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Background
With the growing popularity of personalized medicine, 
interest in prognostic calculators for predicting patient 
health outcomes is increasing. These calculators, which can 
inform treatment decisions, employ different methods for 
prediction that range from parametric models to non-para-
metric machine learning algorithms. Each method requires 
different assumptions and confers specific advantages and 
disadvantages. The structure of parametric approaches to 
prognostic modeling allows for the incorporation of domain 
knowledge, such as clinically-supported effects of treatment 
and patterns of disease progression. This domain-driven 
structure may enable the parametric models to better capture 

the underlying mechanisms of a disease and uncover the spe-
cific roles that individual variables play in different aspects of 
disease. While these models are not directly designed to pro-
vide predictions of the outcome, they can be used for this 
purpose and the hope is that, as these models provide a rea-
sonable approximation to the underlying clinical mecha-
nisms and may incorporate auxiliary information, they would 
also provide accurate predictions. Various types of parametric 
models have been applied to predict patient prognosis in 
numerous settings ranging from cancer to diabetes.1-3

In contrast, non-parametric machine learning methods have 
limited capacity to incorporate domain-driven structure and 
are instead touted for both their strong predictive utility and 
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data-driven nature. Non-parametric models can capture com-
plicated patterns of association without requiring these pat-
terns to be explicitly specified as in a parametric model. These 
black box approaches are focused primarily on prediction and 
are typically optimized for that purpose; thus, they can be 
expected to work reasonably well for predictions, provided the 
sample size is large enough. The black-box characteristics of 
non-parametric models, however, make uncovering associa-
tions between predictors and outcomes difficult. Prior work has 
included development of methods that can subsequently be 
applied to fitted black-box models to help interpret the model 
predictions. For example, Ribeiro et al propose local interpret-
able model-agnostic explanations, or LIME.4 We later discuss 
another such method—variable importance—in the context of 
random forests.

A substantial body of existing work has focused on compar-
ing the accuracy of a diverse array of parametric and non-para-
metric prediction methods.5-10 Only a subset of this literature, 
however, focuses on comparing methods suitable for analyzing 
event-time outcomes. We focus specifically on comparing the 
predictive accuracy of parametric and non-parametric methods 
when (a) the outcome of interest consists of multiple related 
event times and (b) some predictors are missing a substantial 
proportion of their values.

Motivated by the challenge of accurately making personal-
ized prognostic predictions for patients with cancer, Hu and 
Steingrimsson review different variations of random forest and 
random survival forest algorithms and then compare these 
non-parametric methods to standard regression models 
through simulation studies.10 This work deals with the setting 
of a single time-to-event outcome (in their application, time to 
death), rather than the setting of multiple correlated event-
time outcomes that we consider here. Working in the setting of 
competing risks, Bonneville et al contrast the predictive accu-
racy of different imputation methods when estimating cause-
specific survival.11

Multistate models, which are designed for analyzing multi-
ple related time-to-event outcomes, have been developed and 
applied in numerous settings ranging from the length of hospi-
tal stays to cancer progression. For example, Clark et al, Jackson 
et  al, and Pan et  al used multistate models to assess various 
factors related to the length of hospital stays.12-14 Both moti-
vated by cancer applications, Eleuteri et al applied multistate 
models in the setting of uveal melanoma15 while Beesley et al 
modeled outcomes after treatment for prostate cancer.2 In 
existing literature, direct comparisons of multistate models and 
random survival forests are far less well-explored than com-
parisons of other non-parametric and parametric methods.

Additionally, the importance of missing data in our setting 
further differentiates our work from existing literature. Existing 
work has highlighted the importance of considering missing 
values when comparing the predictive performance of a variety 
of different outcome models. Janssen et al evaluated the impact 
of different approaches to handling missing data on logistic 

regression.16 Jerez et al, Bertsimas et al, and Perez-Lebel et al 
compare numerous approaches to imputation and assess their 
impact on prediction accuracy; Jerez et al consider a binary out-
come and Bertsimas et al and Perez-Lebel et al consider both 
regression and classification problems.17-19

To the best of our knowledge, little work has compared the 
impact of various missing data methods on the predictive accu-
racy of methods for modeling multiple related event time out-
comes. Thus, our work adds to the existing literature by 
comparing the predictive accuracy of a domain-driven and 
data-driven method for modeling multiple related time-to-
event outcomes in the presence of missing data.

In this paper, we present a comparison of a domain-driven 
parametric Bayesian multistate model (MSM) and a data-
driven non-parametric random survival forest (RSF) in a case 
study of prognostic predictions for patients with oropharyn-
geal cancer. This MSM, which was previously published in 
Beesley et al, aimed to describe associations between baseline 
covariates and multiple outcomes; it also aimed to provide 
predictions of multiple possible outcomes for a patient to 
potentially help inform clinicians’ treatment decisions.20 We 
explore the advantages and disadvantages of incorporating 
structural domain knowledge into model specification and of 
handling missing data using parametric and non-parametric 
approaches through this illustrative example, which we sup-
plement with simulations.

Rather than considering the traditional single binary event 
outcome, we aim to predict two related survival outcomes—
overall survival (OS) and event free survival (EFS)—using 
these two methods and compare the accuracy—in terms of dis-
crimination and calibration—of the estimated survival proba-
bilities. Patient outcomes such as whether the primary cancer is 
cured after treatment, and what is the type of recurrence for 
tumors that do recur, are part of the MSM, but are not explic-
itly part of the OS and EFS outcomes. Another key character-
istic of this case study is the substantial proportion of missing 
values within some important predictors in these data and the 
differing ways in which the parametric MSM and non-para-
metric RSF account for these missing values.

This  work is organized as such: we first introduce the moti-
vating clinical data, then describe the methods—the paramet-
ric MSM and non-parametric RSF—before applying them to 
the clinical data and comparing their predictive accuracy. We 
then conduct simulations to better understand differences in 
the approaches for handling missing data and the potential 
benefit of modeling structural/disease progression-related 
information. Finally, we end with a discussion of the results and 
provide concluding remarks.

Motivating Data
Data motivating this work are composed of 840 patients treated 
for oropharyngeal squamous cell carcinoma (OPSCC) at the 
University of Michigan between 2003 and 2016. Patient data 
collection was approved by the institutional review board of the 
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University of Michigan. Informed written consent was pro-
vided by all patients. Of these 840 patients, 232 (28%) were 
observed to experience a cancer recurrence and 272 (32%) were 
observed to die. Using diagnosis date as time 0, the median 
follow-up time (time to censoring) for patients was 5.9 years. 
54 (6%) patients had tumors that did not respond to treat-
ment—called persistent disease—and are recorded as having a 
recurrence at 1-day post-diagnosis. Further explanation of the 
definition of persistent disease is given in Beesley et al.20 186 
(22%) patients responded well to initial treatment and their 
disease was considered “cured,” which is defined as recurrence-
free survival of at least 72 months. Both the presence of persis-
tent tumors and the ability to cure the disease are important 
characteristics of patient outcomes after treatment for OPSCC. 
Thus, accounting for these disease characteristics in the model 
structure may enable improved predictive accuracy.

