the profoundly deviating patterns in daily 
LA that are observable upon manipulation of the dopamine 
system.

When unchallenged, the DUO cycles at an ultradian period 
of, e.g., 2–4 h alongside the circadian timer, producing activity 
bouts throughout the 24-h cycle in voles or infants, but accounts 
only for the three night-time activity peaks in mice, likely due 
to strong daytime inhibition of DUO locomotor output by the 
SCN timer (Figure  2C,a). Methamphetamine treatment or 
DAT disruption lengthens the DUO period. This lengthening 
may reach 24 h, a period at which the DUO can cycle harmoni-
ously with the SCN timer/LD cycle (Figure 2C,b). The rela-
tive phasing between the SCN timer/LD cycle and the DUO 
will depend on the entrainment capacity of the SCN timer/
LD cycle and the free-running period of the DUO, i.e., the 

period the DUO would adopt in the absence of the SCN timer,  
e.g., the longer the DUO free-running period, the more delayed 
the phase of entrainment with the SCN timer/LD cycle will be 
(Figure 2C,b). If the SCN/LD cycle is incapable to fully entrain 
a long-period (>24 h) DUO, the DUO will free-run in the pres-
ence of the SCN/LD cycle; however, as a consequence of partial 
entrainment, its speed will be altered in a phase-dependent 
manner, resulting in relative coordination (Figure  2C,c). 
Further DUO period lengthening may lead to entrainment at 
48 h likely because this frequency is again harmonious with 
the SCN timer/LD cycle and thus 24-h entrainment cues cause 
a sufficient phase shift to stably entrain the DUO at the 48-h 
frequency (Figure 2C,d).

OUTLOOK

The finding that DAT removal has a profound period lengthen-
ing effect on ultradian LA rhythms together with the discovery 
of synchronous fluctuations in extracellular dopamine pro-
vides a first framework for the molecular underpinnings of 
the oscillatory process that underlies ultradian rhythmicity. 
The current data indicate a central role for DA neurons in the 
rhythm generating process; however, it remains to be seen if 
rhythm generation is cell autonomous, as in case of the circa-
dian oscillator or instead requires one or more interconnected 
cell ensembles (Figure  2A). Intriguingly, at least some of the 
LA patterns observed in rodents upon dysregulation of the 
dopamine system show striking similarities to the aberrant 
sleep:wake behavior associated with psychopathologies such as 
bipolar disorder (74, 75) or schizophrenia (76, 77). Given the 
strong concordance of LA and wakefulness for both rodents and 
humans (37, 78) the pattern similarities between rodent models 
and these human subjects indicate that the study of the DUO 
may have important implications in understanding the etiology 
of these sleep abnormalities and perhaps the psychopathologies 
themselves.
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