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Abstract: Background/Aim: There is a strong association between malignancy and histone deacety-
lases (HDACs). Histone deacetylase inhibitors (HDACIs) are now being tested as antitumor agents
in various clinical trials. We aimed to assess the clinical importance of HDAC-2 in breast cancer
(BC). Materials and Methods: A total of 118 BC specimens were examined immunohistochemically.
A statistical analysis was conducted in order to examine the relation between HDAC-2 and the
clinicopathological features and survival of the patients. Results: Higher HDAC-2 expression was
related to lobular histological type of cancer, grade III, and stage III BC. In addition, the disease-free
period and overall survival were curtailed and negatively related to the over-expression of HDAC-2.
Other factors correlating with worse survival were histological types other than ductal or lobular,
and the stage of the disease. Conclusions: This study showed a relationship between HDAC-2 and
BC. Further studies are required in order to eventually potentiate the role of HDACIs as anticancer
agents in BC.

Keywords: breast; cancer; clinicopathological; deacetylase; HDAC; histone

1. Introduction

The regulation of transcription is controlled by the acetylation status of histones. The
competition between the histone deacetylases (HDACs) and the histone acetyltransferases
(HATs) plays a crucial role in either the inhibition or the promotion of transcription, re-
spectively [1,2]. The HDAC-dependent removal of acetyl groups from lysine residues in
histones leads to the formation of heterochromatin, thus repressing the process of transcrip-
tion [3]. A large number of human HDACs has been found and recognized. HDACs are
divided into four classes depending on their structure and function [4], and are further
subdivided into NAD-dependent (III) and Zn2+-dependent classes (I, II, and IV). Class I
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includes HDAC-1, -2, -3, and -8; class II consists of HDAC-4, -5, -7, -6, -9, and -10, whereas
class IV only contains HDAC-11. Class III HDACs are widely known as sirtuins and contain
seven distinct members: SIRT-1–7 (Figure 1) [5–7].
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Figure 1. Histone deacetylases’ function and classification.

In particular, HDAC-2 is a classical class I HDAC with a conserved deacetylase domain
with short amino- and carboxy-terminal extensions [3]. Its catalytic site consists of a 14 Å
long internal cavity adjacent to the zinc-binding site, a lipophilic tube connecting the
surface with the zinc-binding site, as well as a catalytic zinc ion. HDAC-2 may be post-
translationally modified by phosphorylation, acetylation, ubiquitination, and sumoylation,
while it exhibits high activity and enantioselectivity to histones [8]. By catalyzing the
removal of acetyl groups on the NH2-terminal lysine histone residues, HDAC-2 is involved
in transcriptional repression and tumor-suppressor gene-silencing [2,9]. As a consequence,
its deregulation may potentially promote malignant cell proliferation, migration, and/or
invasion [10].

HDAC2 plays a vital role in gene expression through the formation of transcription
repressor complexes. It is often regarded as a target for cancer therapy [5]. Increased
deacetylation can cease transcription of tumor-suppressor genes leading to cell proliferation,
migration, and invasion [11]. Different subtypes of HDAC seem to be related to different
cancer biological behaviors and histological types. It is a component of complexes that
deactivate the SIN3 and NURD pathways [12]. In addition, it plays a preventive role
against neural expression genes in tissues unrelated to the nervous system [13]. Finally,
HDAC-2 is regarded as a helpful factor in vascular and lymphatic invasion in a variety of
malignancies [5]. Another study showed, through immunohistochemistry, that HDAC-2
expression was related to the presence of both lymphatic and vascular invasion and lymph
node metastases in malignant thyroid lesions. Additionally, both nuclear and cytoplasmic
pattern of HDAC-2 distribution is related more to lymphatic invasion [14].

