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Abstract
The Neosho Bass (Micropterus velox), a former subspecies of the keystone top-
predator and globally popular Smallmouth Bass (M. dolomieu), is endemic and narrowly 
restricted to small, clear streams of the Arkansas River Basin in the Central Interior 
Highlands (CIH) ecoregion, USA. Previous studies have detected some morphological, 
genetic, and genomic differentiation between the Neosho and Smallmouth Basses; 
however, the extent of neutral and adaptive divergence and patterns of intraspecific 
diversity are poorly understood. Furthermore, lineage diversification has likely been 
impacted by gene flow in some Neosho populations, which may be due to a combi-
nation of natural biogeographic processes and anthropogenic introductions. We as-
sessed: (1) lineage divergence, (2) local directional selection (adaptive divergence), and 
(3) demographic history among Smallmouth Bass populations in the CIH using popula-
tion genomic analyses of 50,828 single-nucleotide polymorphisms (SNPs) obtained 
through ddRAD-seq. Neosho and Smallmouth Bass formed monophyletic clades with 
100% bootstrap support. We identified two major lineages within each species. We 
discovered six Neosho Bass populations (two nonadmixed and four admixed) and 
three nonadmixed Smallmouth Bass populations. We detected 29 SNPs putatively 
under directional selection in the Neosho range, suggesting populations may be lo-
cally adapted. Two populations were admixed via recent asymmetric secondary con-
tact, perhaps after anthropogenic introduction. Two other populations were likely 
admixed via combinations of ancient and recent processes. These species comprise 
independently evolving lineages, some having experienced historical and natural ad-
mixture. These results may be critical for management of Neosho Bass as a distinct 
species and may aid in the conservation of other species with complex biogeographic 
histories.
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1  |  INTRODUC TION

The convention of classifying organisms into discrete taxonomic 
units, typically “species,” before they can receive conservation pri-
ority (Beheregaray & Caccone, 2007; Isaac et al., 2004) is often po-
litically charged and ignores the biological reality that any arbitrary 
unit is composed of nested genetic groups. Reciprocally monophy-
letic lineages at the highest tier of differentiation are made up of 
metapopulations; metapopulations may consist of many popula-
tions; populations are divided into subpopulations and finally into 
pedigrees. Each of these levels may contain valuable allelic poly-
morphisms (Lawson, 2013; Præbel et al., 2013) which, in quickly 
fluctuating environments, could provide the raw material for 
cladogenesis (Hendry, 2017). Delineating intraspecific variation at 
the genomic level may therefore aid in biodiversity conservation, 
especially when that variation is cryptic and perhaps overlooked 
due to behavioral traits or convergent morphology (Culver et al., 
1995; Culver et al., 2009; Schluter, 1996). It is equally crucial to 
ascertain the eco-evolutionary context leading to contemporary 
diversity to predict how species will adapt in the changing world.

Characterizing amounts and patterns of genetic diversity (e.g., 
allelic richness, allele frequency differentiation, and admixture) 
and their underlying causal mechanisms (e.g., selection, drift, and 
gene flow) is challenging for freshwater riverine wildlife. The one-
dimensional, dendritic configuration and abiotic heterogeneity of 
stream ecosystems, including variable flow rates, depths, tem-
perature gradients, nutrient concentrations, and allochthonous 
and autochthonous inputs (Barthel et al., 2008; Lytle & Poff, 2004; 
Vannote et al., 1980), create diverse conditions and restrict move-
ment to relatively narrow corridors within watersheds, setting the 
stage for population structure (Herdegen et al., 2014; Jacobsen & 
Hansen, 2005; Puebla, 2009; Ward et al., 1994), local adaptation, 
and potentially distinct demographic histories among populations. 
Life history and behavior, such as habitat use, dispersal, and re-
production, may also contribute to eco-evolutionary dynamics. 
Fish species that are valued for angling or aquaculture face ex-
ceptionally complex environmental pressures because they may 
also be subjected to human-mediated introductions (Hohenlohe 
et al., 2013).

Phylogeography of North American endemic black basses 
(Micropterus) is only partially understood but is likely to have been 
shaped by both natural and anthropogenic forces. One of the most 
economically important and globally popular black bass species, the 
Smallmouth Bass (M. dolomieu), occupies a native range extending 
from the Laurentian Great Lakes in southeastern Canada to the 
Central Interior Highlands, USA (CIH). Such a broad, ecologically 
variable distribution and high levels of range-wide diversity (e.g., 

Borden & Krebs, 2009) have made it especially difficult to resolve 
the species' taxonomy. Biologists historically recognized two sub-
species, with one encompassing the central and eastern portion 
of the range (Northern Smallmouth Bass, M. d. dolomieu; Hubbs & 
Bailey,  1940) and another being restricted to the Arkansas River 
Basin (Neosho Smallmouth Bass, M. d. velox; Hubbs & Bailey, 1940). 
Lack of genome-wide assessments prevented fine-scale resolution 
of differentiation between the subspecies and precluded their des-
ignation as independently evolving lineages.

A recent phylogenomic study of the black bass genus provided 
compelling evidence of genomic divergence between the subspe-
cies (Kim et al., 2022). The authors ultimately elevated the Neosho 
Smallmouth Bass to species rank (Neosho Bass; M. velox), consolidat-
ing the Northern Smallmouth Bass as synonymous with Smallmouth 
Bass (M. dolomieu). Recent investigations of morphological and eco-
logical divergence have largely affirmed this taxonomic revision 
(Brewer et al., 2022; Gunn et al., 2020; Hubbs & Bailey, 1940; Miller 
& Brewer,  2021, 2022). However, other genetic studies have re-
vealed considerable population structure within both native ranges 
(Gunn et al., 2020; Long et al., 2021; Stark & Echelle, 1998; Taylor 
et al., 2018)  and substantial, heterogeneous admixture within the 
Neosho range (Gunn et al., 2020; Taylor et al., 2018), in contrast to 
the previously assumed scenario of two diverging allopatric lineages. 
These studies suggest a more complex dichotomy of differentia-
tion and gene flow which varies across clades, streams, and pop-
ulations, making it challenging to discern evolutionarily significant 
units (Moritz, 1994) and proceed with conservation and protection 
priorities.

The most recent time-calibrated phylogeny of the black basses 
(Near & Kim, 2021; Kim et al., 2022) dates the split of Smallmouth 
Bass from its sister clade to between 4 and 6 million years ago. 
Such an early origin suggests the species was later subjected to 
Pleistocene glacial fragmentation and climate oscillations, possibly 
fueling allopatric speciation (Bermingham et al., 1992; Miller, 1965; 
Near et al.,  2003; Puckett et al.,  2015; Zink & Slowinski,  1995). 
Advancement of the glacial front to the last glacial maximum (~22–
18 thousand years ago), which coincides with the parapatric conver-
gence of the Smallmouth Bass and Neosho Bass ranges, would have 
pushed fish into southern refugia (Borden & Krebs, 2009). Later re-
cession may have altered the topography enough to sever river con-
nections, creating opportunities for vicariant speciation. Recession 
may have also joined rivers through erosion, allowing for dispersal 
and subsequent gene flow (Berendzen et al., 2008; Near et al., 2001; 
Near & Keck, 2005; Ray et al., 2006; Zink, 1997). This aligns with 
the fact that the CIH is an endemism hotspot (Soltis et al.,  2006) 
for freshwater fishes (Cross et al.,  1986; Lundberg et al.,  2010; 
McAllister et al., 1986; Robison, 1986) and lends anecdotal support 
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to the possibility of greater inter- and intraspecific diversity in black 
basses in this ecoregion.

