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ABSTRACT 

Background: Traditional risk factors including demographics, blood pressure, cholesterol, and 

diabetes status are successfully able to predict a proportion of cardiovascular disease (CVD) 

events. Whether including additional routinely measured factors improves CVD prediction is 

unclear. To determine whether a comprehensive risk factor list, including clinical blood 

measures, blood counts, anthropometric measures, and lifestyle factors, improves prediction of 

CVD deaths beyond traditional factors. 

Methods: The analysis comprised of 21,982 participants aged 40 years and older (mean 

age=59.4 years at baseline) from the National Health and Nutrition Examination Survey 

(NHANES) from 2001 to 2016 survey cycles. Data were linked with the National Death Index 

mortality data through 2019 and split into 80:20 training and testing sets. Relative to the 

traditional risk factors (age, sex, race/ethnicity, smoking status, systolic blood pressure, total and 

high-density lipoprotein cholesterol, antihypertensive medications, and diabetes), we compared 

models with an additional 22 clinical blood biomarkers, 20 complete blood counts, 7 

anthropometric measures, 51 dietary factors, 13 cardiovascular health-related questions, and all 

113 predictors together. To build prediction models for CVD mortality, we performed Cox 

proportional hazards regression, elastic-net (ENET) penalized Cox regression, and random 

survival forest, and compared classification using C-index and net reclassification improvement.  

Results: During follow-up (median, 9.3 years), 3,075 participants died; 30.9% (1,372/3,075) 

deaths were from cardiovascular causes. In Cox proportional hazards models with traditional risk 

factors (C-index=0.850), CVD mortality classification improved with incorporation of clinical 

blood biomarkers (C-index=0.867), blood counts (C-index=0.861), and all predictors (C-

index=0.871). Net CVD mortality reclassification improved 13.2% by adding clinical blood 
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biomarkers and 12.2% by adding all predictors. Results for ENET-penalized Cox regression and 

random survival forest were similar. No improvement was observed in separate models for 

anthropometric measures, dietary nutrient intake, or cardiovascular health-related questions. 

Conclusions: The addition of clinical blood biomarkers and blood counts substantially improves 

CVD mortality prediction, beyond traditional risk factors. These biomarkers may serve as an 

important clinical and public health screening tool for the prevention of CVD deaths. 

 

Key words: Cardiovascular mortality, Risk prediction, Blood biomarkers. 

 

Non-standard Abbreviations and Acronyms: CRP: C-reactive protein; CVD: Cardiovascular 

diseases; ENET: elastic-net; HDL: high-density lipoprotein; NHANES: National Health and 

Nutrition Examination Survey; NRI: net reclassification improvement; PCE: Pooled Cohort 

Equations; SBP: systolic blood pressure. 
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Clinical Perspective 

What is new? 

• We tested the predictive value of a combination of 113 potential predictors, including 22 

clinical blood biomarkers, 20 complete blood counts, 7 anthropometric measures, 51 

dietary factors, and 13 cardiovascular health-related questions, beyond traditional risk 

factors, for CVD mortality in adults in the United States. 

• The addition of predictors, specifically blood biomarkers such as glucose, uric acid, 

bicarbonate, urea nitrogen, total protein, creatinine, calcium, globulin, and phosphorus, 

improved CVD mortality prediction. 

What are the clinical implications? 

• Accurate prediction of CVD mortality is essential for identifying those at risk and 

targeting interventions. 

• Our findings highlight the clinical translational utility of predictors, including the 

biomarkers already well established and routinely applied in clinical practice, for CVD 

mortality prediction. 
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INTRODUCTION 

Cardiovascular diseases (CVD) remain major threats to public health in the United States 

and around the world. Cost-effective primary prevention of CVD relies on the accuracy of risk 

assessment, specifically, the identification of individuals at high risk of developing CVD. 