Histone deacetylase inhibitors (HDACI) are enzymes that lead to hyperacetylation
of the substrates. Four classes of HDACI, which differ in structure, are being researched.
These include hydroxamic acid (suberoylanilide hydroxamic acid, SAHA), cyclic tetrapep-
tide (romidepsin), benzamide (MS-275), and aliphatic acid (valproic acid) [5,15]. Another
classification, which can be also used, depends on the specificity of each HDACI to the
HDAC. For example, MS-275 and romidepsin inhibit class I, while trichostatin A and SAHA
are pan-HDAC inhibitors [5,16]. They suppress the action of HDAC and express anti-tumor
activity through many mechanisms. These include both the damage to and prevention of
repairment of DNA via the production of reactive oxygen species (ROS) [17]. The HDACIs
can alter gene expression and negatively affect cell proliferation in various stages of the
cell cycle, such as the G1, G2, or M phase [18]. Additionally, apoptosis can be triggered
through both the endogenous and exogenous pathways by the HDACIs [19]. The HDACIs
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exert an antiangiogenetic and antimetastatic effect on malignancies, as well as prevent
malignant cells from using glycose for their metabolic pathways [20–22]. It is of paramount
importance to highlight that their action is limited to the malignant cells, whereas normal
ones are only slightly affected. Clinical research on the use of HDACIs has been conducted
and proved their antitumor potential [5,15,23,24]. Furthermore, four HDACI have already
been approved by the FDA (U.S. Food and Drug Administration) against haematological
malignancies: T-cell cutaneous lymphoma is being treated with romidepsin (istodax) or
vorinostat (zolinza); T-cell peripheral lymphoma is being treated with belinostat (beleodaq);
while panobistat (farydak) is being used against multiple myeloma [5]. In breast cancer
(BC), HDACIs show clinical benefits when used as a combination therapy with radiation or
cytotoxic treatment [25].

BC is the most frequent malignancy affecting the female population worldwide [26–29]. As
much as 30% of all cancers derive from the breast tissue and it is the second cause of cancer
death in women following lung cancer in developed countries [30,31]. Diverse therapeutic
methods are currently being used to treat patients, including surgery, radiotherapy, and
chemotherapy [32–35]. These methods do have side effects, including toxicity and drug
resistance [36]. Additionally, despite the extensive advancements in both treatment and
diagnosis, 43,250 women are, however, still estimated to die in the US in 2022 [31]. Hence,
it is necessary to explore novel aspects regarding the treatment and prognosis of this
specific disease.

HDAC-2 has been reported to play a significant role in various cancer entities, ranging
from medulloblastoma, melanoma, lung cancer, and hematological malignancies, to pancre-
atic, colorectal, prostate, and urothelial cancer [37]. Recently, multiple study groups have
investigated the role of HDAC-2 in BC and underlined its potential oncogenic capacities in
different BC types [38–42]. Nevertheless, most of these studies investigate HDAC-2 expres-
sion in BC cell lines or xenograft tumor models, but not patient-derived tumor samples.
Thus, the aim of our study is to examine the expression of HDAC-2 immunohistochemically
in specimens derived from BC tissue and its correlation to the clinicopathological features
of the tumor and patient prognosis.

During the last three decades, great progress on the pathophysiology of BC has been
achieved through extensive research, leading to the development of possible novel therapeu-
tic approaches. In addition, a variety of human malignancies, such as lung, colorectal, gas-
tric, thyroid, prostate, endometrial, hepatocellular, kidney, pancreatic, melanoma (including
uveal), breast, and hematological malignancies, over-express HDACs [15,25,33–55]. The
majority of these studies have highlighted the correlation between HDAC over-expression
and parameters such as the histological grade, the stage of the tumor, and the survival of
the patients. Still, the available knowledge about HDACs and BC remains poor.