In addition to historical geological and ecological shifts, post-
Pleistocene genetic structure may be influenced by contem-
porary processes. Smallmouth and Neosho Bass populations 
exhibit inconsistent dispersal and migratory behavior. Some are 
sedentary (Funk,  1957) due to philopatry and nest-site fidelity 
(Ridgway et al., 1991), while others are seasonally potamodromous 
(Funk, 1957; Gowan et al., 1994; Lyons & Kanehl, 2002); these be-
haviors may to some degree vary by species (Miller & Brewer, 2021). 
Smallmouth and Neosho Bass are also extremely economically valu-
able; hatchery-raised Smallmouth Bass have been introduced around 
the globe for recreation, trophy angling, and as a food source (Brewer 
& Orth,  2015; Iguchi et al.,  2004; Robbins & MacCrimmon, 1974; 
Stark & Echelle, 1998). A genetic strain of Smallmouth Bass derived 
from the Cumberland River drainage was used to stock the Illinois 
River system within the Neosho Bass native range in the early 1990s 
(Taylor et al., 2018). However, this single known stocking event does 
not adequately explain signatures of substantial, heterogeneous ad-
mixture in Neosho streams (Gunn et al., 2020). Unreported or inad-
vertent introductions may be responsible; otherwise, admixture may 
be a natural byproduct of stream piracy (Branson, 1963) or recent 
flooding. Both scenarios substantially impact the genetic integrity of 
the species in this region.

Elevating the Neosho Bass to species status has profound 
implications for conservation and management of economically 
and ecologically valuable populations in a popular sportfish spe-
cies complex in the CIH. It is therefore critical to understand the 
extent of divergence, the diversifying mechanisms generating 
inter- and intraspecific diversity, and the homogenizing forces po-
tentially eroding adaptive variation to inform effective strategies 
for long-term viability. Genomic sequencing technologies provide 
the resolution and power to study highly structured populations 
in complex physical environments which may be susceptible to 
gene flow. We harnessed reduced representation sequencing 
(ddRAD-seq; Peterson et al., 2012) to resolve genomic diversity, 
local adaptation, and demographic history in the Smallmouth Bass 
and Neosho Bass, representing some of the world's most popular 
game fisheries. We specifically examined: (1) phylogenetic hypoth-
eses between and within species; (2) differentiation between and 
within species at outlier loci; and (3) alternative admixture scenar-
ios using a model-testing framework, in which we inferred joint 
demographic histories from population-specific site frequency 
spectra. We expected that the Smallmouth and Neosho Bass 
would be reciprocally monophyletic and that populations would 
be nested within species. We expected that outlier loci would 
more strongly differentiate species than populations. Finally, we 
expected that the genetic architecture of all admixed populations 
within species would be best explained by very recent gene flow, 
implicating anthropogenic introductions.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and genomic DNA 
preparation

We obtained 95 black bass samples, representing the Neosho Bass 
(N  =  66) from 13 streams throughout the Arkansas River Basin 
(ARB), and the Smallmouth Bass (N  =  25) from three tributaries 
of the White River (WRT), two tributaries of the Missouri River 
(MRT), and Skiatook Lake (LAKE), an impoundment in northeastern 
Oklahoma situated outside the native range of Smallmouth Bass 
that was stocked with a hatchery-reared strain colloquially known as 
“Tennessee lake-strain” sourced from the Cumberland River drain-
age (CIH; Figure 1a and Table 1; Table S1; Gunn et al., 2020). For phy-
logenomic comparison, we used four Spotted Bass (M. punctulatus) 
from the ARB as an outgroup (Table 1). Including Spotted Bass, we 
sampled from 20 total stream or impoundment sites.

We extracted high molecular weight DNA (gDNA) from ~25 mg 
fin clips excised from the upper caudal fin using the DNeasy Blood 
and Tissue kit (QIAGEN, Germantown, MD). Fin clips were coarsely 
chopped with sterile razor blades, digested with proteinase K, and 
treated with 4 μl RNase-A. Extracts were diluted to ~20 ng/μl with 
ddH2O, arranged on a 96-well plate in 50 μl (~100 μg gDNA) aliquots 
and stored at −20°C before library preparation. We included a single, 
no-DNA negative control sample containing only ddH2O.

2.2  |  Library preparation and sequencing

Library preparation and sequencing for ddRAD-seq were completed 
at Floragenex, Inc. (Eugene, OR) according to a modified Sequence-
based Genotyping protocol outlined in (Truong et al.,  2012). 
Approximately 500 ng genomic DNA was digested with PstI and 
MseI at 65°C for 1 h, followed by ligation of paired-end P5 PstI and 
AFLP MseI adaptors at 37°C for 3 h. Unique, 5-base pair (bp) bar-
codes were included in the P5 PstI adaptor for individual sample 
identification. PCR was performed using the parameters listed in 
(Truong et al., 2012). Samples (N = 95) were pooled and sequenced 
with 1 × 95 bp chemistry on a single lane of the Illumina HiSeq 4000.

2.3  |  Bioinformatic processing

Sequence filtering, clustering, alignment, and assembly were com-
pleted by Floragenex, Inc. (Eugene, OR) according to the RADseq 
processing and variant detection pipeline (Lozier,  2014). Clusters 
from the sample with the highest number of unique clusters (AR21; 
Table  S1) were used to assemble a de novo reference sequence, 
which was aligned back to itself to minimize paralogs and to which all 
Smallmouth and Spotted Bass individuals were aligned (Lozier, 2014).
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2.4  |  SNP discovery and filtering

Clusters were processed into RAD tags (95 bp sequences), and 
single-nucleotide polymorphisms (SNPs) were called using Samtools 
v.0.1.16 (Li et al.,  2009) along with custom scripts at Floragenex, 
Inc. employing the Unified Genotyper within the Genome Analysis 
Tool Kit (Gatk v.4.0.1.1; Depristo et al., 2011). The resulting dataset 
was converted to variant call format (VCF). Subsequent data filter-
ing and subsetting were conducted in Vcftools v.0.1.16 (Danecek 
et al., 2011).

Variants were initially filtered based on individual read depth; 
only sequences with a minimum of 15X coverage were retained. We 
removed samples from the dataset that had greater than 20% miss-
ing genotype calls across SNPs. We then removed SNPs with phred 
quality scores less than 20 (Liao et al., 2017) and greater than 20% 
missing genotype calls across samples (e.g., Lavretsky et al., 2019). 
We then generated two datasets, one in which RAD tags were 
thinned to retain a single SNP (to reduce the likelihood of linkage 
between variants in phylogenomic analyses), and one in which RAD 

tags were not thinned (for fine-scale population delimitation requir-
ing multiple SNPs per RAD tag to increase computation power).

For both the thinned and nonthinned datasets, we removed re-
maining SNPs with minor allele count of two or less (equivalent to a 
minor allele frequency of ~0.011). We created SNP tables using Gatk 
v.4.0.1.1, with which we computed genotype frequencies across 
samples and SNPs using custom scripts in R v.4.0.2 (R Core Team, 
2018). To reduce bias due to gene duplication, which is known to 
have occurred deep in the fish phylogeny (McKinney et al., 2017), 
we eliminated any remaining paralogs by omitting SNPs that were 
heterozygous in greater than 45% of samples.