Traditional risk factors, such as age, blood pressure, smoking, serum lipids, and diabetes, as 

implemented through the Framingham Risk Score and the Pooled Cohort Equations (PCE) for 

the atherosclerotic CVD risk, are widely used in CVD risk assessment in clinical settings.1,2 

Approximately half of CVD incidence, however, occurs in people who are not classified in the 

high-risk group.3 The addition of several non-traditional risk factors including ankle-brachial 

index,4,5 C-reactive protein,6 and coronary artery calcium score,7 have not substantially improved 

risk stratification. Given that risk estimates are used to guide clinical interventions, it is crucial to 

improve CVD risk-scoring algorithms to target those at risk for preventive measures. 

Clinical blood biomarkers used in the diagnosis and treatment of cardiometabolic 

diseases, blood counts, anthropometric measures, and lifestyle factors are associated with CVD 

risk and CVD events. Some individual measures, such as C‐reactive protein (CRP) and waist 

circumference, improve CVD risk prediction.8–12 Despite these known associations, no previous 

studies have developed and validated an integrated risk prediction model using all predictors. 

Our aim was to quantify the improvement of risk prediction of CVD death, beyond traditional 

risk factors, through the addition of a combination of 113 potential predictors, including 22 

clinical blood biomarkers, 20 complete blood counts, 7 anthropometric measures, 51 dietary 

factors, and 13 cardiovascular health-related questions, using data from a nationally 

representative population, the United States National Health and Nutrition Examination Survey 
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(NHANES) in the 2001 to 2016 survey cycles linked with the National Death Index mortality 

data through 2019. 

 

METHODS 

Study population 

Participants included were from NHANES, which is an ongoing, large, cross-sectional 

survey to assess the health and nutritional status of the civilian, noninstitutionalized U.S. 

population. All data and materials are publicly available on the National Center for Health 

Statistics website (https://www.cdc.gov/nchs/nhanes/index.htm). The protocols for NHANES 

were approved by the National Center for Health Statistics of the Centers for Disease Control 

and Prevention Institutional Review Board, and informed consent was obtained from all 

participants.  

Data from eight continuous NHANES cycles (2001-2002, 2003-2004, 2005-2006, 2007-

2008, 2009-2010, 2011-2012, 2013-2014, and 2015-2016) were used to develop and validate the 

risk prediction models based on the data availability. For this analysis, we restricted to 29,181 

adults aged 40 years and above because participants younger than 40 have very low 

cardiovascular risks.13 Of these adults, 29,130 were linked to the National Death Index mortality 

data by the National Center for Health Statistics. We further excluded 7,148 participants with 

missing information on a set of potential predictors, leaving a total of 21,982 participants for the 

current analysis. We randomly split the data by a ratio of 8:2 into the training set (N=17,638) for 

model construction and optimization, and the testing set (N=4,344) for evaluating model 

performance. We did this random split five times and evaluated model performance each time, 

with similar results. An overview of the study design is shown in Figure S1. 
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Outcomes 

The vital status and cause of death were determined using the public-use NHANES 

linked mortality data through December 31, 2019, which utilized probabilistic matching 

algorithms to link NHANES records with death certificates from the National Death Index. 

Details of matching criteria and calibration are provided by the National Center for Health 

Statistics.14 Death from cardiovascular causes was determined based on the following 

International Classification of Disease-10 codes (ICD-10): I00–I09, I11, I13, I20–I51, and I60–

I69.  

Predictors 

 Traditional CVD risk factors included age (years), sex (male/female), race/ethnicity (non

‐Hispanic White, non-Hispanic Black, Hispanic including Mexican American and other 

Hispanic, and other), current smoking status (yes/no), systolic blood pressure (SBP, mm Hg), 

serum total cholesterol (mg/dL) and high-density lipoprotein (HDL) cholesterol (mg/dL) 

concentrations, use of antihypertensive medications (yes/no), and diabetes status (yes/no).1 We 

additionally included predictors from clinical blood biomarkers used in diagnosing and treating 

cardiometabolic diseases, complete blood counts, anthropometric measures, dietary nutrient 

intake, and cardiovascular health-related questionnaires. Fasting blood samples were collected in 

the morning and anthropometric measurements were taken at the mobile examination center. 