Clinical characteristics were recorded at baseline, including 
age, sex, T stage (eighth edition), N stage (eighth edition), 
Adult Comorbidity Evaluation 27 (ACE) score, smoking sta-
tus (current, former, or never), anemia status (yes or no), and 
p16 status (positive or negative). These covariates are used as 
the primary set of predictors in later analyses. Of these covari-
ates, a substantial proportion of patients have missing values. 
For example, p16 status, which is associated with human papil-
lomavirus (HPV) infection and is an important prognostic 
indicator among patients with oropharyngeal cancer, is absent 
in 327 (39%) patients. A number of other covariates—later 
used as auxiliary predictors for missing data imputation—were 
also recorded, including number of sexual partners, HPV status 
(based on the presence of HPV DNA), education level, Eastern 
Cooperative Oncology Group (ECOG) performance status, 
overall cancer stage (seventh edition), N stage (seventh edi-
tion), marital status, extracapsular spread (ECS), and cigarette 
smoking measured in pack-years. See Table 1 for a summary of 
the primary patient characteristics, including proportion of 
missing values. Further description of these data has been pre-
viously published.21-24

Methods
In this section, we describe the parametric Bayesian multi-
state model (MSM) and the non-parametric random sur-
vival forest (RSF) used to predict patient outcomes after 
treatment for OPSCC, along with the methods’ distinct 
approaches to handling missing data. We consider two out-
comes: OS and EFS.

Bayesian multistate model

The Bayesian MSM applied in this work was developed with 
the goal of leveraging known biological patterns to provide 
clinically-useful predictions of multiple correlated time-to-
event outcomes in OPSCC. Importantly, it has the ability to 
incorporate domain knowledge by reflecting known patterns in 
disease progression following treatment for OPSCC. These 

patterns include the possibility that tumors may not respond to 
treatment and persist; become undetectable but eventually 
recur after treatment; or, given infinite follow-up, never recur 
and be considered cured. In reality, patients only have finite 
follow-up so these tumor-related events are not necessarily 
observed for all patients. Detailed definitions of persistence 
and cure are given in Beesley et al.20

table 1. Summary of characteristics of 840 patients with 
oropharyngeal squamous cell carcinoma (OPSCC). Of these patients, 
346 (41%) had complete data.

COvARIATE MEAN SD

Age (years) 58.4 9.5

COvARIATE  N % 

Sex Male 715 85.1

Female 125 14.9

T stage, 
eighth edition

1 189 22.5

2 279 33.2

3 136 16.2

4 233 27.7

Missing 3 0.4

N stage, 
eighth edition

0 100 11.9

1 380 45.2

2 176 21.0

3 77 9.2

Missing 107 12.7

ACE score None 205 24.4

Mild 257 30.6

Moderate 111 13.2

Severe 44 5.2

Missing 223 26.5

Smoking 
status

Current 268 31.9

Former 290 34.5

Never 277 33.0

Missing 5 0.6

Anemia No 597 71.1

Yes 125 14.9

Missing 118 14.0

p16 status Negative 88 10.5

Positive 425 50.6

Missing 327 38.9

Abbreviations: ACE, Adult Comorbidity Evaluation; SD, standard deviation.
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The structure of the MSM is shown in Figure 1, which 
depicts the possible patient transitions between various disease 
states. After treatment, patients’ disease is given a baseline 
characterization: persistent (state 6), cured (state 2), or not 
cured (state 1). While persistence is observed within 12 weeks 
after treatment, whether or not a patient is cured is not imme-
diately known but may be revealed during follow-up. The 
probabilities of patients’ baseline states are modeled using 
logistic regression, with baseline characteristics as predictors. 
For example, the log odds of patient i having persistent disease 
(as opposed to cured or non-cured disease) is given by 

logit P G Gi i i i( |= ∈( )( ) = +6 1 2 6 0, , , )X Xγ γγ , where X i  is a 
vector of baseline covariates and Gi  is an indicator for disease 
state.

Patients may subsequently experience a recurrence (either 
locoregional recurrence or distant metastasis) and/or death. 
Although patients may experience both types of recurrence, we 
only consider the type of the first recurrence. The risks of these 
post-baseline events—locoregional recurrence (state 3), distant 
metastasis (state 4), and death (state 5)—are modeled using 
proportional hazards models with Weibull baseline hazard 
functions. Transitions to locoregional recurrence and distant 
metastasis assume piecewise baseline hazards with jumps at 
6 months. The jump at 6 months was chosen based on empiri-
cal patterns seen in the patient data, as explained in Beesley 
et al.20 For example, the model for subject i’s risk of transition-
ing from uncured disease (state 1) to locoregional recurrence 
(state 3) is λ λ13 13

0 13t t e i( ) = ( ) β X  where λ13
0 t( )  is the baseline 

hazard at time t  and e iβ13X  captures the association between 
the risk of this transition and the vector of baseline covariates, 
X i. Models for other post-baseline events are similar. Note 

that for transitions after recurrence, the clock is reset to zero at 
the time of recurrence. The full details of this MSM are pro-
vided in Beesley et  al20 but a brief summary—including 
descriptions of additional component models and order restric-
tions on some parameters—is presented in the Appendix 
(Section A.1).

Importantly, the association between patient characteristics 
and risk of post-baseline events are allowed to differ by event, 
enabling flexibility to incorporate domain knowledge into the 
structure of the MSM. Examples include which covariates are 
included in the models for each state transition and if/how 
order restrictions are imposed. This structure, along with the 
MSM’s simultaneous modeling of multiple outcomes, may aid 
in the accuracy of survival predictions. To account for this com-
plex structure and the large number of parameters required, 
Bayesian priors are used to impose shrinkage in the MSM. 
After fitting the MSM using a Markov chain Monte Carlo 
(MCMC) sampling algorithm, posterior means can be used to 
calculate state transition probabilities for any set of known 
covariate values. The model can be used to give predictions of 
multiple types of events at any follow-up time. Here, we will 
only consider the outcomes of OS and EFS at two time points 
(2.5 and 5 years post-diagnosis). Both the models for baseline 
and post-baseline events capture the magnitude and direction 
of the association between each covariate and state transition. 
The MSM also quantifies the uncertainty of these estimates 
via credible intervals.