2.5  |  Lineage divergence

We screened the full dataset for individuals of putative admixed 
ancestry, i.e., those of Smallmouth Bass × Spotted Bass or Neosho 
Bass × Smallmouth Bass hybrid origin, to limit gene flow influence 
on the assessment of lineage diversification. Our full VCF file was 

F I G U R E  1 Species geographic 
ranges, sampling sites, and distinct 
evolutionary lineages. (a) Native ranges 
of the Smallmouth Bass (Micropterus 
dolomieu; light gray) and the Neosho Bass 
(M. velox; dark gray), with representative 
illustrations. (b) Maximum-likelihood 
phylogeny for putatively pure (p-Pure) 
Spotted Bass, Smallmouth Bass, and 
Neosho Bass, with black and gray boxes 
at nodes indicating 100% and > 90% 
bootstrap support, respectively, and 
population structure results for K = 3, 
K = 4, and K = 5, with major lineages 
and sample sites labeled corresponding 
to individual samples. (c) 10-fold cross-
validation error results for admixture 
analysis. (d) Sampling sites (numbered 
as in Table 1) within the Central Interior 
Highlands (CIH) for Smallmouth and 
Neosho Bass colored by distinct 
evolutionary lineages. Sites of putative 
admixed origin based on preliminary 
admixture analysis (p-Admixed) are 
indicated as white circles; empty white 
circles indicate sites where all individuals 
were of putatively admixed origin, and 
stars indicate sites where nearly all 
individuals were of putatively admixed 
origin.
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converted to binary pedigree (BED) format in a high-contig build of 
Plink v.1.90 (Chang et al., 2015). We estimated ancestry proportions 
(q) for individual fish in the program Admixture v.1.3.0 (Alexander 
et al., 2009), inferring the optimal number of K clusters by minimiz-
ing 10-fold cross-validation error for K  =  1–20 (number of stream 
sites plus one additional cluster for the Spotted Bass outgroup). We 
used stringent criteria to determine pure or admixed origin: indi-
viduals were considered putatively pure if q ≥ 0.95 for one inferred 
cluster at the optimal K. (Thongda et al., 2020). While minor cluster 
membership of 0 ≤ q ≤ 0.05 for an individual may indicate historical 
introgression, we retained individuals in this range for phylogenomic 
comparison to avoid excessively limiting sample sizes. Other studies 
have resolved lineage divergence using individuals with minor an-
cestry of 0 ≤ q ≤ 0.25 (Kim et al., 2021). Hybrids of Smallmouth Bass 
or Neosho Bass with Spotted Bass were removed from downstream 
analyses. The dataset was separated into two subsets: (1) putatively 
pure individuals (“p-Pure”) and (2) putatively admixed individuals 
(“p-Admixed”).

We used the p-Pure dataset to investigate phylogenomic rela-
tionships among and within Smallmouth and Neosho Bass. We first 
assessed allele frequency differentiation in the population structure 
program Admixture, choosing K by minimizing 10-fold cross-validation 

error for K  =  1–20. We conducted a parallel phylogenomic analy-
sis using maximum-likelihood methods in the SNPhylo pipeline 
(Edgar,  2004; Felsenstein,  1989; Lee et al.,  2014; Schliep,  2011; 
Zheng et al., 2012). We ran 10,000 bootstrap replicates (−b) using 
Spotted Bass as an outgroup (−o) and setting a linkage disequilibrium 
threshold (−l) of 0.1. A consensus tree was constructed in FigTree 
v.1.4.2 (Rambaut, 2010) and aligned with results from Admixture.

2.6  |  Population discovery

To delimit populations and assess connectivity among stream sites, 
we examined haplotype similarity among Smallmouth and Neosho 
Bass individuals in fineRADstructure v.0.3.2 (Malinsky et al., 2018). 
We used our full, nonthinned SNP dataset and concatenated SNPs 
on the same RAD tag to form haplotypes in the RADpainter pack-
age (Malinsky et al., 2018). We calculated a co-ancestry matrix with 
100,000 burn-in steps (−x), 100,000 Markov chain Monte Carlo 
(MCMC) iterations (−y), and thinning (−z) every 1000 iterations for 
the full sample set, including p-Pure and p-Admixed individuals. We 
also calculated co-ancestry matrices separately for the p-Pure and 
p-Admixed groups to eliminate bias due to multiple ancestry; results 

Site ID Site name Taxon Drainage N

1 Stockton Lake Smallmouth Bass MRT 4

2 Big Piney River, MO Smallmouth Bass MRT 5

3 Tablerock Lake Smallmouth Bass WRT 4

4 Crooked Creek Smallmouth Bass WRT 4

5 White River Smallmouth Bass WRT 3

6 Skiatook Lake Smallmouth Bass LAKE 5

Total Smallmouth 
Bass

25

7 Buffalo Creek Neosho Bass ARB 6

8 Sycamore Creek Neosho Bass ARB 2

9 Big Sugar Creek Neosho Bass ARB 6

10 Elk River Neosho Bass ARB 7

11 Honey Creek Neosho Bass ARB 6

12 Spavinaw Creek Neosho Bass ARB 6

13 Illinois River Neosho Bass ARB 7

14 Baron Fork Neosho Bass ARB 6

15 Caney Creek Neosho Bass ARB 5

16 Lee Creek Neosho Bass ARB 4

17 Mulberry River Neosho Bass ARB 4

18 Big Piney Creek, AR Neosho Bass ARB 2

19 Illinois Bayou River Neosho Bass ARB 5

Total Neosho Bass 66

Not Mapped Honey Creek, Illinois 
River, Elk River

Spotted Bass 
(outgroup)

ARB 4

Total Spotted Bass 4

Abbreviations: ARB, Arkansas River Basin; MRT, Missouri River Tributaries; WRT, White River 
Tributaries.

TA B L E  1 Sampling sites and associated 
sample sizes for 25 Smallmouth Bass 
(Micropterus dolomieu), 66 Neosho 
Bass (M. velox), and 4 Spotted Bass 
(M. punctulatus; SPB) from three river 
drainages (MRT, WRT, and ARB) and 
one Tennessee Lake-strain-stocked lake 
population (LAKE) before data filtering.
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from the separate matrices were used for population delimitation. 
We used a full hill-climbing tree-building method to construct trees, 
running 10,000 iterations (−x), providing no value for the initializa-
tion parameter (−T). Individuals were collapsed into populations if 
they formed blocks of high co-ancestry along the diagonal of the 
co-ancestry matrix and if they were monophyletic at deeper nodes 
in the tree.

2.7  |  Adaptive divergence

We explored the role of adaptive divergence influencing variation 
among and within species by scanning for outlier SNPs putatively 
showing high (diversifying selection) or low (balancing selection) 
differentiation among populations (p-Pure and p-Admixed). Outlier 
analyses are effective in identifying SNPs that deviate from null 
expectations of allele frequencies under an island model of mi-
gration (Lewontin & Krakauer,  1973). However, they are often 
prone to high rates of false positives, especially when the studied 
populations are distributed spatially in one-dimensional, stepping-
stone arrangements, as is the case for riverine fish species (Bierne 
et al., 2013; Fourcade et al., 2013). We alleviated bias from potential 
false-positive results (Excoffier et al., 2009; Jakobsson et al., 2013; 
Jost, 2008; Nei & Maruyama, 1975; Robertson, 1975) by comparing 
outliers from different statistical analyses.

