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A computational method of reduced complexity is developed for simulating vascular hemodynamics by combination of
one-dimensional (1D) wave propagation models for the blood vessels with zero-dimensional (0D) lumped models for the
microcirculation. Despite the reduced dimension, current algorithms used to solve the model equations and simulate pressure
and flow are rather complex, thereby limiting acceptance in the medical field. This complexity mainly arises from the methods
used to combine the 1D and the 0D model equations. In this paper a numerical method is presented that no longer requires
additional coupling methods and enables random combinations of 1D and 0D models using pressure as only state variable. The
method is applied to a vascular tree consisting of 60 major arteries in the body and the head. Simulated results are realistic. The
numerical method is stable and shows good convergence.

1. Introduction

Blood flow involves pressure and flow waves that propagate
through the vascular system. As a compromise between com-
putational demand and physical detail, one-dimensional
(1D) network models have been used to study pressure and
flow waveforms under normal and pathological conditions
[1]. This modeling approach has been applied to the systemic
arterial system [2–6], the coronary tree [7, 8], and the cere-
bral vascular tree [9, 10].

These 1D network models consist of elements that locally
describe the relation between pressure and flow. Relations
between pressure, area, and flow in the blood vessels are given
by the 1D wave propagation equations, that is, 1D partial
differential equations of mass and momentum which are
derived by integrating the Navier-Stokes equation over the
cross-sectional area of the blood vessel [11]. As vessel caliber
decreases and the number of vessels increases towards the
periphery, a point is reached where it is no longer attainable
to model the vessels individually. At this point the vasculature

is truncated and contribution of the distal vasculature to
pressure and flow is described by 0D lumped models, such as
the windkessel model [5, 6, 12] or the structured tree model
[3].

To solve the system of equations derived from the 0D and
1D models and simulate propagation of pressure and flow
waves through the vascular system, various, rather complex,
algorithms exist. Regarding the 1D wave propagation equa-
tions, all numerical methods start from the same relation
between pressure, area, and flow or cross-sectional mean
velocity. First differences between the numerical methods
arise with the state variables chosen to remain. With area
and pressure related via a constitutive relation of the vessel
wall, the result is either a pressure-flow [2, 8], area-velocity
[13], area-flow [3], or pressure-velocity formulation [9, 11,
14, 15]. A second source of differences is the choice for
spatial discretization of the equations. Methods include finite
difference [3, 8] and spectral/finite element schemes [2, 13].
The result is a set of ordinary differential equations in which
the state variables have to be solved in time. Thirdly, different
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methods are used to enforce continuity of pressure and flow
across vessel bifurcations and at the interface between the
vessels and the periphery. Methods include weak coupling
of 0D and 1D equations [15, 16], computation of Riemann
invariants [9, 14], or adding penalty equations [2].

The contribution of this study is to develop a simplified
numerical method in which pressure is the only state vari-
able. In this approach, the 1D wave propagation and 0D
lumped model equations are cast into the same form. As
such, 1D and 0D models are combined without the need to
specify additional coupling equations. This allows for flexible
model building from 0D and 1D elements for simulation of
pressure and flow in a vascular network. For illustration, the
numerical method proposed is applied to simulate pressure
and flow waveforms in a vascular tree composed of 60 major
arteries in the body and the head.

2. Method

2.1. Pressure-Flow Relation in Large Blood Vessels (1D). In
large arteries, blood pressure p (Pa), blood flow q (m3·s−1),
wall shear stress τw (Pa), and vessel cross-sectional area
A (m2) are related by 1D equations of mass and momentum.
When neglecting leakage through the vessel wall as well as
gravitational forces, the balance of mass and momentum
is given by (derivations can be found in, e.g., Hughes and
Lubliner [11] and Van de Vosse and Stergiopulos [1])
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In this (p, q,A) formulation, z (m) denotes the coordinate
along the vessel axis, a = √A/π (m) denotes the vessel radius,
CA (m2·Pa−1) denotes the vessel area-compliance, and ρ
(kg·m−3) denotes the blood density.

