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Abstract

Many protein-protein interactions (PPIs) are compelling targets for drug discovery, and in a number of cases can be
disrupted by small molecules. The main goal of this study is to examine the mechanism of binding site formation in the
interface region of proteins that are PPI targets by comparing ligand-free and ligand-bound structures. To avoid any
potential bias, we focus on ensembles of ligand-free protein conformations obtained by nuclear magnetic resonance (NMR)
techniques and deposited in the Protein Data Bank, rather than on ensembles specifically generated for this study. The
measures used for structure comparison are based on detecting binding hot spots, i.e., protein regions that are major
contributors to the binding free energy. The main tool of the analysis is computational solvent mapping, which explores the
surface of proteins by docking a large number of small ‘‘probe’’ molecules. Although we consider conformational ensembles
obtained by NMR techniques, the analysis is independent of the method used for generating the structures. Finding the
energetically most important regions, mapping can identify binding site residues using ligand-free models based on NMR
data. In addition, the method selects conformations that are similar to some peptide-bound or ligand-bound structure in
terms of the properties of the binding site. This agrees with the conformational selection model of molecular recognition,
which assumes such pre-existing conformations. The analysis also shows the maximum level of similarity between unbound
and bound states that is achieved without any influence from a ligand. Further shift toward the bound structure assumes
protein-peptide or protein-ligand interactions, either selecting higher energy conformations that are not part of the NMR
ensemble, or leading to induced fit. Thus, forming the sites in protein-protein interfaces that bind peptides and can be
targeted by small ligands always includes conformational selection, although other recognition mechanisms may also be
involved.
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Introduction

Many protein-protein interactions (PPIs) are involved in disease

pathways where therapeutic intervention could bring widespread

benefit, and hence are biologically compelling targets for drug

discovery [1,2]. A number of systems are known for which small

molecules inhibit the interaction between two proteins [3–6].

Some of the well studied targets include the complexes formed by

MDM2 and p53 [7], Bcl-xL and the BAK protein [8], HPV-11 E2

and HPV-11 E1 [9], ZipA and FtsZ [10], HIV integrase and

LEDGF/p75 [11], and IL-2 and its receptor IL-2Ra [12]. Apart

from the IL-2/IL-2Ra system, in all complexes listed here one of

the interacting proteins can be reduced to a peptide that binds on

its own to the partner protein, and the small molecular inhibitors

bind at the same site, mimicking some of the most important side

chains of the peptide fragment. We note that most protein-protein

interaction targets that can be disrupted by small drug-like

molecules binding in the interface have this property. Since our

focus is on the biophysical aspects of binding, in this paper we do

not discriminate between peptide and non-peptide ligands, and

thus ligand-bound protein will generally mean a complex co-

crystallized either with a peptide or with a small molecule. Binding

in the interface in both cases usually involves some conformational

change. The main goal of this paper is to examine the mechanism

of binding site formation in the interface region of proteins that are

PPI targets. The conformational changes required for molecular

recognition may occur due to two different mechanisms, known as

induced-fit and conformational selection models [13]. The

induced fit model treats the protein as if it exists in a single,

stable conformation under given experimental conditions, and

assumes that the structural plasticity in the molecule is induced by

the binding [14]. In contrast, the conformational selection model

describes a scenario in which the unbound protein exists in an

ensemble of conformations some of which are similar to the
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ligand-bound state, and binding of the ligand shifts the distribution

toward the bound state [13,15,16]. The two models are not

mutually exclusive, and many recognition processes involve some

elements of both mechanisms [14,17–19].

To evidence conformational selection we need to show that

some of the conformations in the free state resemble the ligand-

bound structure [13]. Thus, the analysis requires an ensemble of

ligand-free conformations and a measure that enables assessing the

similarity between free and bound states. Ensembles of structures

can be obtained by a variety of computational and experimental

approaches. Molecular dynamics simulations show that transition-

al pockets may open up spontaneously at many different locations

on the protein, some of them having the right size for ligand

binding [20–22]. However, the required conformational transi-

tions are rare on the time scales of ordinary simulations, and hence

it is difficult to assess the significance of such sites. For example, it

was recently shown that the known ligand binding sites in

interfaces are more predisposed to surface pocket formation than

the rest of the protein surface, but to obtain these results the

simulations had to be biased toward pocket opening [23]. As

alternatives to molecular dynamics, coarse-grained analysis tools

such as elastic network models (ENMs) can be used to predict

large-scale collective motions of proteins [24–26], but the method

may be unable to capture highly localized changes.

While simulations tools are extremely useful for the character-

ization of molecular motion, they do not necessarily represent the

best starting point for the analysis of recognition mechanisms, as

the goal of increasing the number of conformational transitions for

more significant results may unintentionally influence the conclu-

sions. Thus, it is useful to consider conformational ensembles that

are fully independent of the particular study. With this motivation

in mind, in this work we consider already existing conformational

ensembles, obtained by nuclear magnetic resonance (NMR)

methods. The structures in such ensembles are low energy models

that satisfy the highest number of NMR derived restraints. The

ensembles are well documented as they have been deposited in the

Protein Data Bank (PDB) [27]. Therefore, any analysis focusing on

these structures should be unbiased and fully reproducible, thereby

increasing the objectivity of conclusions. The structures within the

ensembles show substantial variation, both in terms of the overall

root mean square deviation (RMSD) and in the region of ligand

binding. Previous works indicate that NMR derived structures can

be very useful for the analysis of recognition mechanisms. For

example, Lange and coworkers compared an ensemble of X-ray

structures of ubiquitin, bound to different ubiquitin-binding

proteins, with NMR structures of ubiquitin free in solution [28].

Results demonstrated that for each bound ubiquitin structure

there is a member of the unbound ensemble that is structurally

similar to it in the RMSD sense, thus giving strong support to the

conformational selection model. However, as will be shown, our

analysis will go further, as we develop a method that can find such

structures without any information on the bound state or even on

any potential ligand.

Once ensembles of free and ligand-bound conformations are

available, we need an appropriate measure for comparing ligand-

free and ligand-bound conformations in order to assess their

similarity. The overall RMSD is clearly not suitable, since we are

interested only in the changes around the ligand binding site.