We combined BayeScan (Foll & Gaggiotti,  2008) and the R 
package PCAdapt (Luu et al., 2017) to search for outlier SNPs. The 
former uses a Bayesian framework to assign posterior probabili-
ties to candidate SNPs based on high or low FST values, whereas 
the latter employs principal component analysis (PCA) to identify 
individual SNPs contributing most substantially to variance along 
principal component axes. While FST-based methods may be com-
promised by the presence of hierarchical population structure 
(Flanagan & Jones,  2017) and genotype frequency correlations 
(Bierne et al.,  2013), PCA-based methods explicitly account for 
these factors and may be less likely to generate spurious results 
(Luu et al., 2017).

We conducted genome scans hierarchically at the black bass spe-
cies level, among species in the Smallmouth Bass species complex, 
and among populations within species (Chen et al., 2016) to reduce 
the effect of population structure on outlier detection. We used our 
full, thinned SNP dataset, dividing individuals into four groups: (1) All 
black basses, including Spotted Bass, Smallmouth Bass, and Neosho 
Bass (2) Smallmouth Bass and Neosho Bass, (3) Neosho Bass only, 
and (4) Smallmouth Bass only.

For each hierarchical analysis, we used default MCMC pa-
rameters in BayeScan, retaining only SNPs with logged posterior 
probability greater than 1.5, deemed “very strong” support for se-
lection (Foll & Gaggiotti, 2008). For PCAdapt, we tested K = 1–20 
principal components (PCs). To determine the optimal number 
of PCs, we assessed Scree plots and selected the number of PCs 
based on Cattell's Rule (Luu et al., 2017). We generated p-values 
for all SNPs, applying a Bonferroni correction for multiple tests. 

Final sets of outlier SNPs were created by merging candidate out-
liers from BayeScan and PCAdapt. To assess neutral differentiation 
(drift), we also created datasets with only shared neutral SNPs 
(nonoutliers).

We plotted samples according to our a priori population des-
ignations (Miller et al., 2020) at outlier and neutral SNPs for all 
hierarchical analyses using Discriminant Analysis of Principal 
Components (DAPC; Jombart et al., 2010) in the R package ade-
genet v.2.3.1 (Jombart,  2008; Jombart & Ahmed,  2011). We 
determined the number of PCs to retain in each analysis by se-
lecting the number of PCs maximizing average assignment suc-
cess over 30 replicates in cross-validation using the xval function 
(Jombart, 2008; Jombart & Ahmed, 2011), whereby 90% of sam-
ples were used as a training set and 10% of samples were used as 
a test set. The two discriminant functions explaining most of the 
variation were retained in each analysis. Adaptive divergence was 
inferred if populations were nonoverlapping based on only outlier 
SNPs. Genetic drift was inferred by the absence of overlap based 
solely on neutral SNPs.

2.8  |  Admixture mapping

Admixture signatures could be due to gene flow or incomplete 
lineage sorting. We tested for evidence of these processes using 
Mixmapper v.2.0 (Lipson et al., 2013, 2014). Populations with shared 
alleles due to incomplete lineage sorting are inferred as nonadmixed, 
whereas those with a history of admixture postdivergence are in-
ferred as admixed.

We used the full dataset with all inferred populations and cre-
ated input files in Eigensoft v.7.2.1 (Patterson et al.,  2006; Price 
et al., 2006). Mixmapper uses physical and genetic linkage to calculate 
genetic drift after admixture. Since our data were not mapped to a 
reference genome, we did not have linkage information and there-
fore did not infer precise divergence and mixing times using the drift 
units generated. To identify significantly admixed populations and 
fit them to a scaffold tree, we assumed independence (no genetic or 
physical linkage) of all SNPs (given that we filtered for one SNP per 
RAD tag during bioinformatic processing) and therefore generated 
arbitrarily large physical and genetic distance values for each SNP 
according to the custom formula:

where d = physical/genetic distance, x = numerical label of the RAD 
tag (1, 2, …), and y = nucleotide coordinate of SNPs within RAD tags. 
Moment statistics were calculated using 1000 bootstrap replicates 
over 50 cM blocks, and the scaffold tree was constructed using 10,000 
data subsets. For populations not included in the scaffold tree, we 
tested the fit of two-way admixtures between all pairs of nonadmixed 
parents (sources), running 100 bootstrap replicates. Significantly ad-
mixed populations were used in demographic analyses.

d =

100x − y

100
,
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2.9  |  Demographic history

We explored potential demographic scenarios driving observed 
admixture patterns between p-Pure and p-Admixed populations, 
testing nine two-population diversification-based demographic 
models (Portik et al., 2017) in 𝛿a𝛿i v.3.1.6 (Diffusion Approximation 
of Demographic Inference; Figure S2a–i; Gutenkunst et al., 2009); 
two-population models allow for divergence with and/or without 
migration between focal populations. Candidate scenarios differed 
in the timing of migration, i.e., ancient or due to recent secondary 
contact, and directionality of migration, i.e., symmetric or asymmet-
ric. Model descriptions are given in Table S2, and parameters esti-
mated are described in Table S3.

Demographic inference in 𝛿a𝛿i assumes SNPs are unlinked and 
neutral (Gutenkunst et al., 2009). Thus, we used only neutral SNPs 
ascertained from adaptive divergence analysis, converting SNP data 
for each population pair into folded 2D joint site frequency spectra 
(2D-JSFS). Sample sizes were projected down to account for miss-
ing genotypes, and three sequentially finer extrapolation grid sizes 
were set for each population pair based on the number of alleles per 
site per population (2N). Parameter estimates for each model were 
determined through a four-round perturbed optimization procedure 
as described in Portik et al. (2017), with custom modifications. In the 
first optimization round, parameter values were initially chosen at 
random and likelihood values were calculated over a maximum of 3 
iterations per 10 replicates. Parameters for the best-scoring repli-
cate were then used to initiate the next optimization round, in which 
likelihood was calculated over a maximum of 5 rounds per 20 repli-
cates in round 2, 10 iterations per 30 replicates in round 3, and 15 
iterations per 40 replicates in round 4. We checked for convergence 
of likelihood estimates across rounds for all models. Best-scoring 
replicates in round 4 were used to calculate Akaike's Information 
Criterion (AIC) scores for each model within each admixed-parent 
pair, and ΔAIC was then used for model comparison.

It is theoretically feasible to convert 𝛿a𝛿i parameter estimates to 
measures of migration rates, divergence times, and population sizes. 
However, since we do not know the true demographic history of 
these populations, it is possible none of our candidate models fully 
explain genetic diversity. Additionally, parameter conversion should 
be conducted with a bootstrapping procedure to quantify uncer-
tainty (Gutenkunst et al., 2009; Portik et al., 2017), and we have rel-
atively low sample sizes for bootstrapping. For these reasons, we did 
not interpret parameter estimates directly and instead use them for 
model selection and comparison only.

3  |  RESULTS

3.1  |  Bioinformatic processing

We obtained ~1.76  billion reads across all samples (mean-per-
sample = 11,209,561.8; s.d. = 2,063,521.9). The de novo reference 
assembly contained ~12.86 million reads passing quality filters, 

and these were clustered into 240,085 RAD contigs. An average 
of 59.2% of reads across all samples aligned successfully to the de 
novo reference. The full genomic dataset contained 357,123 SNPs. A 
total of 229,694 SNPs were omitted due to low read depth or phred 
quality scores below a threshold of 20, leaving 127,023 SNPs before 
filtering for missing data, linkage, minor allele frequency, and excess 
heterozygosity.