Wall shear stress τw and constant δ in (2) are estimated
by assuming a velocity profile. For the choice of the velocity
profile, several options are possible [1]. In this study approx-
imate velocity profiles are assumed [2]. Using approximate
velocity profiles, the wall shear stress is given by
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with η (Pa·s) the blood viscosity, ζc the fraction of cross-
sectional area with inertia dominated flow, and α =√

2A0ρ/Tη the Womersley number that includes the duration
of the cardiac cycle T [s], and vessel cross-sectional area
A0 = πa2

0 at reference pressure p0. For approximate velocity
profiles, constant δ is given by

δ = 2− 2ζc(1− ln ζc)

(1− ζc)
2 . (4)

The mass and momentum equations are completed with
expressions for area (A) and area compliance (CA) as a func-
tion of pressure. In this study, a nonlinear elastic vessel wall
is assumed with pressure dependency of the area compliance
CA given by
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where p1, p2, β1, and β2 specify the pressure dependency
of area-compliance (function C

p
A from Langewouters et al.

[17]). Poisson ratio μ, Youngs modulus E, and wall thickness
h specify the radius dependency of the area compliance
(function Ca

A from Bessems et al. [2]). An expression for the
pressure dependency of cross-sectional area is obtained by
integrating the area compliance with respect to pressure.

2.2. Pressure-Flow Relation in the Periphery (0D). The contri-
bution of the peripheral vasculature at each arterial terminus
is lumped in a three-element windkessel model [6, 18]
(Figure 1(c)). Usually a single differential equation is derived
that relates pressure p and flow q at the entrance of the
Windkessel [2, 8, 10]:
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with Z the characteristic impedance, R the peripheral resis-
tance, and C the peripheral compliance. However, in adopt-
ing this equation, it is implicitly assumed that the venous exit
pressure is zero. As such, the model’s range of application is
limited to that specific situation. A more general approach
is to limit the Windkessel equations to those that relate
pressure drops across the different elements that make up
the windkessel model. Using the proposed discretization as
shown in Figure 2,
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2.3. Numerical Methods. To determine pressure and flow
in the vascular network, the 1D pressure-flow relations for
blood vessels in (1) and (2) and the 0D pressure-flow rela-
tions for the periphery in (7) are solved in a fully coupled
manner. Full coupling is achieved by casting the equations
into the same discrete form.

For each of the subelements of the windkessels, two
nodal point pressures and two nodal point flows are defined
(Figure 2). A critical choice is that nodal point flows are both
directed inwards. Combination of (7) with its counterpart
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Figure 1: (a) Network model of 60 major arteries used to test the numerical method proposed. Adopted from Mulder et al. [10]. (b) Aortic
inflow is prescribed [3]. (c) Windkessel boundary conditions at the periphery.

1D wave
propagation 

element
0D Windkessel

element

Conventional

discretization

Z

(6)

C

Characteristic
equation   

Proposed
discretization

p1

p1 p2 p2

p3

p5

p4

p2

q1 q2 q3

q7

q8

q4 q5 q6

qc1 qc2

R

Figure 2: Proposed discretization for 1D wave propagation and 0D
Windkessel elements. Notice the reversal of the flow in the second
node with respect to the conventional discretization (indicated by
superscript c).

yields (Appendix A)
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where columns pe
∼
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∼

contain the nodal point pressure

and flows, respectively. Matrix Ce contains the peripheral

compliance C and matrix Rr
e contains reciprocals of the char-

acteristic impedances and peripheral resistances. A second-
order backward difference scheme is used to step forward in
time with time step Δt. As a result the windkessel equations
are written as
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Before, Huberts et al. [19] presented a method in which
the wave propagation equations for each vessel segment were
cast into a lumped model consisting of resistances, compli-
ances, and inductances, that is, the same blocks that make
up the windkessel. This approach was benchmarked with
the spectral element method by Bessems et al. [2]. Here an
analogous, yet more direct approach is followed without the
need for deriving a lumped parameter model, leading to a
simplified implementation.

First, the wave propagation equations are linearized
using estimates of area compliance, cross-sectional area, wall
shear stress, and convective acceleration as obtained from a
previous time step (indicated by symbol (̂•)):
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Subsequently, the vessel segments are divided into smaller
two-noded elements of approximate size Δz. The actual size
Δze of the elements as used for the discretization can differ
from Δz and between vessel segments as given by

Δze = l

max[round (l/Δz), 1]
(13)

with l the length of the vessel segment. Subsequently, a
trapezium rule is used to spatially integrate the equations
along the vessel axis and to express the equations in terms
of nodal point pressures and flows. In this discretization
step, nodal point flows for each element are also chosen
to direct inwards (Figure 2). Once more, a second-order
backward difference scheme is used to step forward in time.
Consequently, mass and momentum equations are written as
(Appendix B)

K1D
e pt+Δte∼

= f 1D
e∼

+ qt+Δte∼
. (14)

By defining both flows as being directed inwards, con-
tinuity of pressure and flow at the 0D-1D interfaces and the
1D-1D interfaces (e.g., bifurcations) is automatically satisfied
in the process of assembling the element equations into the
large system of equations (Appendix C). As a result, the
assembled large system of equations is given by:
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, (15)

where qex,t+Δt

∼
contains a zero value for each node, except

for nodes where external flow is prescribed. This system of
equations is solved once pressure boundary conditions and
external flows are given.