While one can calculate RMSD for the binding site residues, the

latter are generally selected on the basis of their proximity to a

bound ligand, which makes the results specific to a particular

compound. The unique feature of this paper is that the measures

used for structure comparison are based on binding hot spots, i.e.,

regions that are major contributors to the binding free energy.

Binding hot spots are good binding sites in the general sense, i.e.,

without reference to any ligand [29]. The concept has been

originally introduced in the context of mutating interface residues

to alanine [30]. On the basis of this method, a residue is

considered a hot spot if its mutation to alanine gives rise to a

substantial drop in binding affinity. An alternative experimental

method, more directly related to the binding of small ligands, is

based on screening libraries of fragment-sized organic molecules

for binding to the target protein. Since the binding of the small

compounds is very weak, the interactions are most frequently

detected by X-ray crystallography [31–33] or nuclear magnetic

resonance (NMR) [34]. It was shown that the small ‘‘probe’’

ligands cluster at hot spots, and that the hit rate predicts the

importance of the site [34]. While the existence of binding hot

spots has been experimentally verified beyond doubt, there is no

generally accepted explanation for their origin. Based on

simulations, our hypothesis is that hot spots are distinguishable

from other regions of the protein due to their concave topology

combined with a mosaic-like pattern of hydrophobic and polar

functionality [35–37]. Focusing on hot spots is particularly

relevant for disrupting protein-protein complexes, since it requires

finding a strong hot spot in the interface region of at least one of

the component proteins [6]. We have shown that such interface

hot spots can be reliably identified with the standard set of 16 small

organic molecules that are used as probes in FTMap. Almost all

probes have both hydrophobic and polar moieties, and many are

relatively close side chain analogs [6,38].

As the primary tools of our analysis, we rely on two algorithms

called FTMap and FTSite. FTMap is a direct computational

analog of the fragment screening experiments [39]. The method

places each of 16 different small molecular probes on a dense grid

around the protein and finds favorable positions using empirical

energy functions. For each probe type, the individual probes are

then clustered and the clusters are ranked on the basis of the

average energy. Next, consensus clusters are identified as sites in

which different probe clusters overlap. It has been extensively

verified that FTMap reliably finds the binding hot spots identified

Author Summary

Many protein-protein interfaces (PPIs) are biologically
compelling drug targets. Disrupting the interaction
between two large proteins by a small inhibitor requires
forming a high affinity binding site in the interface that
generally can bind both peptides and drug-like com-
pounds. Here we investigate whether such sites are
induced by peptide or ligand binding, or already exist in
the unbound state. The analysis requires comparing
ligand-free and ligand-bound structures. To avoid any
potential bias, we study ensembles of ligand-free protein
conformations obtained by nuclear magnetic resonance
(NMR) rather than generated by simulations. The analysis is
based on computational solvent mapping, which explores
the surface of the target protein by docking a large
number of small ‘‘probe’’ molecules. Results show that
ensembles of ligand-free models always include confor-
mations that are fairly similar to some peptide-bound or
ligand-bound structure in terms of the properties of the
binding site. The analysis also identifies the models that
are the most similar to a bound state, and shows the
maximum level of similarity that is achieved without any
influence from a ligand. While forming the binding site
may require a combination of recognition mechanisms,
there is preference for the spontaneous formation of
bound-like structures.
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by X-ray or NMR based screening [39]. The FTSite algorithm

was developed from FTMap for the identification of binding sites

[40] (see Methods). Since the binding site of proteins include a

collection of hot spots, in FTSite we first select the hot spot that

has the highest number of probe-protein contacts, and join it with

the nearby hot spots. The amino acid residues in contact with the

probes in this extended hot spot constitute the top ranked

prediction of the ligand binding site. Extended hot spots with fewer

probe-protein contacts define lower ranked binding site predic-

tions. FTSite was shown to achieve substantially higher accuracy

than any other current binding site prediction method, several of

which were based on assessing the volume of binding pockets [40].

In fact, the number of probes bound to a site is a more direct and

apparently more accurate measure of its expected binding affinity

than the volume. The FTMap and FTSite algorithms were slightly

modified for the purpose of this paper, primarily to increase the

speed of the calculation and thus enable the method to analyze

large ensembles of conformations (see Methods).

Results

Conformational ensembles
We have studied the five proteins listed in Table 1, with

structures available in the Protein Data Bank (PDB) [27]. The

table also includes some of the results that will be described later in

the paper. The structures of these proteins have been determined

by nuclear magnetic resonance (NMR) in the ligand-free state,

resulting in conformational ensembles, and also in complexes with

peptides or small molecular inhibitors (see Methods). The bound

structures have been obtained either by X-ray crystallography or

NMR. For each protein the ligand-free structures in the NMR

ensemble show substantial conformational variation, both in terms

of the overall RMSD and in the binding site. As will be further

discussed, ligand binding substantially reduces the structural

variation for each of the proteins (see Tables S1 through S4).

Identification of binding sites
Residues with any atom closer than 4 Å to any atom of the

ligand in the bound structure were defined as binding site

residues. Although for the five test proteins in Table 1 these

residues are known, we explored whether the binding site can be

found using only the ensemble of ligand-free structures, i.e.,

without any assumption on the ligand. We have previously

developed the FTSite algorithm and server for the identification

of binding sites on unbound protein structures [40]. The

structures in the NMR derived ensembles of ligand-free proteins

substantially differ from each other, which leads to variations in

the binding sites predicted by FTSite. Nevertheless, selecting the

site that is the top ranked prediction in the highest number of

structures correctly identifies the ligand binding site for four of

the five proteins in Table 1 (see Figure 1). The only exception is

Bcl-xL. Mapping the NMR ensemble of ligand-free structures

(PDB ID 2m03), the interaction site with the BAK peptide occurs

as the top ranked binding site in only 6 of the 20 structures, and a

different site is ranked first in the highest number of times (in 9 of

the 20 structures). Although this second site is distinct from the

canonical Bcl-xL binding groove, it was shown to be a highly

functional peptide binding site in the BAX protein, a close

homologue of Bcl-xL (see PDB ID 2k7w) [41]. In addition to

determining the location of the main ligand binding sites, we can

also use the FTSite results to find the binding site residues by

selecting the residues that interact with probes in a substantial

number of structures of the ensemble (see Methods).