2. Materials and Methods
2.1. Clinical Material

Patient-derived BC tumor samples with a diameter less than 20 mm were obtained
from female patients that had undergone R0 surgical resection (R0 resection: no cancer cells
seen microscopically at the margin of the resection) of breast tissue during the period 2008–
2018. Only deceased, pre-operatively treatment-naïve, stage I–III BC patients were included
in the study. Stage IV BC patients, patients with tumor size >20 mm, neoadjuvantly-treated
patients, and patients whose death was associated with any reason not directly linked to BC
were excluded from the study. The staging of the tumor was evaluated using the 7th edition
of the American Joint Committee on Cancer (AJCC) Grouping system and the Tumor,
Node, Metastasis (TNM) system [56]. A total of 118 patients meeting the aforementioned
criteria were selected to be evaluated in our study (Scheme 1). The period of time from
the date of surgery until death caused by BC was defined as the overall survival (OS)
period. Disease-free survival (DFS) period was defined as the time interval between initial
diagnosis and disease recurrence. All patients included in this study had given written
informed consent for the evaluation of their clinical information and biological specimens.
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The study was approved by the Ethical Committee of the Medical School of the National
and Kapodistrian University of Athens (Approval ethic code: 1718004914).
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2.2. Immunohistochemistry

BC tissue samples were initially paraffin-embedded, and formalin-fixed. Rabbit poly-
clonal anti-HDAC-2 (H-5, Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-7899) anti-
bodies were used in order to examine HDAC-2 expression immunohistochemically. The
antigen was retrieved through the use of microwave slides for 15 min in 10 mM citrate
buffer, in compliance with the manufacturer’s instructions. Hydrogen peroxide 0.3% was
mixed with methanol for 30 min, in the dark at room temperature, in order to achieve
removal of the endogenous peroxidase activity. Then, the incubation of all sections, at room
temperature for 1 h with antibodies against HDAC-2 (H-54, sc-7899, Santa Cruz Biotechnol-
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ogy) in phosphate-buffered saline (PBS - Primary Antibody Diluent, ScyTek Laboratories
Inc., Logan, UT, USA) dilution 1:200, took place. Two more incubations at room tempera-
ture lasting 10 min each, one with a biotinylated linking reagent and peroxidase-conjugated
streptavidin label, followed. A 3,3′-diaminobenzidine tetrahydrochloride (DAB) substrate
kit (UltraVision Quanto HRP Detection System, Thermo Fisher Scientific, Labvision Corpo-
ration, Fremont, CA, USA) was then used in order to develop immune peroxidase activity.
The sections were stained with hematoxylin. Negative controls for the study were per-
formed through the use of irrelevant anti-serum or omission of the primary antibodies,
whereas positive controls were tissue parts from pancreatic cancer with previously known
increased levels of HDAC-2 [57]. The cells’ proliferative index of the tumor was evaluated
by p53 immunohistochemical expression.

2.3. Evaluation of Immunohistochemistry

Two pathologists, unaware of the clinical information, assessed the sections immuno-
histochemically by measuring at least 1000 malignant cells each time. Two parameters were
used in order to evaluate the immunohistochemistry staining. These were the intensity
(0: negative, 1: mild, 2: moderate, 3: strong) and the percentage of positive cells (0: negative
staining; 1: less than 10%; 2: equal to or more than 10% and less than 33%; 3: equal to or
more than 33% and less than 66%; 4: equal to or more than 66%). The HDAC-2 immunohis-
tochemistry scores were then measured through the multiplication of these two parameters.
The examined cases were divided into two groups depending on the above score: 0–6 was
characterized as low expression of HDAC-2, and 7–12 as high expression of HDAC-2. The
staining of p53 was regarded as positive when the percentage of positively stained tumor
nuclei was more than 10%.

2.4. Statistical Analysis

Quantitative variables were expressed as mean values (SD) or as median values
(interquartile range = IQR). Qualitative variables are presented with absolute and relative
frequencies. For the comparisons of proportions, chi-square and Fisher’s exact tests were
used. Student’s t-tests were computed for the comparison of mean values in the case of
normal distribution, and the Mann–Whitney test for the comparison of median values
when the distribution was not normal. Kaplan–Meier survival estimates for events were
graphed over the follow-up period. Log-rank tests were used to compare survival curves.
The Cox proportional hazard model was used in order to determine independent factors
for recurrence and survival [58]. Hazard ratios (HR) with 95% confidence intervals (95%
CI) were computed from the results of the Cox regression analyses. Statistical significance
was set at 0.05 and analyses were conducted using the SPSS statistical software (SPSS 22.0;
SPSS Corporation, Chicago, IL, USA).