Note that any nonlinearity with respect to flow makes
stiffness matrix K flow dependent, thus requiring that flows
are recomputed after each pressure computation. This can
easily be done by using (10) or (14) at the element level; that
is,
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e pt+Δte∼
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As such, for all elements both nodal point flows are com-
puted.

After pressures and flows are computed, the simulation
proceeds to the next time step. The process is repeated until
cardiac cycle time T is reached. At this point, it is checked
whether the simulation is in a hemodynamic steady state.
Hemodynamic steady state is considered if the nodal point
maximum relative root-mean-squared norm, denoted εk, of
both pressure and flow is less than 10−3. For εk,
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with k the cardiac cycle number and n the nodal point
number. A schematic overview of the complete algorithm is
shown in Figure 3.

2.4. Simulation

2.4.1. Choice of Model Parameters. The numerical method
is applied to simulate hemodynamics in an arterial tree
composed of the 60 major arteries in the body and the
head (Figure 1(a)). Blood density ρ and blood viscosity η
are assumed to be 1.05 kg·m−3 and 4.5 · 10−3 Pa·s, respec-
tively. Reference transmural pressure (p0) is set to 13.3 kPa.
Pressure dependency of the area compliance is specified
according to parameters, p1 = 2.7 kPa, p2 = 4 kPa, β1 =
0.4, and β2 = 5.0 [8]. Notice that these parameters imply
that at reference pressure the compliance reduces to CA =
Ca
A. Assuming incompressible vessel wall material renders

μ = 0.5. Values for vessel length, wall thickness, radius, and
Young’s modulus as well as for the windkessel parameters are
taken from Mulder et al. [10, Tables 2 and 3].

Aortic inflow is considered as the only external flow
and is prescribed according to the waveform as depicted in
Figure 1(b). Cardiac cycle time is set to T = 1 s. Venous and
extravascular pressures in the windkessels are set to 0 kPa.

2.4.2. Simulations Performed. To assess the convergence be-
havior of the proposed numerical method with respect to
temporal and spatial discretization, a series of simulations
is done with combinations of element sizes (Δz) of approx-
imately 2.5, 10, and 40 mm and time steps (Δt) of 1, 2, 4,
and 8 ms. Each simulation is started with zero pressures and
flows.

For each of the simulations, the hemodynamic conver-
gence norm ε is determined as a function of cardiac cycle
number. Upon convergence, pressure and flow waveforms
are visualized for the aorta, the left leg, the left arm, and in the
brain. The influence of spatial and temporal discretization
on simulated pressure and flow waveforms is quantified by
relative root-mean-square difference ε, as given by

ε(•) = max
n
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(18)

In the computation of ε, waveforms as obtained with the
most dense mesh and smallest time step are used as reference
(indicated by subscript REF).

3. Results

For most simulations pressure and flow have converged
after 12 cardiac cycles (Figure 4). At all intermediate cardiac
cycles, the pressure norm is approximately an order of
magnitude lower than that of the flow. Element size appears
not to effect the decrease in ε-norm as a function of cardiac
cycle number; that is, no visual discrimination between
element sizes is possible. Convergence is slightly slower for
larger time steps, but only in case of the largest time step
(Δt = 8.0 ms) an additional cardiac cycle is required.

Figure 5 shows the simulated pressure and flow wave-
forms. It is shown that the amplitude of the pressure wave
increases towards the periphery. Furthermore, relative height
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of the dicrotic notch with respect to the pressure pulse
decreases towards the periphery. Arteries near the periphery
such as those in the arm show reversal of flow during a part
of the cardiac cycle.