Binding site hit rate and bound state similarity coefficient
As discussed, the residues in the binding site are likely to interact

with probes in many structures. This is shown in Figure 2 for the

24 structures in the NMR ensemble of the ligand-free MDM2

(PDB ID 1z1m). For a more quantitative characterization of this

relationship we introduce the concept of mapping fingerprint,

defined as the number of probe-protein interactions for each

residue, divided by the total number of interactions for all residues.

For ligand-bound structures we also defined the ligand fingerprint,

which is the number of ligand-protein interactions for each

residue, divided by the total number of interactions for all residues.

If the bound structure is an NMR ensemble, we calculated the

average ligand fingerprint (see Methods). This is justified by the

observation that the ligand fingerprints calculated for the different

structures of the ensemble are highly correlated. As an example,

Table S1 shows the pairwise correlation coefficients for models 1–

5 of a ligand-bound MDM2. Table S1 also shows that the

correlation is also high between the average ligand fingerprint and

Table 1. Protein targets and summary of results.

Protein-Protein Complex Receptor/Ligand Structures in PDB Model with highest BSSCc Rd

Unbounda Bound (Ligand)b

MDM2/p53 1z1m (24) 1ycr (p53 peptide) Model 19 (2nd) 0.78

1rv1 (Nutlin-2) Model 19 (2nd) 0.72

2lzg (piperidinone) Model 9 (1st) 0.77

PSD-95 PDZ1/CRIPT 1iu2 (50) 1rgr (peptide) Model 23 (1st) 0.92

MAGI-1 PDZ1/HPV16 E6 2kpk (20) 2kpl (peptide) Model 9 (3rd) 0.77

EDC3/DCP2 4a53 (20) 4a54 (peptide) Model 16 (2nd) 0.60

Bcl-xL/BAK, BAX, PUMA, BAD, etc. 2m03 (20) 2yxj (ABT-737) Model 3 (1st) 0.85

1bxl (BAK peptide) Model 3 (1st) 0.72

aThe number in parenthesis indicates the number of structures in the NMR ensemble.
bIn parenthesis we indicate the ligand bound to the protein.
cBSSC denotes the bound-state similarity coefficient, which measures the similarity of each model to the bound state. The number of parenthesis is the rank based on
the binding site hit rate (see Results).
dR denotes the correlation coefficient between the binding site hit rate and BSSC.
doi:10.1371/journal.pcbi.1003872.t001
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the ligand fingerprints of the individual models. Tables S2 through

S4 show the latter type of correlation coefficients for the other

proteins we have studied.

For a protein of n residues, for each unbound structure the

mapping fingerprint define a vector of n-dimensional space,

X = (x1, x2,…,xn), and the ligand fingerprint of the bound structure

is also an n-dimensional vector, Y = (y1, y2,…,yn) (see an example

in Figure S1). The correlation coefficient between these two

vectors, given by

cor(X ,Y )~

Pn
i~1

(xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(xi{�xx)2 Pn
i~1

(yi{�yy)2

s

measures the similarity of the two structures in terms of the

importance of binding site residues, and hence is defined as the

bound-state similarity coefficient (BSSC). As will be shown, the

structural variations in the ligand-free NMR ensembles cause

substantial variations in BSSC, which can have values as high as

0.84 and as low as 20.04. One of the main questions considered

here is how to identify, without information on any ligand, the

particular ligand-free structure in the ensemble that is most similar

to a ligand bound state in terms of BSSC. Our hypothesis is that

the key predictor of this similarity is the binding site hit rate (HR),

defined as the sum of probe-protein interactions for all binding site

residues (apart from lysines and arginines in the binding site)

divided by the total number of probe-protein interactions. The

reason of not accounting for these two residues when calculating

the binding site hit rate is that the positions of their side chains and

hence their interactions with the probes are generally not very well

defined, resulting in high level of uncertainty. The hypothesis

assumes that well-formed pockets that are capable of binding

specific ligands (e.g., peptides or small molecular inhibitors) also

tend to bind a large number of probe molecules, and thus the level

of non-specific binding is a predictor of specific binding ability.

The mapping results support this hypothesis, and show that

structures with the highest hit rates tend to be similar to some

ligand-bound structure.

Figure 3 shows the relationship between the binding site HR

and BSSC for 24 NMR structures of ligand-free MDM2. The

BSSC values were calculated for three different MDM2 structures

bound to high affinity ligands, two of them small inhibitors and the

third a peptide. The hit rates and BSSCs are also listed in Table

S5. According to these results, model 9, which has the highest hit

rate (0.78), also has the highest BSSC (0.84), the latter being based

on the average ligand fingerprint of the NMR structure of MDM2

bound to a piperidinone inhibitor, PDB ID 2lzg [42]. The binding

site in model 9 already shows some specificity, as it is substantially

more similar to the piperidinone-bound structure than to the other

two bound structures (with BSSC values of 0.53 and 0.67,

respectively, see Table S5 and Figure 3). Model 19, which has the

second highest hit rate (0.77), has the highest BSSC for two ligand-

bound MDM2 structures, the first co-crystallized with a p53

peptide [43], and the second with the inhibitor Nutlin-2 [44]. The

binding site in this model is less specific, as it is also similar to the

piperidinone-bound structure, although less than model 9 is.

As shown in Figure 4 and Tables S6 through S8, high hit rates

also predict models that are similar to ligand-bound structures for

PSD95 PDZ1, MAGI-1 PDZ1, and EDC3. For PSD-95 PDZ1,

model 23 has the highest hit rate, and this model is also the most

similar to the bound state defined by the X-ray structure of the

PDZ1 domain co-crystallized with a cyclic peptide (Table S6). For

MAGI-1 PDZ1, model 9 with the third highest hit rate (0.79) is the

most similar to the peptide-bound structure 2kpl (Table S7).