We removed three samples (GRSPB23, ER05, and BFORK32; 
Table S1) from the dataset that had greater than 20% missing geno-
type calls (Figure S1). After all filtering, the final dataset (N = 92, 24 
Smallmouth Bass, 64 Neosho Bass, and 4 Spotted Bass) contained 
50,828 SNPs for downstream analyses.

3.2  |  Lineage divergence

Population structure results for all samples were supported at K = 4 
by 10-fold cross-validation (CVerror = 0.253; Figure S3), revealing that 
all Smallmouth Bass were putatively of pure origin, but 64% of all 
Neosho Bass (N = 41) were admixed while 36% (N = 23) were puta-
tively pure (Figure S4). One Neosho Bass was identified as a likely 
Spotted Bass hybrid (BFC10; Table S1) and was removed from down-
stream analyses. One or more p-Admixed individuals were identified 
in all but three Neosho Bass sample sites (Sites 8, 11, and 17). In six 
Neosho sampling sites (Sites 7, 9, 10, 12, 18, and 19), all individuals 
were putatively admixed (Figure S4).

Subsequent population structure analysis on only p-Pure indi-
viduals revealed an optimal K = 3 (Figure 1b), with all Spotted Bass 
(SPB), Smallmouth Bass, and Neosho Bass having 0.95 ≤ q ≤ 1.00 to 
distinct genomic clusters. These three major divisions were sup-
ported by the maximum-likelihood phylogeny produced in SNPhylo, 
which showed an initial split between the Spotted Bass and a clade 
comprising Smallmouth Bass and Neosho Bass with 100% bootstrap 
support, followed by a later split, with 100% bootstrap support, into 
two monophyletic groups representing the Neosho and Smallmouth 
Bass species (Figure 1b). The combination of population structure 
and phylogenomic inference indicated the presence of distinct lin-
eages within Smallmouth and Neosho Bass. At K  =  4, two mono-
phyletic lineages, Lineage 1 (deep pink) and Lineage 2 (navy blue) 
emerged within the Smallmouth Bass (Figure 1b). At K = 5, an ad-
ditional lineage was detected in the Neosho Bass, forming Lineage 
3 (sky blue) and Lineage 4 (dark green; Figure 1b). The emergent 
lineage in Neosho Bass did not form a monophyletic group; how-
ever, cross-validation error values for K  =  4 (CVerror  =  0.276) and 
K  =  5 (CVerror  =  0.283) were within 0.008 of the optimal K  =  3 
(CVerror = 0.275; Figure 1c). We considered this possible evidence of 
four diverging lineages within Smallmouth and Neosho Bass.

Distinct genomic lineages were clustered geographically, pri-
marily along watershed boundaries (Figure  1d). In Smallmouth 
Bass, Lineage 1 consisted of three sampling sites restricted to 
tributaries of the WRT, while Lineage 2 spanned the MRT and 
the LAKE site. In Neosho Bass, Lineage 3 consisted of four sites 
throughout the middle of the ARB, and Lineage 4 comprised two 
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sites in southward-flowing streams in the Boston Mountains 
of northern Arkansas, USA in the ARB. Sites with either all or 
mostly admixed individuals were distributed throughout the ARB 
(Figure 1d).

3.3  |  Population discovery

Co-ancestry analysis of the full sample set did not resolve popula-
tions corresponding to rivers, instead showing paraphyly among in-
dividuals collected from the same site (Figure  S5). Using separate 
p-Pure and p-Admixed co-ancestry matrices, we collapsed individu-
als into nine populations, five of which were found in the p-Pure 
group (Figure 2a) and four of which were found in the p-Admixed 
group (Figure 2b). Of the five p-Pure populations, three were de-
tected in the Smallmouth Bass. One coincided exactly with Lineage 
1 in the WRT (WHITE), and two were nested in Lineage 2: the LAKE 
site (SKIA) and the MRT (MISS). The remaining two p-Pure popu-
lations belonged to the Neosho Bass and corresponded exactly to 
Lineage 3 within the middle ARB (MIDARK) and Lineage 4 encom-
passing Lee Creek and Mulberry River (LMULB; Figure 2a).

Three of four p-Admixed populations formed monophyletic 
groups adhering to proximate stream sites: the Elk River (ELK), the 
Illinois River system, including the Illinois River, Caney Creek, and 
Baron Fork Creek (ILLI), and the Illinois Bayou River and Big Piney 
Creek, AR (BAYOU; Figure 2b). The fourth p-Admixed population, 
encompassing streams in the upper ARB (UPPARK), including Big 
Sugar Creek, Buffalo Creek, and Spavinaw Creek, consisted of two 
monophyletic clades that did not correspond to stream sites and 
which did not exhibit high ancestry. Thus, these two clades were 
grouped as a single population. All nodes in the tree for p-Pure and 
p-Admixed were confirmed at 100% bootstrap support (Figure 2a,b).

3.4  |  Adaptive divergence

Scanning our SNPs with BayeScan across all black bass samples re-
vealed three candidate SNPs under very strong balancing selection 
(low FST) and 50,825 neutral SNPs (Figure S6a). Among Smallmouth 
and Neosho Bass samples, we found 703 candidate SNPs under di-
versifying selection and 50,125 neutral SNPs (Figure S6b). Among 
Neosho Bass only, we found 32 candidate diversifying SNPs and 
50,796 neutral SNPs (Figure  S6c). Among Smallmouth Bass only, 
only six candidate SNPs were found to be under substantial selec-
tion, and we found 50,822 neutral SNPs (Figure S6d).

In PCAdapt, we retained two PCs for analysis with all black bass 
samples (Figure S7a,b), three PCs for analysis with Smallmouth and 
Neosho Bass samples (Figure  S7c,d), four PCs for analysis with 
Neosho Bass only (Figure  S7e,f), and three PCs for analysis with 
Smallmouth Bass only (Figure  S7g,h) according to the underlying 
population structure. Outlier SNPs were called based on their load-
ing on retained PCs, with those contributing to most of the variation 
on a given PC being classified as significant.

In PCAdapt, we detected 16,358 candidate outlier SNPs and 
34,466 neutral SNPs for all black bass samples. Among Smallmouth 
and Neosho Bass samples, we detected 1006 candidate diversify-
ing SNPs and 41,871 neutral SNPs. Among Neosho Bass only, we 
detected 1304 candidate diversifying SNPs and 35,041 neutral 
SNPs. Among Smallmouth Bass only, we detected 1518 diversifying 
SNPs and 25,662 neutral SNPs. In each analysis, some SNPs were 
removed before p-value calculation, because they did not meet the 
minor allele frequency threshold of 0.01 for that group of samples.

There were no shared outlier SNPs between BayeScan and 
PCAdapt for all black bass samples or Smallmouth Bass only, so we 
could not reliably consider any SNPs to be contributing to local ad-
aptation. However, among Smallmouth and Neosho Bass samples, 
we found 156 SNPs with outlier FST values shared between the two 
models, which drove tight clustering of Smallmouth Bass separately 
from Neosho Bass as well as clustering of two separate Neosho pop-
ulations (BAYOU and ELK; Figure 3a; Figures S8a, S9a,b). We also 
found 41,324 shared neutral SNPs, indicating neutral species dif-
ferentiation, at the drainage level within the Smallmouth Bass, and 
between Neosho Bass populations (Figure 3b; Figures S8b, S9c,d). 
Among Neosho Bass, we detected 29 shared diversifying SNPs 
which drove strong divergence between the two populations in the 
Boston Mountains (LMULB, dark green; BAYOU, light green) and 
between the Boston Mountains and all other Neosho populations 
(Figure 3c; Figures S8c, S9e,f). We detected 35,038 neutral SNPs, 
indicative of strong genetic drift among populations (Figure  3d; 
Figures S8d, S9g,h). Geographic location of populations are given for 
reference in Figure 3e.