Information on 24-h dietary recall and cardiovascular health was obtained using a computer-

assisted data collection and coding system before the physical examination. A detailed 

description of the laboratory methods and questionnaires is available at the National Center for 

Health Statistics website (https://www.cdc.gov/nchs/nhanes/index.htm). We further selected 

predictors based on the variable continuity across multiple survey cycles and availability within 
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each survey cycle to obtain a large sample that can allow development and validation of the 

prediction models, yielding a total of 122 predictors (9 traditional CVD risk factors and 113 

potential predictors) available across all eight survey cycles from 2001-2016. A full list of 

predictors is shown in Table 1. 

Statistical Analysis 

 We described the distribution of covariates in our sample using mean and standard 

deviation for continuous covariates. We used number and frequency to describe the distribution 

of categorical covariates. We calculated bivariate descriptive statistics for the sample that 

experienced a CVD death relative to the sample that alive or experienced a non-CVD death. We 

compared the distributions in the overall sample to the training set and testing set.  

 Participants contributed survival time from the NHANES examination to the date of 

death for those who died from CVD and participants who died from other causes were right-

censored at the date of death, and those who were alive were right-censored at the last follow-up 

date (December 31, 2019). We implemented three statistical/machine learning algorithms for 

survival analysis, including Cox proportional hazards regression, elastic-net (ENET) penalized 

Cox regression,15 and random survival forest,16 to build prediction models for CVD mortality. 

Cox proportional hazards regression is the most used model for analyzing the association 

between predictors and survival time. This conventional method, however, may not perform well 

in the presence of multicollinearity due to potentially high dimensional predictors or when 

predictors are correlated.17 ENET penalized Cox regression is a sparse penalized Cox regression 

providing satisfactory performance in handling high dimensional predictors.15 ENET shrinks 

coefficients of “unimportant” predictors toward exact zeroes and thus promises to be a useful 

tool for variable selection and data dimension reduction. Random survival forest is an ensemble 
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model that grows multiple random decision trees using the bootstrap aggregation (bagging) 

strategy.16 Each tree is grown by recursive splitting of data into smaller subgroups (nodes) that 

minimize the difference in the cumulative hazard within the group while maximizing the 

difference between groups. The cumulative hazard and survival probability of a participant are 

calculated at the terminal node. The global survival probability is predicted by averaging over all 

trees in a forest.  

 We built 7 different models for each algorithm in the training set. The first model (Model 

1) only included 9 traditional CVD risk factors. We then examined whether the addition of other 

potential predictors improved the predictive performance by incorporating panels of predictors of 

clinical blood biomarkers (Model 2), complete blood counts (Model 3), anthropometric measures 

(Model 4), dietary nutrient intake (Model 5), and cardiovascular health questions (Model 6), 

separately, on top of Model 1. Finally, Model 7 incorporated all 113 potential predictors from 

different panels to Model 1 (122 predictors in total). All continuous variables were standardized 

by subtracting the means divided by the standard deviations, and all categorical variables were 

coded as dummy variables. For ENET penalized Cox regression, the regularization 

hyperparameters (λ1 and λ2) were ascertained based on a 20-fold cross-validation for maximum 

C-index. For random survival forest, hyperparameters including the number of variables to 

possibly split at in each node, the minimum node size required to attempt a split, and the number 

of trees in the forest were determined by minimizing prediction error in the out-of-bag data. We 

additionally calculated variable importance by calculating the difference in out-of-bag prediction 

error between the model, including a specific predictor, and the model substituting such predictor 

with a random permutation. A higher variable importance indicates that the variable has a higher 

predictive ability. The R packages “glmnet”18 was used to implement the ENET penalized Cox 
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regression and “randomForestSRC”19 was used to implement the random survival forest. 

Complex survey design of NHANES was not considered due to difficulty in handling of survey 

weights in these machine learning mechanisms. 

 In the testing set, we evaluated the performance of each prediction model by calculating 

Harrell C-index,20 to quantify the concordance in predicted and observed survival times between 

participants. C-index ranges from 0 to 1, and a higher value indicate better risk discrimination of 

the model. We also assessed the improvement of inclusion of additional predictors in the model 

in risk reclassification by calculating the net reclassification improvement (NRI).21 In this study, 

the 10 year risk of CVD death was predicted, and NRI was quantified by the proportions of CVD 

death cases correctly assigned a higher predictive probability of at least 5% and those alive 

correctly assigned a lower probability of at least 5%. 