3. Results

Data from 118 women were analyzed. Sample demographics and clinical character-
istics are presented in Table 1. The mean age of the women was 63.7 years (SD = 8.2).
A total of 32.2% of the cases were grade 3 and 16.9% of the samples were triple negative.
Moreover, 33.9% of the cases were at stage II and 49.2% of the cases were at stage III.
A total of 72.9% were estrogen receptor (ER)-positive and 67.8% were progesterone receptor
(PR)-positive. C-erb B-2 was positive in 15.3% of the women. In terms of postoperative
adjuvant treatment, all patients received radiation therapy, as well as adjuvant hormone
therapy, in case of hormone receptor-positive BC. Depending on the individual case, pa-
tients with HER2-positive BC additionally received trastuzumab-based targeted therapy,
as well as adjuvant chemotherapy. Patients with tumors larger than 1 cm in diameter,
and/or hormone receptor-negative BC, also received 5-fluorouracil PLUS epirubicin PLUS
cyclophosphamide, followed by docetaxel.



J. Pers. Med. 2022, 12, 1672 6 of 13

Table 1. Sample demographics and clinical characteristics.

Clinicopathological Parameter N (%)

Age, mean (SD) 63.7 (8.2)

Histological type
Ductal 102 (86.4)

Lobular 10 (8.5)
Other 6 (5.1)

Grade
1 20 (16.9)
2 60 (50.8)
3 38 (32.2)

Stage
0 6 (5.1)
I 14 (11.9)
II 40 (33.9)
III 58 (49.2)

Molecular subtype
Basal like 0 (0)

HER-2 12 (10.2)
Luminal A 48 (40.7)
Luminal B 38 (32.2)

Triple Negative 20 (16.9)

Positive estrogen receptors 86 (72.9)

Positive progesterone receptors 80 (67.8)

Positive C-erb B-2 18 (15.3)

Ki67, median (IQR) 25 (15–30)

Only 4 (3.4%) out of 118 cases did not show HDAC-2 expression (Figure 2A). In all
other HDAC-2-positive cases, the pattern of distribution was nuclear (Figure 2B,C), whereas
non-cancerous sites of the tissues were negative for HDAC-2. The mean immunohisto-
chemical expression of HDAC-2 was 5.02 (SD = 2.71), with 22 cases (18.6%) exhibiting high
immunohistochemical expression (Figure 2C).
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The association of high immunohistochemical expression with demographics and
clinical characteristics is shown in Table 2. High HDAC-2 expression correlated with the
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lobular type and stage/grade III BC. Moreover, the proportion of cases with high HDAC-2
expression was higher in ER- and C-erb B-2-positive samples.

Table 2. Correlation of immunohistochemical expression with demographics and clinical characteris-
tics.

Clinicopathological
Parameter

Immunohistochemical Expression
p

Low
(N = 96)

High
(N = 22)

N (%)

Age, mean (SD) 63.4 (8.5) 64.8 (7.1) 0.475 ‡

Histological type
Ductal

Lobular
Other

86 (84.3)
4 (40)

6 (100)

16 (15.7)
6 (60)
0 (0)

0.004 ++

Grade
1–2

3
70 (87.5)
26 (68.4)

10 (12.5)
12 (31.6)

0.013 +

Stage
0
I
II
III

6 (100)
14 (100)
40 (100)
36 (62.1)

0 (0)
0 (0)
0 (0)

22 (37.9)

<0.001 ++

Molecular subtype
HER-2

Luminal A
Luminal B

Triple negative

12 (100)
40 (83.3)
26 (68.4)
18 (90)

0 (0)
8 (16.7)

12 (31.6)
2 (10)

0.057 ++

Positive estrogen receptors
No
Yes

30 (93.8)
66 (76.7)

2 (6.3)
20 (23.3)

0.035 ++

Positive progesterone
receptors

No
Yes

32 (84.2)
64 (80)

6 (15.8)
16 (20) 0.583 ++

Positive C-erb B-2
No
Yes

78 (78)
18 (100)

22 (22)
0 (0)

0.023 ++

Triple negative
No
Yes

78 (79.6)
18 (90)

20 (20.4)
2 (10)

0.359 ++

p53% 35.2 (35.2–35.2) 62.5 (62.5–62.5) 0.167 ‡‡

Ki67 25 (10–30) 20 (15–25) 0.791 ‡‡
+ Pearson’s chi-square test; ++ Fisher’s exact test; ‡ Student’s t-test; ‡‡ Mann–Whitney test.