3.5  |  Admixture mapping

All p-Pure populations (WHITE, MISS, SKIA, MIDARK, and LMULB) 
were found to be nonadmixed and formed the branch tips of the 
admixture tree (Figure  4). All p-Admixed populations (ELK, ILLI, 
UPPARK, and BAYOU) were significantly admixed based on f3 statis-
tics (Table S4). All admixed populations were inferred to be parented 
by the MIDARK population of Neosho Bass. The ELK, BAYOU, and 
UPPARK populations were all admixed with the WHITE population of 
Smallmouth Bass lineage (Table 2 and Figure 4). The ILLI population 
was admixed with the SKIA population (Table 2 and Figure 4). In each 
case, sources were inferred with 100% bootstrap support (Table 2).

3.6  |  Demographic history

All nine demographic models tested in 𝛿a𝛿i were successfully op-
timized for the ELK and WHITE (Figure  S10a–i), ILLI and SKIA 
(Figure  S11a–i), BAYOU and WHITE (Figure  S12a-i), and UPPARK 
and WHITE (Figure  S13a–i) analyses. Parameter estimates and 
AIC values are provided for all models for each population pair in 
Table  S5. The best-fitting model (lowest AIC; ∆AIC =  0) for ELK 
and WHITE was AM (Table S2). Migration rate from WHITE to ELK 
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(m12 = 4.903) was substantially higher than in the opposite direction 
(ELK to WHITE; m21 = 0.026; Table 3 and Figure 5a).

The best-fitting model for ILLI and SKIA was SCAM (Table S2). 
Migration rate from SKIA to ILLI (m12 = 3.434) was higher than in 
the opposite direction (ILLI to SKIA; m21 = 0.276). The estimate for 
the period of isolation following divergence (T1 = 1.143) was sub-
stantially greater than the time since secondary contact (T2 = 0.091; 
Table 3; Figure 5b).

The AM2E model (Table S2) was the most suitable for UPPARK 
and WHITE, (Table 3; Table S5; Figure 5c). In both the first and sec-
ond epochs, migration rate from WHITE to UPPARK (m12a = 1.656 

and m12b = 1.413, respectively) was greater than the opposite direc-
tion (m21a = 0.096 and m21b = 0.011). Timing of each epoch with re-
spect to species divergence was variable, although the second epoch 
(T2 = 16.128) was estimated to last longer than the first (T1 = 3.076; 
Table 3 and Figure 5c).

The most suitable model for BAYOU and WHITE was SCAM 
(Table  S2). Migration rate from WHITE to BAYOU (m12  =  19.782) 
was much higher than in the opposite direction (BAYOU to WHITE; 
m21 = 0.775). The estimate for the period of isolation following di-
vergence (T1 = 0.750) was substantially greater than the time since 
secondary contact (T2 = 0.019; Table 3 and Figure 5d).

F I G U R E  2 Co-ancestry and phylogenomic relationships between Smallmouth Bass (Micropterus dolomieu) and Neosho Bass (M. velox) 
inferred in fineRADstructure for (a) p-Pure samples, and (b) p-Admixed samples. We used the full non-thinned dataset (98,659 SNPs) to 
generate SNP haplotypes for co-ancestry and phylogenomic assessment. Colors within the co-ancestry matrices reflect the extent of co-
ancestry between adjacent samples, with white and blue representing low co-ancestry, and pink and black representing high co-ancestry. 
Inferred populations are colored on the vertical at left and along the top horizontal for reference, including the hatchery-stocked LAKE site 
(SKIA, navy blue), sites within the MRT (MISS, orange), sites within the WRT (WHITE, deep pink), Lee Creek and the Mulberry River (LMULB, 
dark green), tributaries of the middle ARB (MIDARK, sky blue), the Illinois River system (ILLI, light purple), Illinois Bayou River and Big Piney 
Creek, AR (BAYOU, light green), the Elk River (ELK, light brown), and tributaries of the upper ARB (UPPARK, light pink). Inset maps show 
geographic locations of each population; pie charts at Sites 13, 14, and 15 indicate the proportion of individuals assigned as p-Pure (sky blue, 
a and b) and p-Admixed (white, a; light purple, b). All branches on the phylogenies at left are supported with 100% of bootstrap replicates.
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Residual estimates and distributions for all best-fitting models 
are given in Figure S14.

4  |  DISCUSSION

Recent studies have attempted a more holistic, multidimensional 
approach to population genomic investigations which seek not only 
to reveal the scope of diversity, but also to identify and quantify 

the strength of evolutionary forces acting on groups of organisms 
(Bangs et al., 2020; Ebersbach et al., 2020; Portik et al., 2017). By 
applying this approach and accounting for the many spatially and 
temporally dynamic processes responsible for phylogeographic pat-
terns, we detected and described the complex genomic diversity 
of one of the world's most ecologically and economically valuable 
freshwater sportfish species.

Our phylogenomic and population genomic analyses showed 
that the Smallmouth and Neosho Bass are highly diverged, forming 

F I G U R E  3 Discriminant Analysis of 
Principal Components (DAPC) results for 
(a) outlier (156) and (b) neutral (41,324) 
SNPs shared by BayeScan and PCAdapt for 
all Smallmouth Bass (Micropterus dolomieu) 
and Neosho Bass (M. velox) samples; (c) 
outlier (29) and (d) neutral (35,038) SNPs 
shared by BayeScan and PCAdapt for 
Neosho Bass only. (e) Geographic location 
of populations.
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two monophyletic clades in the CIH. Within the Smallmouth Bass, 
we found two distinct, monophyletic lineages, one encompassing 
what was thought to be an intergrade zone between the subspe-
cies in White River drainage, supporting a recent microsatellite-
based study (Gunn et al., 2020). This finding is surprising but makes 
sense given that endemism in the White River has been observed 
in other fishes (Roe et al.,  2008). A second lineage within the 
Smallmouth Bass inhabits tributaries of the Missouri River but also 
includes a reciprocally monophyletic Tennessee lake-strain popula-
tion in Skiatook Lake, Oklahoma, USA. Although Skiatook Lake is 
known to have been stocked with the Tennessee lake-strain (Taylor 
et al., 2018), our data confirm it is derived from Smallmouth Bass.

Within the Neosho range, we found a nonadmixed, monophy-
letic lineage consisting of tributaries throughout the middle of 
the Arkansas River Basin within the CIH, including Honey Creek, 
Sycamore Creek, Caney Creek, and Baron Fork, supporting the 
findings of Taylor et al.  (2018) and Gunn et al.  (2020). We found 
an additional distinct lineage in the southward-flowing streams of 
northern Arkansas, USA, in the Boston Mountain ecoregion, in-
cluding the Mulberry River and Lee Creek, which had been noted 

but poorly resolved by Gunn et al.  (2020). The northern Arkansas 
streams formed a pectinate lineage in the phylogenomic tree despite 
showing distinct clustering in population structure analysis, perhaps 
indicating that this may be an early-diverging lineage. Northern 
Arkansas may contain segments of an ancestral Neosho Bass popu-
lation with adaptive allelic variation and could therefore be of high 
conservation value for the species.