 In the sensitivity analysis, we additionally included serum CRP in the prediction model in 

addition to the clinical blood biomarkers as one of the most studied inflammatory biomarkers in 

association with CVD.22,23 This analysis was conducted in a subpopulation of NHANES 2001-

2010 in which CRP data was available. We also assessed whether adding the quadratic terms and 

pairwise interactions of clinical blood biomarkers further improved the predictive performance in 

the Cox proportional hazards regression and ENET penalized Cox regression. All analyses were 

conducted using R, version 4.0.3 (www.R-project.org). 

Data Availability 

All data and materials have been made publicly available at the National Center for 

Health Statistics website (https://www.cdc.gov/nchs/nhanes/index.htm). 
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RESULTS 

Among these 21,982 participants in the full study sample at baseline, 1,372 died from 

CVD during the follow-up, with a median follow-up of 9.3 years (maximum follow-up of 19.2 

years) (Table 2). Participants who died from CVD were more likely to have been male, non-

Hispanic White, and at baseline to have been older ages, have had higher SBP, were more likely 

to have had diabetes, and be users of antihypertensive medications. Participant characteristics 

were similar between the training and testing sets. Summary statistics of all predictors at baseline 

can be found in Table S1. 

Risk discrimination performance 

 C-indexes for models only include traditional CVD risk factors (Model 1) were 0.850 for 

Cox proportional hazards regression, 0.851 for ENET penalized Cox regression, and 0.844 for 

random survival forest (Table 3). The addition of clinical blood biomarkers to the traditional 

CVD risk factors (Model 2) improved C-index to 0.867 for Cox proportional hazards regression, 

0.867 for ENET penalized Cox regression, and 0.853 for random survival forest. Increases in C-

indexes were also observed when predictors of blood counts were additionally incorporated 

(Model 3), that C-indexes were 0.861 for Cox proportional hazards regression, 0.860 for ENET 

penalized Cox regression, and 0.852 for random survival forest. The inclusion of anthropometric 

measures, dietary nutrient intake, or cardiovascular health-related question predictors did not 

improve C-indexes. C-indexes were highest in models including all predictors (Model 7) for Cox 

proportional hazards regression (0.871) and ENET penalized Cox regression (0.871) but not for 

random survival forest. 

Risk reclassification performance 
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 The addition of clinical blood biomarkers to the traditional CVD risk factors (Model 2) 

improved risk reclassification with an NRI of 0.132 for Cox proportional hazards regression, 

0.111 for ENET penalized Cox regression, and 0.101 for random survival forest (Table 3). 

Additional inclusion of blood count predictors improved risk reclassification to a minor degree. 

No improvement was observed when anthropometric measures, dietary nutrient intake, or 

cardiovascular health-related question predictors were included in the models. When all 

predictors were included in the prediction models (Model 7), an improvement in risk 

reclassification was observed; however, the increase was smaller than when only clinical blood 

biomarkers were included (Model 2). Hazard ratios associated with a one standard deviation 

increase in predictors in Cox proportional hazards regression Model 2 are shown in Table S2. 

Important predictors 

 Figure 1 shows the top 20 of all predictors (Model 7) using the random survival forest. 

Two traditional CVD risk factors- age and SBP were shown on the list, while age was the most 

important predictor among all predictors. Ten clinical blood biomarkers (bicarbonate, urea 

nitrogen, total protein, creatinine, calcium, globulin, phosphorus, glucose, osmolality, and 

bilirubin) were among the top 20 predictors. In addition to clinical blood biomarkers that were 

prominently featured, four blood count variables (monocyte percent, basophil number, mean 

platelet volume, lymphocyte number), three dietary nutrient intake variables (MFA 22:1, MFA 

20:1, magnesium), and the anthropometric measure of arm circumference were also among the 

top 20 predictors.  