Approach to missing data. As described earlier, a substantial 
proportion of patients in these data have missing covariate val-
ues. Within each MCMC iteration, the Substantive Model 
Compatible Fully Conditional Specification (SMC-FCS) 
strategy is used to generate single imputations of the missing 
values.25,26 This approach, which assumes data are missing at 
random, involves drawing the missing values from a distribu-
tion that incorporates the structure of the MSM and a model 
for the conditional distribution of each covariate being imputed. 
For added flexibility, the specific set of covariates included as 
predictors in each imputation model can differ based on 
domain knowledge. Auxiliary covariates—including number of 
sexual partners, HPV DNA presence, and marital status—are 
also used in the covariate models for imputation. Many of these 
covariates are particularly useful for imputing missing values of 
p16, which is an important predictor with a high rate of 

Figure 1. State transition diagram of Bayesian multistate model. Baseline events are modeled using logistic regression (dotted lines) and transitions 

between post-baseline events are modeled using proportional hazards models (solid arrows). Transitions from states 1 or 2 directly to state 5 correspond 

to other-cause death, while transitions through state 3, 4, or 6 to state 5 correspond to death after recurrence; these deaths correspond largely to 

cancer-specific death although death could be due to any cause. Figure is adapted from Beesley et al.20
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missingness. Along with missing covariate values, unobserved 
outcomes (e.g., type of recurrence), and cure status are also 
imputed within each MCMC iteration. More details, includ-
ing the full list of auxiliary covariates and imputation models, 
can be found in Beesley et  al.20 Importantly, the description 
above only applies to handling missing data when building the 
model. To apply the fitted model to make predictions, we 
require no missing data in the covariates.

Random survival forest

In contrast to this domain-driven application-specific MSM, 
the random survival forest (RSF) is a data-driven off-the-shelf 
approach to modeling event-time outcomes developed by 
Ishwaran et  al.27 The implementation of this data-driven 
approach is domain-agnostic; however, the method’s non-par-
ametric nature makes it an excellent tool for predictions.

The RSF is a bootstrap-based method in which regression 
trees are grown on subsets of re-sampled data and then com-
bined back together to produce ensemble estimates. For RSF, 
the outcome variable for subject i consists of an observed event 
time Yi  and an event indicator δi , where Y T Ci i i= ( )min , , Ti  
is the (potentially unobserved) true event time, and Ci  is the 
censoring time. In this case study, we consider two event-time 
outcomes: EFS and OS. We fit a separate RSF for each out-
come, in contrast to the MSM which can consider multiple 
time-to-event outcomes in a single model. Each RSF is made 
up of many trees (in our case, 1000 trees) fit to bootstrapped 
versions of the data. Within each tree, patients are iteratively 
partitioned at nodes based on the covariate value that maxi-
mizes the log rank test statistic of survival difference between 
the daughter nodes. Once terminal nodes reach a pre-specified 
minimum population size, each terminal node is used to esti-
mate a survival function at time t. These survival estimates are 
then averaged across the out-of-bag trees; a tree is considered 
“out-of-bag” for a given observation if that observation was not 
included in the bootstrapped sample of the data used for origi-
nal construction of the tree. Using only out-of-bag estimates 
reduces over-fitting and results in effectively cross-validated 
estimates of survival probabilities.

Although the RSF can easily be used to estimate survival 
probabilities like the MSM, unlike the MSM the RSF sum-
marizes covariate effects in less detail using a ranking of the 
relative importance (called VIMP) of the covariates for a single 
survival outcome at a time (e.g., only OS or only EFS). The 
permutation-based VIMP score of a given covariate is calcu-
lated as the change in out-of-bag prediction error (measured by 
concordance; C-index) when the covariate is used as an 
informative predictor versus permuted.27 While this metric 
provides information about the relative importance of each 
covariate, the VIMP score does not directly quantify the mag-
nitude or direction of the association between a covariate and 
the outcome.

The non-parametric nature of the RSF does not allow for 
use of parameter restrictions to force clinically-known associa-
tions between variables, unlike the MSM, and instead relies 
exclusively on data to inform associations. We fit RSFs using 
the R package randomForestSRC. Additional details on this 
approach can be found in Ishwaran et al and in Ishwaran and 
Kogalur (2019, 2007).27-29

Approach to missing data. Within the RSF algorithm, a built-in 
method imputes missing covariate values. As described above, 
when a tree is grown on each bootstrapped sample of the data, 
log-rank tests are used to determine on which variable and at 
what value to split the data at each node. These log-rank test 
statistics are calculated using only complete cases. If the candi-
date variable chosen for the split contains missing values, then 
these missing covariate values are imputed by drawing ran-
domly from the in-bag (i.e., the present node’s) non-missing 
values. Patients are then partitioned between daughter nodes 
using the now-complete data. After the split, filled-in missing 
values are reset to missing. This imputation mechanism is akin 
to hot-deck imputation30 and implicitly assumes that data are 
missing at random.

In contrast to the MSM which uses additional auxiliary 
variables in the imputation models, the RSF uses only the 
primary patient characteristics given in Table 1 for imputa-
tion and prediction. The role of covariates in the RSF’s 
imputation process is also not easily interpreted as it 
accounts for missing data within the black-box estimation 
procedure. This lack of interpretability contrasts sharply 
with the imputation approach used by the MSM in which 
associations between covariates are explicitly specified in 
parametric models.

While the MSM and RSF each have a variety of advantages 
and disadvantages, a few primary features distinguish these two 
approaches; namely, the ability to incorporate domain knowl-
edge and the interpretability of the approach, as well as the ease 
of implementation. In the following sections, we focus on com-
paring the predictive accuracy of the MSM and RSF. The 
above factors, however, are clearly important when choosing 
the most appropriate approach for a specific objective and have 
the potential to influence the accuracy of the resulting 
predictions.

Criteria for evaluation of predictive accuracy

We evaluate the accuracy of estimated survival probabilities at 
2.5 and 5 years based on two criteria: discrimination and cali-
bration. The discriminative accuracy of predictions is assessed 
using area under the receiver operating characteristic curve 
(AUC) and concordance index (C-index) at each specified 
time point (2.5 and 5 years). C-index calculations are based 
on comparing the order of predicted survival probabilities 
and observed survival times among all possible pairs of 
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observations. Pairs in which the event is not observed for the 
member with the shorter survival time are excluded from the 
calculation. These metrics are calculated using the R packages 
survivalROC31 and survival.32,33 Although AUC and C-index 
are the same in some settings (e.g., logistic regression34), they 
are not equivalent in the survival setting due to censoring and 
thus we consider both AUC and C-index.

The calibration of each approach’s predictions is evaluated 
by comparing the predicted survival probabilities at 2.5 and 
5 years to survival probabilities estimated via Kaplan-Meier 
(KM) curves. Specifically, patients are placed into 0.10-wide 
bins based on survival probabilities predicted at a fixed time by 
the MSM or RSF. The midpoint of each bin is compared to the 
2.5- or 5-year survival probability estimated from a KM curve 
fit to observed data belonging to the patients contained within 
each bin; the KM estimates represent target calibration. More 
details on the construction of these calibration plots can be 
found in the Supplemental Material (Section S1).

For a comprehensive comparison, we analyze the OPSCC 
data twice. In the first analysis, we fit the models using the 
entire dataset and evaluate predictions from the same dataset 
without using any separate test data; we call this the “train-
train” approach. In the second analysis, we evaluate predictive 
accuracy under 10-fold cross validation (CV); we refer to this 
as the “CV setting” later. The goal of presenting results in the 
CV setting is to approximate the predictive performance that 
we would expect on a separate testing dataset (which is not 
available here).