Concordant with their independent evolutionary trajecto-
ries, the Smallmouth and Neosho Bass are highly differentiated at 
multiple outlier SNPs across the genome, which could potentially 
be explained by directional selection in their local environments. 
Previously described morphological differences between the spe-
cies, including head length and number of soft dorsal fin rays (Gunn 
et al., 2020; Hubbs & Bailey, 1940), have provided support for adap-
tive diversity. However, this is the first evidence to explicitly show 
a genomic basis for local selection, and potentially local adaptation, 
rather than phenotypic plasticity. Additionally, two populations in 
the Neosho range, one in the Illinois Bayou River and Big Piney Creek 
and another in Lee Creek and the Mulberry River, were strongly di-
verged from all other Neosho populations and were differentiated 

F I G U R E  4 Admixture drift tree for 
Smallmouth Bass (Micropterus dolomieu) 
and Neosho Bass (M. velox) populations 
inferred in Mixmapper. Black labels 
plotted on the tips of the scaffold tree 
with corresponding-colored squares 
represent pure, unadmixed populations (as 
determined by a two-way f3 test). Colored 
and shadowed branches and labels 
mapped onto the scaffold tree represent 
significantly admixed populations 
originating from their respective parents. 
The scale for branch lengths is in drift 
units (D) in which D is roughly equal to 
2FST.
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TA B L E  2 Admixed populations of Neosho Bass (Micropterus velox), their inferred Smallmouth Bass (M. dolomieu) and Neosho Bass parent 
populations, and parameters inferred from two-population tests in Mixmapper

Adm. Pop Parent 1 Parent 2 BS resnorm alpha Branch 1 Loc Branch 2 Loc Mixed drift

ELK MIDARK WHITE 100 1.19E-06 0.509–0.519 0.011–0.011/0.011 0.005–0.006/0.009 0.001–0.001

ILLI MIDARK SKIA 100 1.23E-06 0.786–0.793 0.011–0.011/0.011 0.015–0.015/0.015 0.000–0.001

BAYOU MIDARK WHITE 100 9.12E-07 0.705–0.720 0.001–0.002/0.011 0.003–0.004/0.009 0.005–0.005

UPPARK MIDARK WHITE 100 6.56E-07 0.785–0.792 0.011–0.011/0.011 0.006–0.007/0.009 0.001–0.001

Note: BS gives the number of bootstrap replicates supporting the given pair of parents; resnorm gives the residual error for each test; alpha gives the 
95% confidence intervals for the proportion of ancestry from Parent 1; Branch 1 Loc and Branch 2 Loc give the positions on branch 1 and branch 2, 
respectively, of the admixed population; Mixed Drift gives the drift time since admixture occurred.
Abbreviations: Adm. Pop, Admixed Population; BAYOU, Illinois Bayou River; Branch 1 Loc, Branch 1 location on admixture map; Branch 2 Loc, Branch 
2 location on admixture map; BS, Bootstrap support (%); ELK, Elk River; ILLI, Illinois River system; MIDARK, Middle Arkansas River Basin; resnorm, 
normal residual error; SKIA, Skiatook Lake; UPPARK, Upper Arkansas River Basin; WHITE, White River.
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from each other, implicating selection at the lineage and population 
levels. These results should be interpreted with caution, as there are 
several other possible drivers of high divergence at individual SNPs, 
including resistance of gene flow due to chromosomal inversions 
in regions of low recombination (Kirkpatrick & Barton,  2006), ge-
netic hitchhiking due to selective sweeps (e.g., Kim & Maruki, 2011), 
purging of deleterious alleles (Pannell & Charlesworth, 2000), de-
mographic history (Lotterhos & Whitlock, 2014), and heterogeneity 
in recombination rates (Roesti et al., 2012). Fine-scale genome map-
ping of candidate selected loci should be conducted to disentangle 
these effects before local adaptation can be definitively inferred.

Phenotypic differentiation may occur along ecological clines 
(Conover et al.,  2009; Savolainen et al.,  2013), and clines can be 
especially steep among or within rivers (Schlosser, 1991; Vannote 
et al.,  1980). There can be substantial thermal heterogeneity or 
variation in hydrological factors such as flow rate, depth, and fre-
quency and magnitude of stochastic disturbances, that is, flooding 
and drought (Barthel et al.,  2008; Lytle & Poff,  2004). Thus, fish 
in different populations may be adapted to specific combinations 
of variables (Aitken et al.,  2008; Davis & Shaw,  2001; Franks & 
Hoffmann, 2012), and, at the genomic level, such adaptations may 
be highly polygenic. Both the Illinois Bayou River and Big Piney 
Creek flow southward through the Boston Mountains of northern 
Arkansas, USA, before emptying into the Arkansas River. These 
streams are warm and flow along steep topographical gradients; 
water temperatures may exceed 30°C (Hafs et al., 2010) in sum-
mer, approaching the critical swimming maximum temperature 
(35°C) for fry (Larimore & Duever, 1968). Although many streams in 
the Neosho range flow continuously (Robison & Buchanan, 1984), 
Boston Mountains streams are not spring-fed and partially dry 
during summer and autumn months (Hines, 1975), leaving only deep, 
isolated pools for refuge (Hafs et al.,  2010). Neosho Bass in the 
Boston Mountains may therefore experience occasional isolation 
and may be well-adapted to extreme temperature and flow regimes, 
warranting further investigation and conservation actions given cli-
mate projection for warmer temperatures and increased drought 
intensity for the region (Sharma & Jackson, 2008). A comparison of 
thermal tolerances of juvenile Neosho (90% HDI: 34.93–36.75°C) 
versus Ouachita Smallmouth Bass (M. sp. cf. dolomieu velox; 90% 
HDI: 36.81–38.6°3C) indicated an approximate 2°C difference in 
thermal tolerances (Brewer et al., 2022). The thermal tolerance of 
Smallmouth Bass occupying the Boston Mountains is unknown.

We identified many SNPs that were selectively neutral among 
Smallmouth and Neosho Bass at both the species and population 
levels, indicating drift. Some Smallmouth Bass individuals are sed-
entary (Funk, 1957) as a result of philopatry (Ridgway et al., 1991), 
which may contribute to reproductive isolation between popula-
tions and allow for random fixation of distinct alleles. While some 
fish may also be migratory, when migration occurs, it is typically 
seasonal (Funk, 1957; Gowan et al., 1994; Lyons & Kanehl, 2002). 
Humston et al.  (2010) found that first-year juvenile Smallmouth 
Bass most often move from tributaries to the mainstem river and 
not in the opposite direction, but we know little about juvenile TA
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dispersal after the first year (Barthel et al., 2008). Given nest-site 
fidelity (Ridgway et al., 1991) in most populations, bidirectional 
movement of Smallmouth Bass cannot be ruled out. Regardless, 
individuals exhibiting the same movement strategies, either sed-
entary or migratory, are more likely to interbreed than individu-
als exhibiting different strategies (Barthel et al.,  2008). These 
same life history traits need to be investigated in Neosho Bass 
to make a valid ecological comparison. Connectivity among pop-
ulations may also be limited by impoundments. A tagging study in 
the Elk River basin showed that tagged Neosho Bass in Sycamore 
Creek, Elk River, and Buffalo Creek did not cross the reservoir-
river interface created by Grand Lake O′ the Cherokee (Miller & 

Brewer, 2022). Alternatively, movement is likely limited by dams 
(Taylor et al., 2019) in the Neosho range, creating bottlenecks and 
strong drift.