As shown in Figure 6, the influence of time step size on
the computed waveforms (1) is typically one order of mag-
nitude lower for pressures than for flows and (2) increases
towards the periphery; that is, the largest flow difference
occurs in the anterior communicating artery in the brain
and the largest pressure difference in ulnar artery in the arm
(Figure 6(b)). Element size has only a minor effect on the
computed pressure and flow waveforms as compared to the
effect of the time step (Figure 6(a)). Using an element size of
40 mm instead of 2.5 mm at the smallest time step increases
the ε-norm of flow by less than 5 · 10−3. Taking a time step of
2 ms instead of 1 ms at the smallest element size leads to an
increase of approximately 8 · 10−2. Increasing the time step
to 8 ms causes damping of the pressure and flow waveforms.

4. Discussion

In this study, a simplified numerical method was developed
for time-domain simulation of blood pressure and flow
waveforms in the vascular system that couples nonlinear one-
dimensional (1D) wave propagation models for the blood
vessels to zero-dimensional (0D) lumped (windkessel) mod-
els for the periphery using pressure as degree of freedom.

To show performance of the method in a physiologic set-
ting, the method was applied to simulate hemodynamics in a
vascular network containing the 60 major arteries in the body
and the brain. The specific choice of vessel behavior, velocity
profile, windkessel parameters, and essential boundary con-
ditions was beyond the scope of this study. The pressure-area
relations of the bloodvessels were assumed non-linear and
convective acceleration was included to assess behavior of the
method in solving the model equations in its most non-linear
form.
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The pressure and flow waveforms that were obtained
with the method (Figure 5) are similar to those simulated
[10] as well as experimentally measured by others [20]; that
is, the computed waveforms demonstrate the physiological
features of (1) increase in amplitude of the pressure wave
and decrease in relative height of the dicrotic notch with
increased distance from the aortic root and (2) reversal of
flow during a part of the cardiac cycle in the arteries of the
arm.

4.1. Convergence Behavior of Proposed Method. Typically 12
cardiac cycles are needed to reach convergence when starting
with zero pressure and flow conditions. This convergence is
fairly independent on the element and time step size used to
discretize the model equations (Figure 4). When comparing
the converged situations, the time step size had a significantly
larger effect on the pressure and flow waveforms than the
element size (Figure 6(a)) that is, the effect of time step was
typically an order of magnitude higher for flow than for
pressure. Taking a time step of 8 ms introduces significant
damping of the pressure and flow waves as compared to the
results obtained using a time step of 1 ms (Figure 6(b)). The
effect increases towards the periphery; that is, the largest
root-mean-square differences are found in the ulnar artery
in the arm and in the anterior communicating artery in
the brain. The increase in effect of time step towards the
periphery is most likely caused by the physiologic steepening
of the pressure and flow waveforms towards the periphery
(Figure 5). A time step of 2 ms yields an increase in relative

root-mean-square difference in flow of about 8 · 10−2, which
indicates that a time step of 1 ms is sufficiently small
(Figure 6(a)).

4.2. Benefits of Proposed Method. As listed in the Intro-
duction section, many different numerical methods already
exist to couple the 1D wave propagation equations for the
large arteries to the 0D lumped windkessel equations for
the peripheral part of the vascular tree. Usually, the wave
propagation equations for the vascular segments are written
in discrete form using finite/spectral-element or finite-
difference schemes. Such methods have the disadvantage
that bifurcations require additional coupling equations to
be defined in terms of the Riemann invariants or penalty
functions. Furthermore, equations of the peripheral model
are usually incorporated by solving a characteristic equation
(such as that of the three-element windkessel in (6)) together
with the wave propagation equations. The drawback of this
approach is that such a characteristic equation needs to be
available. This is, for instance, not the case when the terminus
of the windkessels is connected to a venous circulation.

In the numerical method proposed, the windkessel and
wave propagation equations are cast into the same form to
strongly couple them without the need for additional cou-
pling equations or availability of a characteristic equation. In
fact, any combination of windkessel (or lumped) elements
and wave propagation elements is possible, allowing for
a broader application to vascular networks that combine
arteries, microcirculation (periphery), and veins.



8 Computational and Mathematical Methods in Medicine

The numerical method allows for easy extension with a
lumped model of the heart to study arterioventricular inter-
action such as done by others [21–23]. Cardiac contraction
can be taken into account by specifying the ventricular
pressure as (time-varying) essential boundary conditions,
rather than prescribing the aortic inflow. Ventricular volume
could then be updated during ejection using the aortic inflow
of a time step earlier. Although in this way ventricular and
aortic flow are only weakly coupled, numerical complexity is
limited.