Both the RSF and MSM account for missing values while 
being fit, but only the RSF can easily make predictions on a new 
subset of data containing incomplete cases. The RSF uses an 
approach similar to the “hot-deck”-like algorithm used during 
model fitting to make predictions for incomplete cases. The 
MSM requires complete data to make predictions and so in the 
CV setting we multiply impute missing values in each left-out 
subset using multiple imputation via fully conditional specifica-
tion (MI-FCS) via the mice package in R.35 Imputation models 
use all original predictors from the MSM (excluding auxiliary 
covariates), as well as Nelson-Aalen cumulative hazard esti-
mates and event indicators for both death and recurrence, as 
recommended in White and Royston.36 While MI-FCS is 
similar to the imputation approach developed as part of the 
MSM, it does differ slightly and so the imputation approach 
used on each 9/10ths of the data does not exactly match the 
approach used on each remaining 1/10th of the data. We make 
this decision to better match a real-life setting in which an ana-
lyst wishes to apply the fitted MSM to a set of new data that 
contains missing values and only has access to coefficient esti-
mates from the outcome model, thus requiring them to fill in 
missing values using a separate approach like MI-FCS. This 
imputation process results in 10 complete versions of each of 
the left-out datasets, for a total of 100 datasets from which 
MSM predictions are made. To summarize discriminative 

accuracy of the predictions, we average the predictions across 
imputations and then calculate the AUC and C-index for each 
left-out fold before summarizing cross-validated predictive per-
formance using the average AUC and C-index values. Because 
multiple imputation is not needed to make predictions using 
the RSF, we can simply calculate AUC and C-index for each 
left-out fold and then average the values. We summarize cali-
bration by taking the average of the KM estimates of observed 
survival within each bin of predicted probabilities across all left-
out subsets.

Application to Oropharyngeal Cancer
We fit the MSM and RSF to the OPSCC data using the 
“train-train” and CV approaches. While the structure of the 
MSM enables the consideration of multiple time-to-event 
outcomes in a single model, to facilitate comparison between 
the MSM and RSF, we fit two RSFs: one for OS and one for 
EFS. The approaches described previously are used to account 
for missing data. Additional tuning is required for the RSF; we 
use out-of-bag C-index as our optimization criterion and find 
that a terminal node size of 18 subjects and 2 candidate varia-
bles, and a terminal node size of 10 and 2 candidate variables, 
produce the highest C-index for OS and EFS, respectively.

A comparison of predicted survival probabilities—OS and 
EFS at 2.5 and 5 years—estimated by each approach in the 
“train-train” setting is shown in Figure 2. Across both event-
time outcomes and prediction times, the RSF predicts a nar-
rower range of survival probabilities compared to the MSM. 
While the MSM predictions span nearly the entire 0 to 1 range 
of survival probabilities at 5 years, the RSF model predicts no 
survival probabilities lower than 25%, resulting in substantial 
disagreement exists at the lower end of the MSM- and RSF-
predicted probabilities.

We also compare the discrimination and the calibration of 
the predicted survival probabilities estimated by each approach. 
Table 2 summarizes the discrimination metrics from predic-
tions made using the OPSCC data in the “train-train” setting 
and under 10-fold CV. Based on AUCs and C-indices of pre-
dictions calculated in the “train-train” setting, the MSM out-
performs the RSF in terms of discriminative ability. The 
difference in discriminative ability between the two models 
narrows in the CV setting, with the accuracy between the two 
models being quite comparable.

In Figure 3, we illustrate the calibration of both models’ pre-
dictions in the “train-train” setting and under CV at the 2 spec-
ified time points. These plots show reasonable calibration from 
both models. As in Figure 2, these calibration plots reflect the 
fact that the RSF predicts a narrower range of probabilities 
than the MSM. Although the RSF-predicted survival proba-
bilities do not span the entire 0 to 1 range, they do appear to be 
well calibrated to the KM-estimated survival probabilities. The 
MSM does predict the full range of survival probabilities but 
shows deteriorating calibration for low probabilities of survival. 
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The 95% confidence intervals for the KM estimates are wider 
for the predictions in the CV setting than for predictions in the 
“train-train” setting because predictions are made on datasets 
1/10th the size of the original data.

While the MSM provides coefficient estimates and credible 
intervals (see Figure A1 in the Appendix), variable importance 
(VIMP) is commonly used with RSFs as an alternative method 
for assessing the “importance” of each covariate in the RSF 
algorithm. For each RSF (for the outcomes of OS and EFS), 
VIMP scores are plotted in Figure A2 in the Appendix. We 
find that that coefficient estimates from the MSM match clin-
ical intuition (e.g., negative p16 status is strongly associated 
with increased risk of locoregional recurrence, death after 
locoregional recurrence, and persistent disease), but that miss-
ingness rates can drive the VIMP scores for covariates in the 
RSF. For example, when VIMP scores are calculated from 
RSFs fit to all available data, p16 status has a relatively low 
VIMP score (6th out of 8 predictors for both OS and EFS). 
When the RSF is refit to complete cases only, the VIMP score 
for p16 increases, resulting in this covariate ranking fourth and 
third for the outcomes of OS and EFS, respectively. Similar 
trends are seen among other covariates with missing data; fur-
ther discussion is provided in the Appendix (Section A.3). 
Overall, it is important to note that the rate of missingness 

does appear to influence VIMP scores in an undesirable 
manner.

Simulation Study
In the results presented in the previous section, we were sur-
prised that after cross-validation the predictive accuracy of the 
off-the-shelf RSF was comparable to that of the highly spe-
cialized MSM, despite the difference in the complexity of their 
missing data approaches and in the amount of domain-specific 
knowledge incorporated into their structures. In this section, 
we aim to gain a better understanding of how robust the RSF’s 
data-driven non-parametric approach—to both imputation 
and outcome modeling—is to various amounts and types of 
missing data, relative to a parametric approach to analysis. 
Additionally, we investigate whether the structural/disease 
progression information that is part of the MSM gives any 
advantage over the RSF’s approach that ignores this structure.

Examining imputation approaches for handling 
missing data

We conduct simulations to better understand the robustness of 
the RSF’s hot deck approach30 for imputation compared to a 
parametric approach—multiple imputation by fully conditional 

Figure 2. Comparison of predicted 2.5-year (top row) and 5-year (bottom row) probabilities of overall survival (left column) and event-free survival (right 

column) from the Bayesian multistate model (MSM) and random survival forest (RSF) in the “train-train” setting. Points with darker outlines correspond to 

complete cases. The marginal distributions of each set of predictions are shown along each axis.
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specification (MI-FCS) with a Weibull regression outcome 
model—within a simpler survival analysis setting of a single 
event time with various patterns and amounts of missing data. 
MI-FCS is implemented using the mice package.35

Data generation: We generate a training dataset and a test-
ing dataset, each with a sample size of N = 1000. Both datasets 
consist of six covariates generated from a standard normal dis-
tribution, two pairs of which are correlated and two of which 
are independent. We generate a true survival time from an 
exponential distribution with the mean as a function of covari-
ate main effects and interactions and generate a censoring time 
from an exponential distribution with constant mean. For half 
of the predictors, we induce missingness at three different 
within-variable levels (25%, 50%, and 75%) under two different 
mechanisms: (i) missing completely at random (MCAR) and 
(ii) missing at random (MAR). Additional details describing 
this data generation and missingness process are given in the 
Appendix (Section A.4.1). Testing data are simulated using the 
same process as outlined above, but no missingness is induced.