Models 7 and 17 have slightly higher hit rates, and are also fairly

similar to the bound structure. Although at this point we have no

known ligands that would yield ligand-bound structures with high

level of similarity to these two models, their high hit rates imply

that they have well-formed binding sites, and thus it is likely that

ligands binding to these conformations will be found. For EDC3

the model most similar to the peptide bound state is model 16,

which has the second highest hit rate (0.97), but the highest hit rate

is not much different (0.98) (Table S8). Finally, according to the

results for Bcl-xL, model 3 of the ensemble has the highest hit rate,

and it is most similar to both structures bound to the inhibitor

ABT-737 and a BAK peptide (Figure 5 and Table S9).

So far we have shown that some of the ligand-free models with

high binding site hit rates tend to be similar to known bound

structures. To further explore the relationship between hit rate and

BSSC values, we note that, for an ensemble of k structures, both

measures are given as k-vectors, and thus we can calculate their

correlation coefficient. These correlation coefficients, listed in

Table 1 and also shown in Figures 3, 4, and 5, were surprisingly

large, between 0.60 and 0.92, indicating that the binding site hit

rate can be used for the identification of structures that are likely to

be the most similar to a ligand-bound state. We note that a similar

method, called signal-to-noise ratio, has been recently introduced

Figure 1. Identification of binding sites. A. Ligand-free MDM2
(1z1m, green) with p53 peptide (cyan) from the bound structure (3v3b).
The top binding site predicted by FTSite (brown mesh) overlaps with
the peptide in 18 of the 24 structures of 1z1m. B. Ligand-free Bcl-xL
structure (2m03, green), with BAK peptide (cyan) from structure 1bxl,
inhibitor ABT-737 (red sticks) from structure 2yxj, and the BIH SAHB
peptide (magenta) binding to the close Bcl-xL homologue BAX (2k7w).
The top predicted binding site (brown mesh) overlaps with the BAK
peptide and ABT-737 in 6 of the 20 structures in 2m03, and with the BIH
SAHB site in 9 of the 20 structures. C. Ligand-free EDC3 (4a53, green)
with DCP2 peptide (cyan) from the structure 4a54. The top predicted
binding site (brown mesh) overlaps with the peptide in all 20 structures
in 4a53. D. Ligand-free MAGI1 PDZ1 (2kpk, green) with a C-terminal
peptide of HPV16 E6 (cyan) from structure 2kpl. The top predicted
binding site (brown mesh) overlaps with the peptide in 19 of the 20
structures in 2kpk. E. Ligand-free PSD95 PDZ1 (1iu2, green) with a
peptide (cyan) from structure 1rgr. The top predicted binding site
(brown mesh) overlaps with the peptide in 40 of the 50 structures in
1iu2).
doi:10.1371/journal.pcbi.1003872.g001
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[45], and has been used for screening libraries of ligand cores

against a library of receptor conformations without prior

knowledge of specific pockets. Such methods are clearly very

important if no ligand-bound structure of a protein is available,

and hence one has to select the ligand-free structure that would be

used for structure based ligand design.

Discussion

We have originally introduced mapping fingerprints to show

that the probes used for mapping interact with the same residues

as the specific ligands of the protein, and that the relative

importance of the residues is also conserved [36]. This property

has been used for the identification of ligand binding sites,

resulting in the FTSite method with demonstrated excellent

performance [40]. Results show that comparing structures in terms

of the similarity of their binding hot spots has two main

advantages. First, although the mapping fingerprints for structures

obtained by NMR show substantial variation among the members

of the ensemble, indicating changes in the binding site, we were

able to identify the binding site residues and to compare their

importance in bound versus unbound structures without assuming

any particular ligand. Second, the method identified the unbound

structures in the ensemble that were likely to be the most similar

ones to some ligand-bound structure, suggesting that the

propensity of a site for binding small non-specific probes is highly

correlated with the propensity of the same site for binding specific

ligands. Although in this paper we considered only conformational

ensembles obtained by nuclear magnetic resonance, the algorithm

is independent of the method used for generating the structures,

and can be applied to any ensemble of structures. Furthermore,

here we focused on PPI targets in which the binding site and some

small molecular inhibitors were already known, because compar-

ing the unbound conformations identified by our method to

ligand-bound structures demonstrated the power of the approach.

However, we emphasize that the algorithm is based on the analysis

of the protein structure, and does not require information on any

potential ligand.

As shown in Figures 2 and S1, the residues interacting with

ligands in the interface also interact with higher number of probe

molecules. We have introduced the bound state similarity

coefficient (BSSC), defined as the correlation coefficient between

a mapping fingerprint of an unbound structure and the ligand

fingerprint based on a ligand-bound structure, as the measure of

similarity between binding sites in the two structures. We have

observed that the BSSC values increase as the binding site acquires

higher nonspecific binding affinity, measured in terms of the hit

rate (HR), i.e., the number of probe atoms interacting with the

residues in the site. The relationship between the hit rate and the

bound state similarity coefficient was demonstrated by their

consistently high correlation coefficients. As shown by some high

BSSC values, the ensembles of NMR based models of ligand-free

proteins always included some structures that were similar to

ligand-bound states in terms of binding properties, indicating that

the ligand binding sites within interface regions of PPI target

proteins pre-exist in some of the unbound structures. This supports

the conformational selection model, but the results also provide

additional insights. Classical conformational selection assumes that

proteins sample a vast conformational space and that higher

energy states may bind the ligand [13,15,16,46]. In the course of

binding, because of favorable interactions with the ligand, these

conformers get preferentially selected, and the population of

Figure 2. Mapping fingerprints of 24 unbound MDM2 structures. In each plot, horizontal axis, MDM2 residues (E25-Y104); vertical axis,
percentage of probe-residue contacts (0–20%). Residues within 4 Å from the p53 peptide (PDB 1ycr) are marked with red dots.
doi:10.1371/journal.pcbi.1003872.g002
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protein microstates shifts in the direction of bound conformations

[19]. Although our results do not contradict this paradigm, they

suggest that the mechanism of changes leading to the formation of

binding sites for small ligands in protein-protein interfaces goes

beyond the conformational selection model. The 20 to 50

structures in the NMR ensembles deposited in the Protein Data

Bank [27] are low energy models that satisfy the maximum

number of NMR constraints, and clearly represent only a very

small fraction of the conformational space. Thus, the conforma-

tional selection model does not fully explain why, in such small

samples, we always find structures that have the pockets that are

well formed for binding a large number of probes.