Sensitivity analysis 

 In a subpopulation of 13,620 participants (N=10,926 for the training set and N=2,694 for 

the testing set) where CRP data was available, including CRP to clinical blood biomarkers 
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slightly improved predictive performance (Table S3). In the sensitivity analysis of adding 22 

quadratic terms and 231 pairwise interactions of clinical blood biomarkers to the linear terms, no 

significant improvement in model performance was observed (Table S4). 

 

DISCUSSION 

 In this large, diverse sample of 21982 U.S. adults aged 40 years and above with up to 

19.2 years of longitudinal follow up, the incorporation of a combination of predictors of clinical 

blood biomarkers, complete blood counts, anthropometric measures, dietary factors, and 

cardiovascular health-related questions to the model with traditional CVD risk factors improved 

predictive performance in terms of risk discrimination and reclassification for CVD death. 

Among all these predictors, clinical blood biomarkers were featured most prominently in 

predictive performance increases observed in all Cox proportional hazards regression, ENET 

penalized Cox regression, and random survival forest models. 

 Clinical blood biomarkers included in the current analysis, such as glucose, CRP, 

bicarbonate, urea nitrogen, total protein, creatinine, calcium, globulin, and phosphorus are 

routinely evaluated markers of cardiometabolic, liver, and kidney abnormalities in clinical 

settings.24–27 Associations between these blood biomarkers and CVD‐related morbidity and 

mortality risk have been examined over the last few decades.24,27,28 Nevertheless, the predictive 

value of some of these commonly measured biomarkers has been examined only in a few studies. 

Blood urea29, total protein30, and globulin31 predict all-cause mortality with moderate predictive 

performance in CVD patients; however, whether these biomarkers provided additional value to 

the traditional CVD risk factors has never been evaluated. A study of 2,936 diabetic patients 

reported that the addition of serum bilirubin to traditional CVD risk factors for predicting CVD 
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mortality increased C-index from 0.713 to 0.729 and showed an 8.6% improvement in net 

reclassification.32 In a cohort of 1,520 consecutive dialysis patients, the addition of serum 

potassium, calcium, phosphorus, and alkaline phosphatase to traditional CVD risk factors 

improved C-index from 0.696 to 0.716 for predicting CVD incidence.33  More studies have 

evaluated the predictive value of CRP and serum creatinine. A meta-analysis of 52 cohort studies 

reported an average of 0.004 increase in C-index and 1.5% NRI for predicting CVD incidence 

when CRP was added to the traditional CVD risk factors.25 Another meta-analysis of 14 studies 

from the CKD Prognosis Consortium showed an average increase of 0.007 in C-index when 

serum creatinine was added in the perdition model of CVD mortality using traditional CVD risk 

factors.34 In this study, the inclusion of multiple clinical blood biomarkers improved risk 

discrimination based on traditional CVD risk factors, as evidenced by around 1.6% increase in 

the C-index, which is in line with the rationale of using multiple biomarkers involved in multiple 

disease pathways to improve the risk prediction of CVD death.23 Using the information on these 

routinely measured biomarkers to clinical risk factors may also benefit in identifying 

subpopulations at higher risks, especially for those classified as “low risk” by clinically used 

traditional risk models, as evidenced by more than 10% of the study participants were 

reclassified the predicted risk of more than 5% in the correct direction.  

 Incorporating complete blood count predictors into the model with traditional CVD risk 

factors provided a slightly better prediction in terms of risk discrimination and reclassification. 

This is the first study to assess the predictive value of blood counts for CVD incidence or 

mortality. Inflammatory blood count markers such as white blood cell count, monocyte percent, 

and platelet to lymphocyte ratio were associated with poor prognoses in CVD patients.35 Mean 
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platelet volume, a marker of platelets' ability to create thrombus, was also associated with the 

incidence of CVD.35  

In our study, adding predictors of anthropometric measures, dietary nutrient intake, and 

cardiovascular health-related questions to the traditional CVD risk factors, separately, did not 

add to the risk discrimination performance, though small improvements in risk reclassification 

were observed. In a meta-analysis of 58 cohorts, the addition of BMI, waist circumference, or 

waist-to-hip ratio to the risk prediction models for CVD incidence containing traditional risk 