In modeling of the survival outcome, we account for the 
missing values in two different ways: when using the fully 
parametric analysis approach (Weibull regression), we multi-
ply impute (M = 10) the missing values using MI-FCS, with 
all six covariates as predictors (main effects only) along with 
the Nelson-Aalen estimate of the cumulative hazard (evalu-
ated at the observed event time) and the event indicator.36 
When using the fully non-parametric analysis approach, we 

rely on the RSF’s built-in imputation algorithm. We also con-
sider a third intermediate analysis approach that combines 
the parametric approach to imputation (MI-FCS) and the 
non-parametric approach to modeling the outcome (RSF).

We then apply each analysis approach—the fully paramet-
ric approach that uses MI-FCS for imputation and models 
the outcome using a Weibull regression model with main 
effects only, the fully non-parametric approach that uses the 
RSF for both imputation and outcome modeling, and the 
intermediate approach that combines MI-FSC and the 
RSF—to each training dataset with a different pattern of 
missingness. We estimate survival probabilities at 2.5 years for 
the training and testing data and evaluate discrimination and 
calibration of predictions. For the Weibull models fit to the 
imputed datasets, we average the coefficients across the mul-
tiple datasets prior to making predictions. As the RSF does 
not return coefficient estimates, when applying this approach 
to the imputed datasets we instead average predictions across 
the 10 imputed datasets prior to evaluating performance. For 
RSF predictions on the training data, we only consider out-
of-bag predictions. (Note that the concept of “out-of-bag” 
does not apply to the testing data.) Performance is summa-
rized as average AUC and C-index. We also calculate predic-
tions from the Weibull regression model used to generate the 
data (with true parameter values and interaction terms), as 
well as a Weibull regression model with main effects only and 
a RSF both fit to the complete data; we use the predictive 

table 2. AUCs and C-indices (reported as mean (standard deviation)) for predictions of (A) overall survival and (B) event-free survival at 2.5 and 
5 years from the multistate model (MSM) and random survival forest (RSF) fit on the oropharyngeal squamous cell carcinoma data in the “train-train” 
and cross-validation (Cv) settings.

(A) OvERALL SURvIvAL: MEAN (SD)

 2.5 YEARS 5 YEARS

 AUC C-INDEX AUC C-INDEX  

RSF 0.70 - 0.72 - 0.74 - 0.72 -

MSM 0.71 - 0.75 - 0.77 - 0.75 -

Cv RSF 0.74 (0.05) 0.73 (0.03) 0.76 (0.03) 0.73 (0.04)

Cv MSM 0.74 (0.07) 0.74 (0.04) 0.77 (0.06) 0.74 (0.04)

 (B) EvENT-FREE SURvIvAL: MEAN (SD)

 2.5 YEARS 5 YEARS

 AUC C-INDEX AUC C-INDEX

RSF 0.70 - 0.69 - 0.72 - 0.69 -

MSM 0.70 - 0.72 - 0.73 - 0.72 -

Cv RSF 0.71 (0.03) 0.70 (0.03) 0.73 (0.03) 0.70 (0.03)

Cv MSM 0.71 (0.06) 0.71 (0.04) 0.73 (0.06) 0.71 (0.04)

For the Cv setting, metrics of discriminative ability are summarized as the mean of all left-out folds. Higher values suggest better performance. Differences of ≥0.02 in 
AUC or C-index between the RSF and MSM are in bold text.
Abbreviations: AUC, area under the curve; C-index, concordance index; SD, standard deviation.
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performance of these 3 models as benchmarks in our evalua-
tion. We repeat this process of data generation, estimation, 
prediction, and performance evaluation 100 times.

Results: We focus first on comparing the fully parametric 
approach to analysis (i.e., Weibull regression with imputa-
tion via MI-FCS) with the fully non-parametric approach to 
analysis (i.e., RSF for imputation and outcome modeling). 

The fully parametric approach generally outperforms the 
fully non-parametric approach in terms of discriminative 
accuracy across all missing data mechanisms in the testing 
data, as indicated by larger testing AUCs and C-indices (see 
Table 3A), except when little data are missing. As the amount 
of missingness increases, the performance of the RSF dete-
riorates faster than that of the Weibull regression model.

Figure 3. Calibration of (A) overall survival (OS) and (B) event-free survival (EFS) predictions at 2.5 and 5 years from the multistate model (MSM) and 

random survival forest (RSF) fit using the oropharyngeal squamous cell carcinoma data in the “train-train” setting (A.1, B.1) and using 10-fold cross-

validation (Cv) (A.2, B.2). In the Cv setting, predictions were estimated on all left-out folds and then used to place observations in the testing data into 

bins; Kaplan-Meier (KM) survival curves were estimated using testing data in each bin. These KM estimates and model-based predictions were then 

pooled and plotted here. The diagonal yellow line indicates perfect calibration. The vertical blue lines denote 95% confidence intervals for the KM 

estimates of survival probability based on pooled variance estimates.
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table 3. Results from simulation studies examining (A) imputation approaches and (B) structural components.

(A) DISCRIMINATIvE ACCURACY IN SIMULATION STUDY EXAMINING IMPUTATION APPROACHES

 TRAINING TESTING

MISSINGNESS IMP. 
MODEL

OUTCOME 
MODEL

AUC (SD) C-INDEX (SD) AUC (SD) C-INDEX (SD)

None None Data-
generating

0.74 (0.02) 0.70 (0.01) 0.74 (0.01) 0.71 (0.01)

None None Weibull 0.73 (0.02) 0.69 (0.01) 0.72 (0.02) 0.69 (0.01)

None None RSF 0.72 (0.02) 0.69 (0.01) 0.73 (0.02) 0.69 (0.01)

MCAR 25% MI-FCS Weibull 0.72 (0.02) 0.69 (0.01) 0.71 (0.02) 0.69 (0.01)

MCAR 25% MI-FCS RSF 0.72 (0.02) 0.69 (0.02) 0.72 (0.02) 0.69 (0.01)

MCAR 25% RSF RSF 0.68 (0.02) 0.66 (0.01) 0.71 (0.02) 0.68 (0.01)

MCAR 50% MI-FCS Weibull 0.71 (0.02) 0.69 (0.01) 0.71 (0.02) 0.68 (0.01)

MCAR 50% MI-FCS RSF 0.74 (0.02) 0.70 (0.02) 0.71 (0.02) 0.68 (0.01)