The spontaneous opening of pockets in protein-protein inter-

faces has been observed in simulations. Although Eyrisch and

Helms found only short lived transient pockets, they noted that

docking into these pockets generally led to conformations much

closer to the complex structure than docking into the crystal

structures of the free proteins [20]. Johnson and Karanicolas

developed an improved computational methodology by adding a

driving force towards conformations in which a surface pocket is

present [23]. Starting from unbound protein structures, they have

found conformational transitions that opened pockets at ligand

binding sites in protein interfaces with little energetic cost to the

protein. The ensembles of conformations generated with this

biased approach structurally resembled known inhibitor-bound

structures more closely than equivalent ensembles of unbiased

conformations. Based on these results they concluded that the

formation of such ‘‘druggable’’ sites is encoded in the protein

surface [23]. Our analysis of the NMR ensembles fully supports

this observation.

The potential origin of proteins having small ligand binding sites

has been recently explored in a theoretical study by Gao and

Figure 3. Binding site hit rates (blue columns, left axis) and
BSSC (bound-state similarity coefficient) values (red lines, right
axis) for the MDM2 ensemble (PDB ID 1z1m, 24 models).
Horizontal axes list model numbers, with the last column showing the
averaged binding site hit rate and BSSC value. BSSC values are defined
for three different ligand-bound structures of MDM2. A. MDM2 bound
to a p53 peptide (PDB ID 1ycr). B. MDM2 bound to the inhibitor Nutlin-
2 (PDB ID 1rv1). C. MDM2 bound to a piperidinone derivative (PDB ID
2lzg).
doi:10.1371/journal.pcbi.1003872.g003

Figure 4. Binding site hit rates (blue columns, left axis) and
BSSC (bound-state similarity coefficient) values (red lines, right
axis) for the ligand-free NMR structures of PSD-95 PDZ1,
MAGI-1 PDZ1, and EDC3. Horizontal axes list model numbers, with
the last column showing the averaged binding site hit rate and BSSC
value. A. Unbound PSD-95 PDZ1 ensemble (PDB ID 1iu2, 50 models).
BSSC values are defined for a peptide-bound structure (PDB ID 1rgr). B.
Unbound MAGI-1 PDZ1 ensemble (PDB ID 2kpk, 20 models). BSSC
values are defined for a peptide-bound structure (PDB ID 2kpl). C.
Unbound EDC3 ensemble (PDB ID 4a53, 20 models). BSSC values are
defined for a peptide-bound structure (PDB ID 4a54).
doi:10.1371/journal.pcbi.1003872.g004

Figure 5. Binding site hit rates (blue columns, left axis) and
BSSC (bound-state similarity coefficient) values (red lines, right
axis) for the Bcl-xL ensemble (PDB ID 2m03, 20 models).
Horizontal axes list model numbers, with the last column showing the
averaged binding site hit rate and BSSC value. BSSC values are defined
for three different ligand-bound structures of MDM2. A. MDM2 bound
to the inhibitor ABT-737 (PDB ID 2yxj). B. MDM2 bound to a BAK
peptide (PDB ID 1bxl).
doi:10.1371/journal.pcbi.1003872.g005
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Skolnick [47,48], who generated and analyzed two different

libraries in artificial protein structures. The first library contained

quasi-spherical, random protein structures packed in the same

average spherical volume as proteins, but lacking backbone

secondary structure and hydrogen bonding. While these structures

had a statistically significant match to the global structures of

native proteins, they were more densely packed and contained

pockets that were too tiny to bind small molecules. The second

library contained compact artificial structures with protein-like

secondary structure. In contrast to the first library, these artificial

proteins have pockets very similar to those of the native protein.

This analysis shows that the biophysics of proteins, mainly their

secondary structure, is likely to lead to the formation of broad

specificity pockets. In fact, pockets are naturally formed when

relatively rigid secondary structure elements are packed, e.g., at

the ends of helical bundles, and even slight motion in these

secondary structures may substantially change some of the pockets.

In spite of their very different methodologies, the studies by

Johnson and Karanicolas [23] and by Gao and Skolnick [47,48]

arrive at the conclusion that the spontaneous formation of ligand

binding sites leads to crude features with limited specificity that

nevertheless restrict the range of complementary ligands, and

additional smaller conformational changes then respond to details

of a particular ligand. Our analysis of NMR structures shows the

level of similarity between the binding sites in low energy unbound

structures and those seen in the bound state. According to these

results, BSSC can be as high as 0.84 for some complexes, but the

typical value is closer to 0.6. Achieving similarity beyond this

range assumes that there exist more similar but higher energy

structures that are not present in the NMR ensemble, or that the

similarity is further improved by induced fit. In any case, while

forming binding sites in protein-protein interfaces may involve the

combination of recognition mechanisms, conformational selection

is an important part of the process.

Another important observation we made in this paper is that the

ligand-free structures in the ensemble with the highest level of

similarity to a ligand-bound structure also have high hit rates, i.e.,

they interact with a large number of small molecules used as

probes for the mapping. Due to this property, both the structures

and their putative ligand-binding sites can be identified by

computational solvent mapping without reference to any partic-

ular ligand. Since these are the conformations that are most

suitable for ligand design, the observation has clear practical

significance. We have already used this property for selecting the

most bound-like structures from ensembles computationally

generated by different rotameric states of side chains in the

binding site [6,49]. However, the analysis of NMR structures of

the ligand-free proteins, as described in this paper, provides a

stronger and much more objective foundation for the method.

Methods

Selection of protein targets
We briefly describe the motivation for selecting the targets listed

in Table 1, as well as the structural information used for each

protein.

MDM2. The human version of the mouse double minute

protein 2 (MDM2) is an important drug target for its role in

binding and negatively regulating the tumor suppressor p53 [50].

We take the only available ligand-free structure of MDM2, which

is an NMR derived ensemble of 24 models [50], and consider its

residues 25–104. The distribution of NOEs and relaxation

parameters confirmed that a significant portion of the domain is

poorly structured. MDM2 structures have also been determined

for complexes with a p53 peptide [43] and several small molecular

inhibitors [42,44]. These structures show that the two sub-domains

of the protein must move apart in order to make place for ligands.