4.3. Limitations of Proposed Method. To cast equations for the
wave propagation model into the same form as those for the
windkessel model, it is required that each discrete element
contains only two nodes in which both flows are directed
inwards. As a consequence, higher-order elements such as
those used in, for example, spectral element discretization are
no longer possible. This limitation on order of approxima-
tion, however, was found to have little influence as element
size appeared to be of minor importance for convergence as
well as for the pressure and flow curves obtained.

As indicated by the tangent of Figure 6(a), the conver-
gence order regarding the time step is less than second order,
even though a second-order backward difference scheme was
used for the time integration. This reduction in convergence
order can be expected due to non-linearity of the 1D wave
propagation equations but may have been amplified using
estimates from a previous time step for the linearization
process. Linearization by means of, for example, a Newton-
Raphson scheme could have been done but was not included
to further simplify (implementation of) the numerical meth-
od.

For the vascular network as presented in this study, we
incorporated windkessel models for the periphery. However,
the algorithm proposed is not restricted to this particular
model choice. Other lumped element models such as
structured tree models [3] can easily be incorporated as long
as the pressure-flow relation can be cast into the same form
as that for the wave propagation model. The method is also
not restricted to the approximate velocity profiles as assumed
in this study. Use of, for example, the Womersley velocity
profiles is also possible, as the only requirement for the
method to proceed in time is that area compliance, wall shear
stress and convective acceleration are available at a previous
time step.

5. Conclusion

In conclusion, a novel numerical method is developed for
computation of pressure and flow waveforms in the vascular
system. Using pressure as only degree of freedom, 0D lumped
(windkessel) elements and 1D wave propagation elements
can be randomly combined without the need for additional
coupling equations. This property facilitates flexible model
building from 0D and 1D elements for a wide range of
applications in studying vascular hemodynamics.

Appendices

A. Derivation of (0D) Windkessel
Element Equations

Application of definitions for nodal point pressures and flows
as shown in Figure 2 yielded (7) and (8). In matrix form,
these equations become

1
Z
M

⎡
⎣p2

p3

⎤
⎦ =

⎡
⎣q3

q4

⎤
⎦,

1
R
M

⎡
⎣p3

p5

⎤
⎦ =

⎡
⎣q5

q6

⎤
⎦,

CM

⎡
⎢⎢⎢⎣
∂p3

∂t

∂p4

∂t

⎤
⎥⎥⎥⎦ =

⎡
⎣q7

q8

⎤
⎦,

(A.1)

with matrix M defined as

M =
⎡
⎣ 1 −1

−1 1

⎤
⎦. (A.2)

Assembly of the system of equations then yields

Ce

∂pe
∼
∂t

+ Rr
e pe∼

= qexe∼
, (A.3)

with

Ce=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 C −C 0

0 0 0 0

0 −C C 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Rr
e=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Z

− 1
Z

0 0

− 1
Z

1
Z

+
1
R

0 − 1
R

0 − 1
R

0
1
R

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A.4)

and pe
∼
= [p2, p3, p4, p5]T , and qe

∼
= [q3, q4 + q5 + q7, q6, q8]T .

Since there should be no net flow to or from node 3, the
choice that nodal point flows are directed inwards yields
q4 + q5 + q7 = 0. Notice that the remaining flows q3, q6,
and q8 denote external flows. Application of a second-order
backward difference scheme yields

[
k0Ce + Rr

e∼

]
pt+Δte∼

=
[
Ce

(
−k1p

t
e∼
− k2p

t−Δt
e∼

)]
+ qt+Δte∼

,

(A.5)

in which k0 = 3/(2Δt), k1 = −2/Δt, and k2 = 1/(2Δt).

B. Derivation of (1D) Blood Vessel
Element Equations

To describe the linearized versions of the 1D balances of
mass and momentum as given by (12) in terms of a discrete
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number of points, the vessels are divided into a number of
non-overlapping two-noded elements. As a consequence

∫
(•)dz ≈

Ne∑
e=1

∫
e
(•)dz, (B.1)

with Ne the number of elements. The trapezium rule is used
to spatially integrate the element equations from node 1 to
node 2. Starting with the conventional discretization with
both flows directed from node 1 to node 2 as depicted in
Figure 2, integration over the element domain yields