factors did not improve either risk discrimination or risk reclassification.12 In a study combining 

data from two large cohorts, the prediction model containing information on age, smoking, body 

mass index, exercise, alcohol, and a composite diet score showed a C-index of 0.72 for 

predicting CVD incidence; however, whether the composite dietary score itself improved 

predictive performance was not evaluated.10 A recent study of 1,028 patients with non-acute 

chest pain showed high performance of model incorporating traditional CVD predictors and 

chest pain-related predictors.36 At the same time, it should be acknowledged that a more 

comprehensive chest pain characteristics, including aspect, localization, radiation, onset, duration, 

frequency, progress, provoking and relieving factors, and attendant symptoms, were considered 

in that study which provided more information than NHANES. To note, the small improvement 

in CVD mortality risk prediction by adding anthropometric measures, dietary nutrient intake, and 

cardiovascular health-related question-based predictors in our study does not diminish the 

importance of these variables in CVD morbidity and mortality prevention, as obesity and 

unhealthy diets are among the major modifiable determinants of CVD. 

 In our study, three algorithms for survival analysis-- Cox proportional hazards regression, 

ENET penalized Cox regression, and random survival forest models were utilized to build the 
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prediction models. Machine learning algorithms, including ENET penalized Cox regression and 

random survival forest, were designed to handle the complex correlations between predictors in 

high-dimensional data and capture the complex predictors-outcome relationships. Nevertheless, 

in this analysis, ENET penalized Cox regression models showed similar predictive performance 

as Cox proportional hazards regression models, while random survival forest models did not 

perform better than Cox proportional hazards regression models. This could reflect that the 

relationships between predictors considered in our study and CVD mortality may not be 

complicated enough; thus, the advantages of machine learning algorithms over Cox proportional 

hazards regression did not play a significant role. Several studies showed that machine learning 

algorithms better predicted CVD risk over the Cox proportional hazards regression.37,38 At the 

same time, it should be noted that more deep phenotyping predictors such as magnetic resonance 

imaging markers and electrocardiographic variables were included in these studies. Our findings 

highlight that there is no universal "best" approach for prediction and that the appropriate 

modeling strategy is dependent on the different research settings. 

 Strengths of the present study include using a large and diverse sample of the general U.S. 

adults, up to 19.2 years of longitudinal follow up, a large number of predictors from different 

panels, and three different statistical/machine learning algorithms to build prediction models for 

CVD mortality. We acknowledge that other biomarkers not tested in NHANES such as 

lipoprotein-associated phospholipase A2 and natriuretic peptides may provide additional 

information.39 Other potential predictors not measured in every NHANES cycle or only available 

in different subpopulations such as fibrinogen,25 physical activity,40 and specific environmental 

toxicants41 may also improve the risk prediction. We selected 122 predictors in this analysis and 

considered data availability in a large sample that can allow the development and validation of 
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the prediction models. Additionally, risk of incident CVD was not predicted due to the cross-

sectional nature of NHANES. Our findings encourage confirmations in other longitudinal cohort 

studies where well‐defined longitudinal cardiovascular events are available. 

 

CONCLUSIONS 

 Accurate prediction of CVD mortality is essential for identifying those at risk and 

targeting interventions. Relative to prediction with traditional factors, we observed additionally 

including multiple predictors with clinical blood biomarkers, complete blood counts, 

anthropometric measures, dietary factors, and cardiovascular health-related questions improved 

risk prediction performance for CVD mortality. Specifically, 22 blood biomarkers such as 

glucose, uric acid, bicarbonate, urea nitrogen, total protein, creatinine, calcium, globulin, and 

phosphorus contributed the most to improving CVD mortality prediction. Future studies are 

needed to confirm and validate these findings. The collection of information on these predictors, 

including the biomarkers, is already well established, and routinely applied in clinical practice, 

highlighting the clinical translational utility of these predictors for CVD mortality prediction. 
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Table 1. A list of predictors in the present study. 