PDZ1 domain of PSD-95. The three PDZ domains of the

postsynaptic density protein 95 (PSD-95) regulate signaling in

glutaminergic neurons by modulating protein-protein interactions

[51]. The solution structure of the PDZ1 domain has been

determined using NMR [51], and the 50 lowest energy models

have been deposited in the PDB. In most of these structures, the

binding cleft is shallow and nondescript, consistent with the

transient interactions aimed to bring proteins together to facilitate

signaling, and then rapidly disperse. The structure of the PDZ1

domain has also been determined in a complex with a peptide

designed for improved binding [52], resulting in better defined

binding site and reduced structural variation.

PDZ1 domain of MAGI-1. The PDZ domains of membrane-

associated guanylate kinase with inverted domains 1 (MAGI-1)

interact with the E6 proteins of human papillomaviruses (HPVs)

[53]. The solution structure of the MAGI-1 PDZ1 domain has

been determined using NMR alone and bound to a peptide

derived from the C-terminus of HPV16 E6 [53]. The comparison

of these structures shows that the binding of the peptide induces

quenching of high-frequency motions in the C-terminal tail of the

PDZ domain.

LSm domain of yeast EDC3. The like-SM (LSm) domain

of the enhancer of decapping 3 (EDC3) activator protein

modulates the activity of the DCP1:DCP2 decapping complex,

which catalyzes the removal of the mRNA 59 cap [54]. The

structure of the yeast EDC3 LSm domain has been determined

using NMR both alone and in complex with a short helical

leucine-rich motif of DCP2. Fromm et al. [54] deposited the 20

lowest energy structures for both the ligand-bound and ligand-

free proteins.

B-cell lymphoma-extra large (Bcl-xL). In several tissues,

DNA damage induces apoptosis via the stabilization of p53. Bcl-

xL is an antiapoptotic protein, which sequester p53 [55], is

overexpressed in many cancers, and thus has been pursued as a

target for drug discovery. The structure of Bcl-xL has been

determined ligand-free [55] and in complex with a variety of

bound peptides and small molecule inhibitors [8,56].

Modifications of the FTMap and FTSite programs
The main tools of our analysis are the FTMap [39] and FTSite

[40] programs. Both programs place small molecules as probes on

the protein surface to determine consensus clusters that bind

clusters of different probes. The ranking of consensus clusters is

based on the number of probe clusters in FTMap, and on the

number of non-bonded interactions between the protein and all

probes in FTSite. Both FTMap and FTSite have been described

previously [39,40]. However, for this paper we introduced some

changes in both algorithms, primarily to increase the computa-

tional speed. First, in the scoring function for the grid search, we

use the simplified generalized Born (GB) type electrostatic term

developed for the PIPER program [57], rather than a Poisson-

Boltzmann model. Second, we do not perform off-grid local

energy minimization, thereby reducing the computational efforts

by almost an order of magnitude. All other details of the

algorithms remain unchanged [39,40].

Selection of binding site residues
Using the FTSite results [40], for each residue we count the

number of structures in which any atom of the residue is within

4 Å of the top prediction of the binding site, and rank the residues

based on these counts. The selection of binding site residues starts
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with the top ranked residue, and we continue adding residues until

15% or more drop occurs in the count. We used a slightly different

algorithm for Bcl-xL: the residues were ranked based on the

number of structures in which they were found within 4 Å to any

of the top three predicted binding sites, and added residues from

this ranked list until a 50% drop in the count occurred. Although

the cutoff rules introduced here may be specific to the proteins

studied, it is general that the binding site residues are the ones that

are close to the predicted binding sites in many structures of the

NMR ensemble. The predicted and observed binding site residues

are listed in Table S10.

Calculation of the bound state similarity coefficient
(BSSC)

BSSC for a ligand-free structure is the correlation coefficient

between the mapping fingerprint, defined as the number of probe-

protein interactions for each residue divided by the total number

of interactions, and the ligand fingerprint of a bound structure,

which is the number of ligand-protein interactions for each residue

divided by the total number of interactions. If the bound structure

is an NMR ensemble, BSSC is based on the average ligand

fingerprint. As shown by the Tables S1 through S4, the ligand

fingerprints are very similar within ensembles of such ligand-

bound structures, and hence the average fingerprint is a valid

measure of interactions.

Supporting Information

Figure S1 Mapping fingerprints of MDM2 from unbound

model 9 (blue), in comparison to ligand fingerprint calculated

from a piperidinone bound structure (red). Horizontal axes list

residues of MDM2 from Glu25 to TYR104 (unstructured regions

removed before mapping analysis). Vertical axis shows the fraction

of atom-atom interactions each protein residue makes with probe

or ligand atoms.

(TIF)

Table S1 Validity of averaging fingerprints over bound

structures solved by NMR. Pairwise correlation coefficients

between the fingerprints for models 1–5 and the average

fingerprint of the five ligand-bound MDM2 structures (PDB ID

2lzg).

(DOCX)

Table S2 Validity of averaging fingerprints over bound

structures solved by NMR. Correlation coefficients between each

fingerprint for models 1–22 and the average fingerprint of the 22

peptide-bound PSD-95 PDZ1 structures (PDB ID 1rgr).

(DOCX)

Table S3 Validity of averaging fingerprints over bound structures

solved by NMR. Correlation coefficients between each fingerprint for

models 1–20 and the average fingerprint from the ensemble of the 20

peptide-bound MAGI-1 PDZ1 structures (PDB ID 2kpl).

(DOCX)

Table S4 Validity of averaging fingerprints over bound

structures solved by NMR. Correlation coefficients between the

fingerprint for models 1–22 and the average fingerprint from the

ensemble of the 22 peptide-bound EDC3 structures (PDB ID

4a54).

(DOCX)

Table S5 Binding site hit rates (HRs) and bound state similarity

coefficients (BSSCs) for the ensemble of ligand-free MDM2

structures (PDB ID 1zlm). The BSSC values are calculated using

the three ligand-bound structures with PDB IDs shown. The

models are sorted based on the hit rate. The maximum value in

each column is shown in bold.