∫
e
ĈA

∂p

∂t
dz ≈

(
ĈA,1

∂p1

∂t
+ ĈA,2

∂p2

∂t

)
Δze
2

,

∫
e

∂p

∂z
dz ≈ p2 − p1,

∫
e
L̂A

∂q

∂t
dz ≈

(
L̂A,1

∂qc1
∂t

+ L̂A,2
∂qc2
∂t

)
Δze
2

,

∫
e

∂q

∂z
dz ≈ qc2 − qc1,

∫
e
h dz ≈ (h1 + h2)

Δze
2

,

hi =
(

2
â
τ̂w − L̂A

∂

∂z

(
δ
q̂c2

Â

))
i

(B.2)

with Δze the element length and LA = ρ/A. Superscript c
is used to indicate that conventional definition of flows are
adopted. In matrix form, (B.2) becomes

⎡
⎢⎢⎢⎣
ĈA,1

Δze
2

ĈA,2
Δze
2

⎤
⎥⎥⎥⎦
T

∂pe
∼
∂t

+

⎡
⎣−1

+1

⎤
⎦
T

qce∼
=0,

⎡
⎢⎢⎢⎣
L̂A,1

Δze
2

L̂A,2
Δze
2

⎤
⎥⎥⎥⎦
T

∂qce∼
∂t

+

⎡
⎣−1

+1

⎤
⎦
T

pe
∼
=(h1 + h2)

Δze
2

,

(B.3)

where pe
∼
= [p1, p2]T and qce∼

= [qc1, qc2]T contain nodal point

pressures and flows of the element, respectively. Using the
second-order backward difference scheme with time step Δt,
(B.3) are written as

Fe p
t+Δt
e∼

+ Gc
eq

c,t+Δt
e ∼

= he∼
, (B.4)

with

Fe =
⎡
⎣k0ĈA,1

Δze
2

k0ĈA,2
Δze
2

−1 +1

⎤
⎦,

Gc
e =

⎡
⎢⎣

−1 +1

k0L̂A,1
Δze
2

k0L̂A,2
Δze
2

⎤
⎥⎦,

h∼e
=
⎡
⎢⎣

0

(h1 + h2)
Δze
2

⎤
⎥⎦

+

⎡
⎢⎣

0 0

L̂A,1
Δze
2

L̂A,2
Δze
2

⎤
⎥⎦
(
−k1q

∼
c,t

e

− k2q
∼
c,t−Δt
e

)

+

⎡
⎣ĈA,1

Δze
2

ĈA,2
Δze
2

0 0

⎤
⎦
(
−k1p

∼
t

e

− k2p
∼
t−Δt
e

)
.

(B.5)

Next, a switch is made to the proposed discretization as
illustrated in Figure 2, in which the flow in the second node
is directed inwards, that is, q1 = qc1 and q2 = −qc2. Notice
that this switch implies changing sign of the second column
of Ge. As a consequence, (B.4) becomes

Fe p
t+Δt
e∼

+ Geq
t+Δt
e∼

= he∼
(B.6)

with

Ge =
⎡
⎣Gc

e,11 −Gc
e,12

Gc
e,21 −Gc

e,22

⎤
⎦, qe

∼
=
⎡
⎣ qc1

−qc2

⎤
⎦ =

⎡
⎣q1

q2

⎤
⎦. (B.7)

After separation of matrix Ge from flow column q
∼
t+Δt, the

(1D) element equations finally read

[
−G−1

e Fe

]
pt+Δte∼

=
[
−G−1

e he∼

]
+ qt+Δte∼

. (B.8)

C. Assembly of Large System of Equations:
Coupling (0D) and (1D) Element Equations

Notice that (A.5) and (B.8) are both of the form

Kep
t+Δt
e∼

= fe
∼

+ qt+Δte∼
. (C.1)

Assembly of the large system of equations involves summa-
tion of all 1D element equations according to (B.1), as well
as all 0D element equations. In doing so, element flows qt+Δte∼
will be added. As a consequence of all nodal point flows being
directed inwards, for all internal nodes, the balance of mass
yields a zero entry in the assembled flow column (denoted
qex,t+Δt

∼
). In fact, only non zero flows in external nodes will

yield a non-zero entry in the assembled flow column. As a
result, the assembled system of equations is given by

Kpt+Δt
∼

= f
∼

+ qex,t+Δt

∼
. (C.2)
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Since external flows such as that at the aortic root are
prescribed, the nodal point pressures are the only degrees of
freedom left, and the system can be solved once the pressures
at the remaining vessel or windkessel termini are prescribed.
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