MCAR 50% RSF RSF 0.65 (0.02) 0.64 (0.01) 0.69 (0.02) 0.67 (0.01)

MCAR 75% MI-FCS Weibull 0.71 (0.02) 0.68 (0.01) 0.70 (0.02) 0.68 (0.01)

MCAR 75% MI-FCS RSF 0.75 (0.03) 0.72 (0.02) 0.71 (0.02) 0.68 (0.01)

MCAR 75% RSF RSF 0.63 (0.02) 0.61 (0.01) 0.67 (0.02) 0.64 (0.01)

MAR 25% MI-FCS Weibull 0.72 (0.02) 0.69 (0.01) 0.71 (0.02) 0.69 (0.01)

MAR 25% MI-FCS RSF 0.73 (0.02) 0.69 (0.02) 0.72 (0.02) 0.69 (0.01)

MAR 25% RSF RSF 0.68 (0.02) 0.66 (0.01) 0.71 (0.02) 0.68 (0.01)

MAR 50% MI-FCS Weibull 0.71 (0.02) 0.69 (0.01) 0.71 (0.02) 0.68 (0.01)

MAR 50% MI-FCS RSF 0.75 (0.03) 0.71 (0.02) 0.71 (0.02) 0.68 (0.01)

MAR 50% RSF RSF 0.65 (0.02) 0.64 (0.01) 0.69 (0.02) 0.66 (0.01)

MAR 75% MI-FCS Weibull 0.71 (0.02) 0.68 (0.01) 0.70 (0.02) 0.68 (0.01)

MAR 75% MI-FCS RSF 0.77 (0.04) 0.73 (0.03) 0.70 (0.02) 0.67 (0.01)

MAR 75% RSF RSF 0.62 (0.02) 0.61 (0.01) 0.65 (0.02) 0.64 (0.01)

(B) DISCRIMINATIvE ACCURACY IN SIMULATION STUDY EXAMINING STRUCTURAL COMPONENTS

 Mean AUC (SD) Mean C-index (SD)

TIME Outcome MSM RSF MSM RSF

0.5 OS 0.70 (0.02) 0.71 (0.02) 0.70 (0.01) 0.68 (0.01)

1 OS 0.75 (0.02) 0.74 (0.02) 0.70 (0.01) 0.69 (0.01)

0.5 EFS 0.66 (0.02) 0.66 (0.02) 0.64 (0.01) 0.63 (0.01)

1 EFS 0.72 (0.02) 0.70 (0.02) 0.64 (0.01) 0.63 (0.01)

In (A), we consider a single event outcome and summarize discriminative performance under various missingness mechanisms and amounts; “data-generating” refers 
to predictions from the true model used to simulate the data, which includes interaction terms. In (B), we consider two event outcomes (recurrence and death), which are 
modeled with a single illness-death multistate model (MSM) and two random survival forests (RSFs)—one for overall survival (OS) and one for event-free survival (EFS). 
Test set discriminative performance of the MSM and RSFs for predictions of OS and EFS at 0.5 and 1 year are shown. Bold text denotes differences ≥0.02 in area under 
the curve (AUC) or concordance index (C-index) between analysis approaches within comparable scenarios.
Abbreviations: MAR, missing at random; MCAR, missing completely at random; SD, standard deviation.

We then compare the discriminative accuracy across the 
parametric and non-parametric outcome models when both 
are fit using training data imputed with parametric MI-FCS. 

We find that the discriminative accuracy of predictions from 
the RSF fit to data imputed using MI-FCS is generally 
higher than that from the Weibull regression model fit to 
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data also imputed using MI-FCS when missingness is mod-
erate to high. However, although we always evaluate the 
RSF’s predictive performance on the training data using out-
of-bag predictions, we find that AUC and C-index values 
from training data predictions made using the combined 
MI-FCS + RSF approach do not closely match those from 
the testing data. Instead, the training AUC and C-index val-
ues appear to be inflated. This over-optimism in performance 
exists even though out-of-bag predictions attempt to mimic 
predictions from a separate validation dataset. Furthermore, 
this inflation of discriminative performance contrasts with 
the conservative nature of the AUC and C-index values from 
training data predictions made using only the RSF for both 
imputation and outcome modeling; in this setting, using out-
of-bag predictions results in AUC and C-index values that 
are overcorrected and underestimate the true discriminative 
performance on testing data.

Among the calibration plots (in Figure A3 for testing data 
only), the plot labeled “Data-generating” corresponds to pre-
dictions calculated using the true coefficient values and true 
interaction terms in a Weibull model; we interpret this plot 
as showing ideal calibration when no estimation error or 
model misspecification is present. The plot labeled “Weibull: 
complete” illustrates the calibration of predictions made 
from a Weibull regression model fit to the complete data; 
this plot tells us what sort of calibration we can hope for in a 
more realistic setting in which the true associations (i.e., 
interactions) between the predictors and outcome are 
unknown but no error due to missing data is present. 
Similarly, the plot labeled “RSF: complete” corresponds to 
realistic target calibration of predictions from the RSF with-
out error due to missing data. We notice that if the true 
interactions between covariates are unknown in this Weibull 
regression model, realistically we cannot achieve perfect cali-
bration: in the plot labeled “Weibull: complete,” the upper 
tail of predicted probabilities overestimates true survival. 
Thus, we attribute this deterioration in calibration seen for 
the other Weibull models to the lack of interaction effects, 
rather than the presence of missing data.

The predictions from both the RSF and Weibull models in 
the presence of missing data show similar calibration accuracy, 
regardless of whether a parametric or non-parametric imputa-
tion approach is used for the RSF. The slightly S-shaped cali-
bration curves for the RSF indicate that it tends to predict 
more moderate survival probabilities.

We conduct additional simulations comparing the perfor-
mance of the RSF and parametric Weibull model in similar 
settings but with (i) additional non-informative predictors and 
(ii) auxiliary variables for imputation. Overall, we find patterns 
in performance similar to those found here. Results from these 
simulations are presented in more detail in the Supplemental 
Material (Section S4).

Examining structural components

The goal of the second simulation is to evaluate the potential ben-
efit conferred to the MSM by its structural components, com-
pared to the RSF. In this context, we use the phrase “structural 
components” to refer to the multiple states and transitions between 
states that are explicitly specified within the model. The MSM 
considered here is a simple illness-death model that consists of  
three states—treatment, recurrence, and death—and three possi-
ble transitions: treatment to recurrence, treatment directly to 
death, or death following recurrence. Although the baseline haz-
ards of this illness-death model are assumed to be non-parametric, 
we believe that comparing this illness-death model to RSFs 
(which can each only evaluate a single time-to-event outcome at 
once due to their lack of structure) allows us to evaluate the con-
tribution of the additional structure to the illness-death model’s 
predictive accuracy.