(DOCX)

Table S6 Binding site hit rates and bound state similarity

coefficients (BSSCs) for the ensemble of ligand-free PSD-95 PDZ1

structures (PDB ID 1iu2). The BSSC values are calculated using

the ligand-bound structure with PDB IDs 1rgr. The models are

sorted based on the hit rate. The maximum value in each column

is shown in bold.

(DOCX)

Table S7 Binding site hit rates and bound state similarity

coefficients (BSSCs) for the ensemble of ligand-free MAGI-1

PDZ1 structures (PDB ID 1kpk). The BSSC values are calculated

using the ligand-bound structure with PDB IDs 2kpl. The models

are sorted based on the hit rate. The maximum value in each

column is shown in bold.

(DOCX)

Table S8 Binding site hit rates and bound state similarity

coefficients (BSSCs) for the ensemble of ligand-free EDC3

structures (PDB ID 4a53). The BSSC values are calculated using

the ligand-bound structure with PDB IDs 4a54. The models are

sorted based on the hit rate. The maximum value in each column

is shown in bold.

(DOCX)

Table S9 Binding site hit rates and bound state similarity

coefficients (BSSCs) for the ensemble of ligand-free Bcl-xL

structures (PDB ID 2m03). The BSSC values are calculated using

the two ligand-bound structures with PDB IDs shown in the table.

The models are sorted based on the hit rate. The maximum value

in each column is shown in bold.

(DOCX)

Table S10 Predicted and observed binding site residues.

(DOCX)

Author Contributions

Conceived and designed the experiments: DK SV. Performed the

experiments: TB DK. Analyzed the data: TB DK SV. Contributed to

the writing of the manuscript: TB DK SV.

References

1. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug
discovery at protein-protein interfaces. Nature 450: 1001–1009.

2. Whitty A, Kumaravel G (2006) Between a rock and a hard place? Nature
chemical biology 2: 112–118.

3. Fuller JC, Burgoyne NJ, Jackson RM (2009) Predicting druggable binding sites
at the protein-protein interface. Drug Discov Today 14: 155–161.

4. Blundell TL, Bolanos-Garcia VM (2009) Targeting protein interactions of p53

for therapeutic intervention: success in a frustrated landscape. Cell Cycle 8:

3631–3632.

5. Zinzalla G, Thurston DE (2009) Targeting protein-protein interactions for

therapeutic intervention: a challenge for the future. Future Med Chem 1: 65–93.

6. Kozakov D, Hall DR, Chuang GY, Cencic R, Brenke R, et al. (2011) Structural

conservation of druggable hot spots in protein-protein interfaces. Proc Nat Acad
Sci U S A 108: 13528–13533.

7. Chene P (2004) Inhibition of the p53-MDM2 interaction: Targeting a protein-

protein interface. Mol Cancer Res 2: 20–28.

8. Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, et al. (2007) Crystal

structure of ABT-737 complexed with Bcl-x(L): implications for selectivity of
antagonists of the Bcl-2 family. Cell Death and Differentiation 14: 1711–1713.

9. Wang Y, Coulombe R, Cameron DR, Thauvette L, Massariol MJ, et al. (2004)

Crystal structure of the E2 transactivation domain of human papillomavirus type

11 bound to a protein interaction inhibitor. J Biol Chem 279: 6976–6985.

Evidence of Conformational Selection

PLOS Computational Biology | www.ploscompbiol.org 8 October 2014 | Volume 10 | Issue 10 | e1003872



10. Tsao DH, Sutherland AG, Jennings LD, Li Y, Rush TS, 3rd, et al. (2006)

Discovery of novel inhibitors of the ZipA/FtsZ complex by NMR fragment
screening coupled with structure-based design. Bioorg & Med Chem 14: 7953–

7961.

11. De Luca L, Barreca ML, Ferro S, Christ F, Iraci N, et al. (2009)
Pharmacophore-Based Discovery of Small-Molecule Inhibitors of Protein-

Protein Interactions between HIV-1 Integrase and Cellular Cofactor
LEDGF/p75. ChemMedChem 4: 1311–1316.

12. Braisted AC, Oslob JD, Delano WL, Hyde J, McDowell RS, et al. (2003)

Discovery of a potent small molecule IL-2 inhibitor through fragment assembly.
J Am Chem Soc 125: 3714–3715.

13. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational
ensembles in biomolecular recognition. Nature Chem Biol 5: 789–796.

14. Bucher D, Grant BJ, McCammon JA (2011) Induced fit or conformational
selection? The role of the semi-closed state in the maltose binding protein.

Biochemistry 50: 10530–10539.

15. Ma B, Kumar S, Tsai CJ, Nussinov R (1999) Folding funnels and binding
mechanisms. Protein Engineering 12: 713–720.

16. Tsai CJ, Ma B, Nussinov R (1999) Folding and binding cascades: shifts in energy
landscapes. Proc Nat Acad Sci U S A 96: 9970–9972.

17. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection

and independent dynamic segments: an extended view of binding events. Trends
Biochem Sci 35: 539–546.

18. Zhou HX (2010) From induced fit to conformational selection: a continuum of
binding mechanism controlled by the timescale of conformational transitions.

Biophysical J 98: L15–17.
19. Wlodarski T, Zagrovic B (2009) Conformational selection and induced fit

mechanism underlie specificity in noncovalent interactions with ubiquitin. Proc

Nat Acad Sci U S A 106: 19346–19351.
20. Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in

protein-protein interaction. J Med Chem 50: 3457–3464.
21. Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, et al. (2012)

Hot spots and transient pockets: Predicting the determinants of small-molecule

binding to a protein-protein interface. J Chem Inf Model 52: 120–133.
22. Kokh DB, Richter S, Henrich S, Czodrowski P, Rippmann F, et al. (2013)

TRAPP: A tool for analysis of transient binding pockets in proteins. J Chem Inf
Model 53: 1235–1252.

23. Johnson DK, Karanicolas J (2013) Druggable protein interaction sites are more
predisposed to surface pocket formation than the rest of the protein surface.

PLoS Comp Bio 9: e1002951.