The mean DFS for all patients was 28.6 months (SD = 1.8), with a median DFS of
21 months, while the mean OS was 42.2 months (SD = 2.0), with a median OS of 40 months.
Kaplan–Meier estimates for both DFS and OS were significantly different for low versus
high HDAC-2-expressing BC (log-rank test, p < 0.001) (Figure 3).
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Multiple Cox regression analysis for DFS (Table 3) identified high immunohistochemi-
cal expression as an independent prognostic factor, associated with greater hazard after
adjustment for age, histological type, grade, stage, ER, PR, and C-erb B-2. Specifically,
patients with high HDAC-2 expression had 3.31 times greater hazard for progression than
those with low expression (p < 0.001).

Table 3. Multiple Cox regression analysis results for disease-free survival.

Clinicopathological Parameter HR (95% CI) + p

Immunohistochemical expression
Low (reference)

High
3.32 (1.57–7.01) 0.002

Age 0.99 (0.96–1.01) 0.316

Histological type
Ductal (reference)

Lobular
Other

2.32 (0.95–5.67)
3.25 (1.27–8.36)

0.065
0.014

Grade
1–2 (reference)

3
0.61 (0.31–1.19) 0.144

Stage 3.04 (2.15–4.3) <0.001

Positive estrogen receptors
No (reference)

Yes
1.66 (0.57–4.87) 0.356

Positive progesterone receptors
No (reference)

Yes
0.17 (0.07–0.43) <0.001

Positive C-erb B-2
No (reference)

Yes
2.36 (1.33–4.2) 0.003

+ Hazard Ratio (95% Confidence Interval).

Multiple Cox regression analysis for survival (Table 4) showed a 2.56 times greater
hazard for those with high immunohistochemical expression (p < 0.001) after adjusting for
age, histological type, grade, stage, ER, PR, and C-erb B-2.



J. Pers. Med. 2022, 12, 1672 9 of 13

Table 4. Multiple Cox regression analysis results for overall survival.

Clinicopathological Parameter HR (95% CI) + p

Immunohistochemical expression
Low (reference)

High
2.56 (1.31–4.99) 0.006

Age 0.99 (0.96–1.01) 0.236

Histological type
Ductal (reference)

Lobular
Other

2.67 (0.97–7.38)
6.48 (2.46–17.06)

0.058
<0.001

Grade
1–2 (reference)

3
0.62 (0.32–1.2) 0.155

Stage 3.38 (2.43–4.71) <0.001

Positive estrogen receptors
No (reference)

Yes
0.65 (0.22–1.89) 0.431

Positive progesterone receptors
No (reference)

Yes
0.35 (0.13–0.92) 0.034

Positive C-erb B-2
No (reference)

Yes
3.24 (1.76–5.98) <0.001

+ Hazard Ratio (95% Confidence Interval).

4. Discussion

As aforementioned, HDACs are currently regarded as crucial factors in the regulation
of the cell cycle, including cell differentiation, apoptosis, and proliferation, in different
types of cancer [15,25,41,43–55]. Their over-expression correlates with the management
and survival of the patient.

In our study, we examined the clinical importance of the expression of HDAC-2 in
118 human BC cases. Our results indicated that high levels of HDAC-2 were associated with
the lobular histological type of BC (p < 0.005). ER- and C-erbB-2-positive specimens were
more likely to present higher HDAC-2 levels than PR-positive or triple-negative specimens.
Moreover, there was a strong correlation between stage III (p < 0.001) and histological
grade 3 (p = 0.013), and HDAC-2 over-expression. This indicates a more aggressive tumor
behavior with a worse prognosis. Last but not least, DFS and OS were negatively associated
with the over-expression of HDAC-2, thus confirming the above findings about prognosis.