Data generation: We simulate transition times for 1000 
subjects using three different Weibull distributions, with the 
scale parameter a function of covariate values and the coeffi-
cients on each covariate varying by transition. For more details, 
see the Appendix (Section A.5.1). We then fit the illness-death 
model using the mstate package.37-39 We use the “clock-reset” 
approach with transition-specific covariate effects and no 
restriction on proportionality of baseline hazards between 
transitions. We only include main effects and no interactions in 
both data generation and model fitting, and do not induce 
missingness. Two RSFs (one for OS and one for EFS) are fit 
using the randomForestSRC package with default tuning 
parameter values.27-29

Next, we generate new data for validation. We compare the 
discrimination and calibration of survival predictions for two 
outcomes—OS and EFS at 0.5 and 1 year—for the 1000 
patients contained in these testing data. We repeat data genera-
tion, estimation, prediction, and performance assessment 100 
times and summarize the predictive performance on the testing 
data across all 100 repetitions.

We also evaluate the predictive performance of two Cox 
proportional hazards models—one for OS and one for EFS—
in an attempt to compare the performance of the illness-death 
model to an alternative parametric model that lacks structural 
information. We present the results of this additional simula-
tion study in the Supplemental Material (Section S5.3).

Results: The discriminative performance, summarized as 
the mean (standard deviation) of AUC and C-index, is 
reported in Table 3B. We see that the RSF and the illness-
death model perform similarly in terms of discriminative 
accuracy. The discriminative accuracy of the illness-death 
model improves slightly relative to that of the RSF at later 
time points. Overall neither the RSF nor illness-death model 
consistently outperforms the other by a large margin when 
predicting OS or EFS. However, the AUC and C-index for 
the MSM are often very slightly larger than those of the RSF.
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We plot the calibration of predictions in Supplemental 
Figure S7. We find that the predictions from the illness-death 
model and the RSF are similarly well-calibrated in the range of 
mid-to-high survival probabilities. The illness-death model 
shows slightly more stable calibration than the RSF and, when 
considering the probability of OS at 0.5 year, we also see that 
the RSF predicts a narrower range of survival probabilities than 
the illness-death model. For the outcome of EFS, both the ill-
ness-death model and RSF tend to slightly overestimate high 
probabilities of survival compared to the KM estimates.

As an alternative check of the calibration of these predic-
tions, we also compare the predicted probabilities of OS and 
EFS to true survival probabilities for each subject by calculating 
true survival probabilities using KM curves estimated from a 
larger simulated dataset (see Section S2 for details). In Figure 4, 
we compare the true KM-based survival probabilities to the 
model-based predicted probabilities for all patients (N = 1000) 
in the testing data in a single iteration of this simulation. We see 
that there is less variability around the truth in the illness-death 
model’s predictions of survival than for the RSF. We also see 
that the illness-death-predicted probabilities span a greater 
range than the RSF-predicted probabilities, reinforcing what 
we previously noted: the data-driven non-parametric approach 
(the RSF) tends to predict more moderate survival probabilities 
while the domain-driven parametric and semi-parametric mod-
els (illness-death model, Weibull regression, and Bayesian 
MSM) predict a larger range of probabilities.

We conduct additional variations of this simulation study to 
determine if different sample sizes or transition and censoring 
rates impact the predictive performance of the illness-death 
model or the RSF. We find that reducing the sample size by 
50% or increasing it by 100% does not substantially impact 
predictive performance; we also find that when the rate of 
observed events is lower, the illness-death model may have a 
slight advantage over the RSF, although the difference in pre-
dictive performance is very slight. Details on these additional 
simulations and their results are given in the Supplemental 
Material (Sections S5.1 and S5.2).

Discussion
We found that the domain-driven Bayesian MSM and the 
data-driven RSF had similar predictive accuracy when applied 
to the OPSCC data, despite the MSM’s more complex struc-
ture and domain-driven approach to imputation. Though the 
predictive accuracy was overall similar, in many instances the 
MSM very slightly outperformed the RSF. Through this illus-
trative example with clinical data supplemented with simula-
tions, we saw that the RSF tended to predict a narrower range 
of survival probabilities than the parametric models. When 
predictions were calculated for patients contained in the 
OPSCC data, substantial disagreement between the MSM- 
and RSF-predicted probabilities existed for lower estimates of 
survival. If these two approaches were to be applied in a clinical 

setting, the choice of statistical approach would have the poten-
tial to substantially impact predictions of prognosis for some 
patients.

Our simulation results suggest that when predictors have 
high rates of missingness, as seen for some clinical covariates 
in the OPSCC data, the performance of the RSF’s built-in 
non-parametric method for imputation can deteriorate. Our 
simulation results also indicate that combining a parametric 
approach to imputation—MI-FCS—with a non-parametric 
approach for outcome modeling—RSF—has the potential to 
result in accurate predictions in the presence of substantial 
missingness. Based on these simulation results, we re-analyze 
the OPSCC data by applying the RSF to data multiply 
imputed using MI-FCS (see Table A4 for results). We find 
that when MI-FCS is combined with the RSF, the discrimi-
native accuracy of predictions in the “train-train” setting are 
higher than that of the domain-driven MSM and the fully 
non-parametric RSF (i.e., when the RSF is used for both 
imputation and outcome modeling); however, from simulation 
results we know that these estimates of predictive accuracy are 
likely overly optimistic. In the CV setting, this difference 
decreases and the discriminative accuracy of predictions from 
all approaches are quite comparable, suggesting that perhaps 
rates of missing data are low enough for the RSF’s built-in 
imputation approach to perform satisfactorily in this 
application.

The treatments the patient received are not considered as 
covariates in this work. There is variation in the treatments 
they received, but it generally follows treatment guidelines, 
which are highly influenced by T and N stage of disease. 
Because of this high level of confounding, we did not include 
treatments as variables in the MSM and RSFs.

Calibration plots suggested that probabilities predicted by the 
RSF are well calibrated, despite being concentrated at moderate 
values. The tendency of the RSF to predict a narrower range of 
survival probabilities could be related to the non-parametric 
data-driven nature of the RSF: this approach is less likely to 
extrapolate covariate effects and predict extreme survival proba-
bilities than the domain-driven parametric and semi-parametric 
models. We also noted that assessments of predictive accuracy 
made using the RSF’s out-of-bag predictions for training data 
(when the RSF’s built-in approach is also used for imputation) 
tend to underestimate the approach’s performance on a new test-
ing dataset. We attribute this conservative assessment of perfor-
mance to the internal cross-validation/regularization built into 
the RSF algorithm via bootstrapping and out-of-bag predic-
tions, as supported by inflated AUC and C-index values when 
out-of-bag predictions are not used (see Table A5 in the 
Appendix). However, when MI-FCS is combined with the RSF, 
out-of-bag predictions overestimate the true (i.e., testing data) 
discriminative accuracy. This suggests that MI-FCS could be 
contributing to overfitting in this setting. These results empha-
size the importance of using a separate testing dataset to evaluate 
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predictive performance, as we have shown various scenarios in 
which out-of-bag predictions from the RSF do not give accurate 
estimates of the true predictive performance.