24. Meireles L, Gur M, Bakan A, Bahar I (2011) Pre-existing soft modes of motion
uniquely defined by native contact topology facilitate ligand binding to proteins.

Protein Science 20: 1645–1658.
25. Tobi D, Bahar I (2005) Structural changes involved in protein binding correlate

with intrinsic motions of proteins in the unbound state. Proc Nat Acad Sci USA

102: 18908–18913.
26. Yang L, Song G, Jernigan RL (2007) How well can we understand large-scale

protein motions using normal modes of elastic network models? Biophysical J
93: 920–929.

27. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The
Protein Data Bank. Nucleic Acids Res 28: 235–242.

28. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KFA, et al. (2008)

Recognition dynamics up to microseconds revealed from an RDC-derived
ubiquitin ensemble in solution. Science 320: 1471–1475.

29. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and
challenges. Curr Opin Struct Biol 12: 14–20.

30. Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor

interface. Science 267: 383–386.
31. Mattos C, Ringe D (1996) Locating and characterizing binding sites on proteins.

Nature Biotech 14: 595–599.
32. Ciulli A, Williams G, Smith AG, Blundell TL, Abell C (2006) Probing hot spots

at protein-ligand binding sites: A fragment-based approach using biophysical

methods. J Med Chem 49: 4992–5000.
33. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, et al. (2012)

Biophysical and computational fragment-based approaches to targeting protein-
protein interactions: applications in structure-guided drug discovery. Quar Rev

Biophysics 45: 383–426.
34. Hajduk PJ, Huth JR, Fesik SW (2005) Druggability indices for protein targets

derived from NMR-based screening data. J Med Chem 48: 2518–2525.

35. Dennis S, Kortvelyesi T, Vajda S (2002) Computational mapping identifies the

binding sites of organic solvents on proteins. Proc Nat Acad Sci U S A 99:

4290–4295.

36. Silberstein M, Dennis S, Brown L, Kortvelyesi T, Clodfelter K, et al. (2003)

Identification of substrate binding sites in enzymes by computational solvent

mapping. J Mol Biol 332: 1095–1113.

37. Vajda S, Guarnieri F (2006) Characterization of protein-ligand interaction sites

using experimental and computational methods. Curr Opin Drug Disc Dev 9:

354–362.

38. Lavi A, Ngan CH, Movshovitz-Attias D, Bohnuud T, Yueh C, et al. (2013)

Detection of peptide-binding sites on protein surfaces: the first step toward the

modeling and targeting of peptide-mediated interactions. Proteins 81: 2096–

2105.

39. Brenke R, Kozakov D, Chuang GY, Beglov D, Hall D, et al. (2009) Fragment-

based identification of druggable ‘hot spots’ of proteins using Fourier domain

correlation techniques. Bioinformatics 25: 621–627.

40. Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, et al. (2012) FTSite: high

accuracy detection of ligand binding sites on unbound protein structures.

Bioinformatics 28: 286–287.

41. Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, et al. (2008) BAX

activation is initiated at a novel interaction site. Nature 455: 1076–U1076.

42. Michelsen K, Jordan JB, Lewis J, Long AM, Yang E, et al. (2012) Ordering of

the N-terminus of human MDM2 by small molecule inhibitors. J Am Chem Soc

134: 17059–17067.

43. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, et al. (1996) Structure

of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation

domain. Science 274: 948–953.

44. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, et al. (2004) In vivo

activation of the p53 pathway by small-molecule antagonists of MDM2. Science

303: 844–848.

45. Hocker HJ, Rambahal N, Gorfe AA (2014) LIBSA–a method for the

determination of ligand-binding preference to allosteric sites on receptor

ensembles. J Chem Inf Model 54: 530–538.

46. Vertessy BG, Orosz F (2011) From ‘‘fluctuation fit’’ to ‘‘conformational

selection’’: evolution, rediscovery, and integration of a concept. BioEssays 33:

30–34.

47. Gao M, Skolnick J (2013) A comprehensive survey of small-molecule binding

pockets in proteins. PLoS Comp Biol 9: e1003302.

48. Skolnick J, Gao M (2013) Interplay of physics and evolution in the likely origin of

protein biochemical function. Proc Nat Acad Sci U S A 110: 9344–9349.

49. Grove LE, Hall DR, Beglov D, Vajda S, Kozakov D (2013) FTFlex: accounting

for binding site flexibility to improve fragment-based identification of druggable

hot spots. Bioinformatics 29: 1218–1219.

50. Uhrinova S, Uhrin D, Powers H, Watt K, Zheleva D, et al. (2005) Structure of

free MDM2 N-terminal domain reveals conformational adjustments that

accompany p53-binding. J Mol Biol 350: 587–598.

51. Long JF, Tochio H, Wang P, Fan JS, Sala C, et al. (2003) Supramodular

structure and synergistic target binding of the N-terminal tandem PDZ domains

of PSD-95. J Mol Biol 327: 203–214.

52. Piserchio A, Salinas GD, Li T, Marshall J, Spaller MR, et al. (2004) Targeting

specific PDZ domains of PSD-95: Structural basis for enhanced affinity and

enzymatic stability of a cyclic peptide. Chem Biol 11: 469–473.

53. Charbonnier S, Nomine Y, Ramirez J, Luck K, Chapelle A, et al. (2011) The

structural and dynamic response of MAGI-1 PDZ1 with noncanonical domain

boundaries to the binding of human papillomavirus E6. J Mol Biol 406: 745–

763.

54. Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, et al. (2012) The

structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2

mRNA decapping complex. EMBO Journal 31: 279–290.

55. Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, et al. (2013) PUMA

binding induces partial unfolding within BCL-xL to disrupt p53 binding and

promote apoptosis. Nature Chem Biol 9: 163–168.

56. Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, et al. (1997)

Structure of Bcl-x(L)-Bak peptide complex: Recognition between regulators of

apoptosis. Science 275: 983–986.

57. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: An FFT-based

protein docking program with pairwise potentials. Proteins 65: 392–406.

Evidence of Conformational Selection

PLOS Computational Biology | www.ploscompbiol.org 9 October 2014 | Volume 10 | Issue 10 | e1003872