A small number of studies have so far evaluated the clinical importance of HDAC-2 in
BC. Derr et al. indicated that only the combination of high SIRT-1, LSD1, and HDAC-2 leads
to shorter survival and a greater possibility of relapse. The over-expression of HDAC-2
alone did not show any clinical significance [59]. The same year, Seo et al. demonstrated
that high levels of HDAC-2 correlate with better OS in ER-negative tumors [60]. Different
environments or sizes of specimens, as well as different ethnicities of patients (Caucasian or
Asian), could explain the discordance between our findings and these results. The number
of patients also undoubtedly represents an important factor explaining the difference in the
results. The study by Derr et al. included 822 [59], and the one by Seo et al., 300 patients [60],
whereas our study evaluated the BC tumor samples of a total of 118 patients. In addition,
different antibodies, methods of staining, including dilution levels, and even the evaluation
of the immunohistochemistry could justify the diversity of the results. In our study, evalua-
tion was performed through the use of both the intensity and the percentage of the stained
cells. It should be highlighted that every study had different inclusion and exclusion criteria
concerning age, stage, histological type, and the number of lesions. This could result in het-
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erogeneity of the population among the studies and explain the aforementioned conflicting
results. On the other hand, several studies have demonstrated similar results concerning
HDAC-2 expression and its association with BC. In 2013, Muller et al. showed that HDAC-2
is associated with more aggressive BC and lymph node metastasis [61]. In 2016, a Chinese
study concluded that higher levels of HDAC-2 are related to worse clinical outcomes in BC
patients, as metastases, disease recurrence, and drug resistance occur earlier. Specifically,
HDAC-2 overexpression was found to correlate with anthracycline resistance, lymph node
metastasis, Ki-67 expression, advanced TNM stage, and higher histological grade in BC [62].
One year later, another study demonstrated the same results, since the over-expression of
HDAC-2 was positively associated with lymph node infiltration, undifferentiated cancer
cells, and a worse clinical outcome [63]. Altogether, the present study confirmed the results
of previous research groups and determined important clinicopathological parameters that
correlate with the over-expression of HDAC-2 in BC, such as higher histological grade,
stage, and worse prognosis.

In the same context, targeting of HDACs by the use of HDAC inhibitors (HDACIs)
might represent a novel therapeutic strategy against BC [25,54,64]. In vitro studies have
shown that HDACIs do improve response to hormone therapy and increase estrogen
receptor expression in cancer cells [65]. In a clinical trial, Munster et al. demonstrated that
the combination of tamoxifen with the HDACI vorinostat has better clinical results than
tamoxifen alone. Tamoxifen normally exerts its anti-tumor action through cessation of
proliferation. However, its combination with HDACI increases its apoptotic activity [66].
Specifically, this action is accelerated through the inhibition of HDAC-2 [67]. Another study
proved that a natural HDACIs can reduce HDAC-2 levels in BC cell lines and lead to
apoptosis and inhibition of tumor cell proliferation [68]. Finally, Xu et al. recently proposed
HDAC-2 as a target of anti-cancer immunotherapy in triple-negative BC [38]. All in all, the
HDAC/HDACI interaction is a complex issue that needs to be clarified in further studies.

5. Conclusions

In summary, this study examined the expression of HDAC-2 in 118 deceased sporadic
BC patients and its correlation with clinicopathological characteristics of the tumor and
the prognosis of the patient. High expression of this protein is associated with higher
histological grade, stage of disease, and worse prognosis. Although more research needs
to be conducted, our study indicates that HDAC-2 could arise as a new potential index
of aggressiveness and a therapeutic target against BC. Except for the HDAC-2, future
studies need to closely investigate the mechanisms of action of different members of the
HDAC family in BC, and to determine the tissues mostly affected. This is a prerequisite
for the future development of effective HDACIs for the efficient treatment of the various
BC subtypes.
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