In our simulation study comparing parametric and non-
parametric imputation approaches, we saw that when there is 
little missing data, the predictive accuracy of the RSF and the 
parametric model were similar. However, the RSF’s imputation 
approach was less robust against large amounts of missing data 
than the parametric approach. In the calibration plots, we saw 
that if the true interactions between covariates were unknown 
and thus not specified in the Weibull regression model, we 
realistically could not achieve perfect calibration. This under-
scored a well-known advantage of the RSF: regression trees are 
well suited for modeling data involving complex interactions.

Ability to incorporate domain knowledge: When consid-
ering the clinical utility of these prediction models, other 

information provided by a model (e.g., measures of association) 
should also be considered. Here, the MSM has the advantage 
of providing estimates of intermediate probabilities—the prob-
ability of occupying a specific state at a given time—in addition 
to probabilities of OS and EFS. The RSF, however, is limited to 
considering each event-time outcome independently. In both 
the clinical data application and in our simulation study evalu-
ating the advantage conferred by the structural components of 
the MSM, we saw that the additional structure of the Bayesian 
MSM and simple illness-death model provided a very slight 
advantage over the RSF in terms of discriminative accuracy. In 
our illness-death model simulation, we also saw less variability 
in the predicted survival probabilities around the truth. Overall, 
the advantage of the parametric models over the non-paramet-
ric RSF was surprisingly small, however, given the additional 
information being used in these parametric models.

Figure 4. Results from a single iteration of the simulation comparing structural components. Comparison of RSF- and illness-death MSM-predicted 

probabilities to simulated “true” survival probabilities for all subjects in a single testing dataset. Smooth curves show trends in predictions from each 

approach using generalized additive models. Ideally, points would fall along the diagonal. For more details on calculation of true survival curves, see the 

Supplemental Material (Section S2).
Abbreviations: MSM, illness-death multistate model; RSF, random survival forest.
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Another advantage of the parametric approach to predic-
tion stems from the ability to specify biologically-informed 
monotone associations between patient characteristics and sur-
vival probabilities. For example, because a positive monotone 
association between age and risk of death is explicitly specified 
in the MSM, the survival probability for a given patient with a 
fixed set of covariates will not increase as the patient ages. 
Predicted survival probabilities from the RSF, on the other 
hand, are not guaranteed to decrease monotonically as age 
increases, resulting in survival predictions with potentially less 
clinical relevance. We illustrate this pattern by plotting RSF 
and MSM predictions of OS and EFS for sets of fixed charac-
teristics but with varying age in the Supplemental Material 
(Section S3). Although the MSM predictions are smooth, lin-
ear effects in the MSM may lead to poor extrapolation near the 
edges of covariate domains.

These conclusions, however, are based only on our specific 
MSM (i.e., our choice to include main effects only in the 
model) and our specific simulation and data generation process 
(i.e., our choice to include certain interaction terms). The per-
formance of the MSM could be enhanced by the addition of 
interaction terms, non-linear terms, or transformations, among 
other modifications. In a real data analysis, exploring these 
options in the context of the given data and application would 
be key to selecting an appropriate and well-fitting model.

Interpretability: The MSM also has the advantage of 
quantifying the associations between clinical characteristics 
and event-time outcomes (in particular, multiple related event-
time outcomes simultaneously) through posterior mean esti-
mates and credible intervals. Results of the MSM show that 
higher N stage is positively associated with decreased probabil-
ity that treatment will cure the disease and increased risk of 
distant metastasis. The RSF, however, only provides relative 
rankings of variable importance based on VIMP, a measure 
that neither has a clear interpretation nor provides information 
on the magnitude or direction of the association between a 
covariate and an outcome. Numerous alternative approaches to 
“post-hoc interpretation,” as termed in Pintelas et al,40 do exist 
(e.g., SHapley Additive exPlanations (SHAP)41 and local 
interpretable model-agnostic explanations (LIME)4) and can 
provide additional information beyond simply rankings of vari-
able importance. However, these approaches do require using a 
separate method to interpret predictions on top of an already-
fitted black box model.

Furthermore, when a substantial proportion of values are 
missing in a dataset, VIMP may not provide an accurate repre-
sentation of the relative importance of the covariates in the 
population; rather, VIMP only reflects the relative importance 
of observed covariates within the specific sample and does not 
necessarily allow generalizable conclusions to be drawn. When 
comparing the VIMP score for p16—a predictor with biologi-
cally-confirmed importance—from the RSF fit on all data ver-
sus complete cases, we saw that the ranking of p16 increased 

when only complete cases were considered. Based on these 
results, we hypothesized that VIMP scores for predictors with 
larger amounts of missing data would be biased downward. 
Through simulations, we confirmed that predictors with larger 
amounts of missing data tended to have larger VIMP scores in 
RSFs fit to complete data compared to RSFs fit to all data. 
This example illustrates that while the RSF does provide some 
measure of variable importance, these VIMP scores can be 
misleading and frequently underestimate the true variable 
importance within the population, particularly when substan-
tial missingness exists in the sample.

If these statistical approaches were to be applied in a clini-
cal setting, the interpretability of the MSM could provide it 
with an advantage over the RSF. In the MSM, the role of each 
covariate in each transition is apparent, along with the influ-
ence of each covariate on predicted survival probabilities; a 
similar level of understanding cannot be extracted from the 
RSF. Presenting measures of association between patient char-
acteristics and the outcome in conjunction with predicted 
probabilities would improve understanding of the main factors 
driving the prediction and could increase confidence in the 
reliability of a calculator’s predictions if used in a clinical set-
ting. Estimates of uncertainty of these associations also 
emphasize the corresponding uncertainty of the calculator’s 
predictions.

Ease of implementation: The RSF may provide less infor-
mation about associations present in the data than the MSM, 
but it does have a computational advantage. The code for the 
MSM took many months to develop and the program takes 
over 5 hours to fit, but the RSF takes only a few minutes. This 
difference in computational cost influences the ease of evaluat-
ing the performance of each model via cross-validation.

Conclusions
Through a case study of prognostic predictions for patients 
with OPSCC, we found that the domain-driven MSM shows 
a slight predictive advantage over the black-box RSF, despite 
substantial differences in the level of biological information 
incorporated into these two approaches. Data-driven machine 
learning methods, like the RSF, are designed specifically for the 
problem of prediction and so they tend to excel at this task. 
Parametric models are often designed for understanding asso-
ciations and modeling structural aspects of the data but are less 
frequently optimized for prediction. However, when rates of 
missingness are high, we found that the parametric structure 
provided some advantage over data-driven nonparametric 
approaches. Results from this case study and from simulation 
studies suggest that, in addition to predictive accuracy, consid-
eration of other differences (e.g., interpretability) are key when 
selecting the best statistical approach for addressing the 
research question at hand. Ultimately, selecting the approach 
that has the greatest potential to aid in clinical treatment deci-
sions requires thoughtful consideration of the specific goals.
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