Traditional cardiovascular disease predictors (n=9) 
Age, sex, race/ethnicity, current smoking status, systolic blood pressure, serum total 
cholesterol, serum high-density lipoprotein (HDL) cholesterol, use of antihypertensive 
medications, and diabetes. 
New cardiovascular disease predictors under investigation in the present study 
Clinical blood biomarkers (n=22) 
Albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 
phosphatase, bicarbonate, urea nitrogen, calcium, gammaglutamyl transaminase (GGT), 
glucose, iron, lactate dehydrogenase (LDH), phosphorus, total bilirubin, total protein, 
triglyceride, uric acid, creatinine, sodium, potassium, chloride, osmolality, and globulin.  
Complete blood counts (n=20) 
White blood cell count, lymphocyte percent, monocyte percent, segmented neutrophils 
percent, eosinophils percent, basophils percent, lymphocyte number, monocyte number, 
segmented neutrophils number, eosinophils number, basophils number, red cell count, 
hemoglobin, hematocrit, mean cell volume, mean cell hemoglobin, mean cell hemoglobin 
concentration, red cell distribution width, platelet count, and mean platelet volume. 
Anthropometric measures (n=7) 
Weight, height, body mass index (BMI), waist circumference, upper leg length, upper arm 
length, and arm circumference. 
Total nutrient intake (n=51) 
Energy, protein, carbohydrate, dietary fiber, total fat, total saturated fatty acids, total 
monounsaturated fatty acids, total polyunsaturated fatty acids, cholesterol, Vitamin A, alpha-
carotene, beta-carotene, Vitamin B1, Vitamin B2, niacin, Vitamin B6, total folate, Vitamin 
B12, Vitamin C, calcium, phosphorus, magnesium, iron, zinc, copper, sodium, potassium, 
selenium, caffeine, theobromine, alcohol, moisture, saturated fatty acids (SFA) 4:0, SFA 6:0, 
SFA 8:0, SFA 10:0, SFA 14:0, SFA 18:0, monounsaturated fatty acid (MFA) 16:1, MFA 18:1, 
MFA 18:1, MFA 20:1, MFA 22:1, polyunsaturated fatty acid (PFA) 18:2, PFA 18:3, PFA 
18:4, PFA 20:4, PFA 20:5, PFA 22:5, and PFA 22:6. 
Cardiovascular health-related questions (n=13) 
Pain or discomfort in chest, pain in chest when walking uphill or in a hurry, pain in chest 
during an ordinary pace on level ground, severe pain in chest more than half hour, pain in right 
arm, pain in right chest, pain in neck, pain in upper sternum, pain in lower sternum, pain in left 
chest, pain in left arm, pain in epigastric area, and shortness of breath on stairs/inclines. 
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Table 2. Traditional cardiovascular risk factors of United States National Health and Nutrition Examination Survey participants at 
study baseline, by cardiovascular disease mortality status at up to 19.2 years of follow up. 
Characteristic Total population (N = 21982) Training set (N = 17638) Testing set (N = 4344) 
 CVD death 

(N = 1372) 
Non-CVD 

death or alive* 
(N=20610) 

CVD death 
(N = 1094) 

Non-CVD 
death or alive 
(N = 16544) 

CVD death 
(N = 278) 

Non-CVD 
death or alive 

(N = 4066) 
Follow-up, median (range), year 6.6 (0.1, 18.4) 9.5 (0.1, 19.2) 6.6 (0.1, 

18.4) 
9.5 (0.1, 19.2) 6.6 (0.1, 17.0) 9.4 (0.2, 19.0) 