We show that the evolutionary history of Smallmouth and 
Neosho Bass has been strongly influenced by asymmetric gene 
flow from the Smallmouth Bass range into the Neosho range. Four 
of our populations, including seven sampling sites, were signifi-
cantly admixed. The Elk River and some tributaries of the upper 
and lower Arkansas River Basin had signatures of allele-sharing 
with Smallmouth Bass from the White River drainage. The site 
frequency distribution of the Elk River population best fits a de-
mographic model of divergence followed by continuous migration 

F I G U R E  5 Best-fitting two-population demographic models for Smallmouth Bass (Micropterus dolomieu) and Neosho Bass (M. velox), 
specifically for (a) ELK and WHITE populations, (b) ILLI and SKIA populations, (c) UPPARK and WHITE populations, and (d) BAYOU and 
WHITE populations, generated in 𝛿a𝛿i. Model schematics of divergence and migration are shown in the top left-hand inset; lengths of arrows 
correspond roughly to the length of time (for T parameters) or the rate of migration (for m parameters) inferred in 𝛿a𝛿i. The simulated 2D 
joint site frequency spectrum for the best-fitting demographic model, and the 2D joint site frequency spectrum for the empirical data, are 
shown in the top and bottom panels of the lower right-hand inset, respectively. Residuals representing the closeness of fit of empirical data 
to each model are given in Figure S14.
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from the White River lineage. Gene flow in this part of the range 
could be facilitated from natural, transient reconnections between 
the Elk River and the White River system, most likely owing to 
the karst topography. Several studies (Branson, 1963, 1967) have 
found evidence of stream capture events in the CIH that may 
have occurred post-Pleistocene, a timeframe that could qualify 
as secondary contact with respect to the timing of species diver-
gence. Intermittent periods of high water (flooding) may have also 
brought temporary stretches of connectivity. Admixture in the 
upper Arkansas River tributaries was best modeled by differential 
rates of asymmetric migration over two distinct epochs. While this 
demographic scenario has a distinct joint site frequency spectrum 
(Portik et al., 2017), we presume that the upper Arkansas River 
tributaries and Elk River populations have undergone similar natu-
ral processes given their geographic proximity. It is also likely that 
both populations have been subjected to anthropogenic introduc-
tions of Smallmouth Bass, either inadvertently or deliberately to 
promote angling (Johnson et al., 2009; Rahel, 2004). Varied tim-
ing and differential volumes of introduced fish in these two river 
systems could explain demography in these rivers. However, our 
inferences should be considered with caution, as we do not know 
of direct evidence of Smallmouth Bass stocking.

Admixture in both the Illinois River system and the Illinois Bayou 
and Big Piney Creek population was best explained by divergence 
with later secondary contact, more strongly implicating recent, an-
thropogenic introductions. We expected to find the Illinois River sys-
tem has been subjected to secondary contact, because we know that 
it is admixed with the Skiatook Lake genomic cluster due to stocking 
of Lake Tenkiller with the same hatchery strain in the 1990s (Taylor 
et al., 2018). We were surprised to obtain the same demographic his-
tory for the Illinois Bayou and Big Piney Creek population, because 
we inferred a greater amount of genetic drift following admixture in 
this part of the range from our admixture mapping results. Although 
supported gene flow models were consistent with widespread intro-
ductions of Smallmouth Bass from local sources, we have very little 
direct evidence of Smallmouth Bass stocking. Because we cannot 
determine the timing of secondary contact using the parameters de-
rived in our demographic analysis, more data are needed before im-
plicating recent introductions as the cause of admixture. Analysis of 
a full Smallmouth Bass genome and associated linkage map is needed 
to ascertain precise estimates of admixture timing.

4.1  |  Conservation implications

Global rates of species loss, largely owing to anthropogenic habi-
tat degradation and climate change, continue to climb at a scale 
warranting designation as Earth's sixth mass extinction (Ceballos 
et al.,  2017; Kuipers et al., 2019). The projected consequences of 
these trends are dire, as biosphere stability depends on the inter-
connected ecological roles—e.g., productivity, predation, competi-
tion, mutualisms, nutrient cycling—of native, locally adapted lineages 
(De Meester et al., 2016; Pimm & Raven, 2000; Rovito et al., 2009). 

Freshwater species, particularly vertebrates, are at disproportionate 
risk of extinction owing to a number of factors, including pollution, 
habitat destruction, non-native species introduction, and overex-
ploitation (Reid et al., 2019). There is a mounting urgency to quantify 
biodiversity so that we can predict and reduce short-term ecosystem 
fragility while maximizing long-term biodiversity resilience.

Smallmouth Bass are keystone apex predators (Scott & 
Crossman, 1973) and obligate hosts for the larval stage of several 
freshwater mussels (Haag et al., 1999; Hoffman, 1999). The Neosho 
Bass and Smallmouth Bass are phylogenetically divergent, potentially 
locally adapted lineages in the CIH, each likely playing a vital role in 
top-down ecosystem function. We have identified six streams in the 
Arkansas River Basin—Honey Creek, Sycamore Creek, Caney Creek, 
Baron Fork, Lee Creek, and the Mulberry River—that appear to be of 
pure genomic origin and may be descendant populations of ancestral 
Neosho Bass. These populations may be distinct evolutionary units 
which may harbor adaptive genomic variation for the species and the 
greater Ozark Highlands ecosystem. More importantly, some popu-
lations within the small, geographically isolated Neosho range are 
significantly admixed, which could dilute this adaptive diversity and 
constrain intraspecific diversification.

It is urgent to predict the long-term fitness outcomes of gene 
flow in Neosho Bass and other taxa subjected to various forms of 
secondary contact, especially as species introductions continue to 
increase (Pearson et al., 2021). Gene flow may cause outbreeding de-
pression through epistatic incompatibilities between derived alleles 
(Bateson, 1909; Dobzhansky, 1934; Muller, 1942) or undermine co-
adapted gene complexes that have evolved in isolation (Altukhov & 
Salmenkova, 1987; Goldberg et al., 2005; Moyle et al., 1986). Mixing 
may also have the opposite effect, facilitating heterosis by alleviating 
the genetic load of deleterious genes (Alleaume-Benharira et al., 2006), 
establishing stable tension zones (Arnold & Martin, 2010), or revers-
ing stochastic loss of heterozygosity when adaptive alleles flow into 
small, genetically homogenous populations (Fitzpatrick et al.,  2016; 
Hedrick, 1995; Tallmon et al., 2004; Willi et al., 2007). Even under the 
latter scenario of adaptive introgression, the ultimate result could be 
the loss of a distinct lineage through genetic swamping.

Neosho Bass are likely experiencing human-mediated hybrid-
ization and introgression due to introductions. Further research to 
determine whether introduced alleles are adaptive and becoming 
more prevalent in Neosho populations, potentially leading to genetic 
swamping, or, alternatively, if they are maladaptive and reducing rel-
ative fitness, would help evaluate the species' evolutionary trajec-
tory. Highly complex patterns of diversification and gene flow have 
likely gone undetected in other species, both terrestrial and aquatic, 
that have evolved in variable environments and have been subjected 
to human-mediated introductions. This study offers a potential road 
map for conducting future analyses on nonmodel and potentially 
threatened species and will aid in the preservation of biodiversity.
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