Age, mean (SD), year 71.9 (10.5) 58.5 (12.1) 71.8 (10.5) 58.6 (12.1) 72.4 (10.5) 58.3 (12.1) 
No. (%) female 559 (40.7) 10469 (50.8) 438 (40.0) 8402 (50.8) 121 (43.5) 2067 (50.8) 
No. (%) racial/ethnical groups       
  Non-Hispanic White 885 (64.5) 9950 (48.3) 700 (64.0) 7954 (48.1) 185 (66.6) 1996 (49.1) 
  Non-Hispanic Black 257 (18.7) 4037 (19.6) 200 (18.3) 3250 (19.6) 57 (20.5) 787 (19.4) 
  Hispanic† 190 (13.9) 5163 (25.1) 158 (14.4) 4155 (25.1) 32 (11.5) 1008 (24.8) 
  Other race/ethnic group 40 (2.9) 1460 (7.1) 36 (3.3) 1185 (7.2) 4 (1.4) 275 (6.8) 
No. (%) current smoker 256 (18.7) 3903 (18.9) 198 (18.1) 3149 (19.0) 58 (20.9) 754 (18.5) 
SBP, mean (SD), mm Hg 137.5 (23.3) 127.7 (19.1) 137.1 (23.3) 127.7 (19.1) 139.4 (23.4) 127.6 (19.2) 
Total cholesterol, mean (SD), mg/dL 194.5 (46.3) 201.3 (42.1) 193.1 (45.1) 201.5 (42.2) 199.7 (50.9) 200.7 (41.6) 
HDL cholesterol, mean (SD), mg/dL 52.4 (15.8) 53.7 (16.6) 52.5 (16.0) 53.7 (16.7) 51.7 (15.3) 53.5 (16.2) 
No. (%) diabetes 374 (27.3) 3345 (16.2) 294 (26.9) 2665 (16.1) 80 (28.8) 680 (16.7) 
No. (%) use of antihypertensive 
medications 

853 (62.2) 8170 (39.6) 668 (61.1) 6533 (39.5) 185 (66.6) 1637 (40.3) 

Abbreviation: CVD, cardiovascular disease; SBP, systolic blood pressure; HDL, high-density lipoprotein. 
* Non-CVD death included both alive and death of other causes. 
† Combined from Mexican American and other Hispanic in NHANES.
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Table 3. Prediction models performance in cardiovascular disease mortality risk discrimination by C-index and risk reclassification by net 
reclassification improvement (NRI). Model performance was assessed in the United States National Health and Nutrition Examination Survey testing 
set (n=4344). 

Models Algorithms C-index NRI 
Model 1: Traditional* Cox proportional hazards regression 0.850 -- 

ENET penalized Cox regression 0.851 -- 
Random survival forest 0.844 -- 

Model 2: Traditional + clinical blood measures† Cox proportional hazards regression 0.867 0.132 
ENET penalized Cox regression 0.867 0.111 
Random survival forest 0.853 0.101 

Model 3: Traditional + complete blood count‡ Cox proportional hazards regression 0.861 0.037 
ENET penalized Cox regression 0.860 0.043 
Random survival forest 0.852 0.041 

Model 4: Traditional + anthropometric§ Cox proportional hazards regression 0.852 0.012 
ENET penalized Cox regression 0.851 0.053 
Random survival forest 0.848 -0.018 

Model 5: Traditional + nutrient intake|| Cox proportional hazards regression 0.852 0.048 
ENET penalized Cox regression 0.853 0.022 
Random survival forest 0.839 -0.090 

Model 6: Traditional + questionnaire# Cox proportional hazards regression 0.851 0.015 
ENET penalized Cox regression 0.850 0.035 
Random survival forest 0.846 -0.020 

Model 7: All predictors** Cox proportional hazards regression 0.871 0.122 
ENET penalized Cox regression 0.871 0.107 
Random survival forest 0.851 0.035 

Abbreviation: ENET: elastic net; NRI: net reclassification improvement. 
* Model 1 included 9 traditional cardiovascular disease risk factors. 
† Model 2 included all predictors from Model 1 + 22 clinical blood biomarker predictors. 
‡ Model 3 included all predictors from Model 1 + 20 complete blood count predictors. 
§ Model 4 included all predictors from Model 1 + 7 anthropometric predictors. 
|| Model 5 included all predictors from Model 1 + 51 total nutrient intake predictors. 
# Model 6 included all predictors from Model 1 + 13 cardiovascular health-related question predictors. 
** Model 7 include all predictors from Model 1 + all 113 predictors. 
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Figure 1. Among all predictors of cardiovascular disease mortality in the United States National 

Health and Nutrition Examination Survey, the variable importance of the top 20 predictors 

prioritized from random survival forest analyses. 
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