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1  | HIGHLIGHTS

• Addressing the methodological reproducibility of imaging post‐
processing is essential for planning and data interpretation.

• MRICloud showed reproducible results for whole‐brain, multi‐
modal, structure‐based quantification.

• Structural analyses (volumetric and diffusion tensor images) show 
higher reproducibility than rsfMRI analysis.

2  | INTRODUC TION

Integrative analysis of multiple MRI contrasts is increasingly popular 
because the power to discriminate populations with a single modal‐
ity is often limited. Typically, diseases are characterized by changes 
with small effect size in multiple domains; rarely, a single specific/
sensitive feature fully characterizes individuals. While analyzing 
multiple MRI features potentially increases the power of phenotypic 
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Abstract
Introduction: The increasing use of large sample sizes for population and personal‐
ized medicine requires high‐throughput tools for imaging processing that can handle 
large amounts of data with diverse image modalities, perform a biologically mean‐
ingful information reduction, and result in comprehensive quantification. Exploring 
the reproducibility of these tools reveals the specific strengths and weaknesses 
that heavily influence the interpretation of results, contributing to transparence in 
science.
Methods: We tested–retested the reproducibility of MRICloud, a free automated 
method for whole‐brain, multimodal MRI segmentation and quantification, on two 
public, independent datasets of healthy adults.
Results: The reproducibility was extremely high for T1‐volumetric analysis, high for 
diffusion tensor images (DTI) (however, regionally variable), and low for resting‐state 
fMRI.
Conclusion: In general, the reproducibility of the different modalities was slightly 
superior to that of widely used software. This analysis serves as a normative refer‐
ence for planning samples and for the interpretation of structure‐based MRI studies.

K E Y W O R D S

automated segmentation, multimodality brain MRI, reproducibility, test–retest

www.wileyonlinelibrary.com/journal/brb3
mailto:
https://orcid.org/0000-0002-1673-002X
http://creativecommons.org/licenses/by/4.0/
mailto:afaria1@jhmi.edu


2 of 22  |     REZENDE Et al.

characterization, it aggravates statistical problems related to multi‐
ple comparisons. Methodologies designed to reduce the dimensions 
of information are imperative. A well‐known strategy is to aggre‐
gate voxels that represent a given structure in regions of interest 
(ROIs), resulting in a biologically comprehensive quantification. As 
manually drawing ROIs creates practical challenges (Tae, Kim, Lee, 
Nam, & Kim, 2008), automated methods for imaging segmentation 
of multiple contrasts represent a viable strategy (Faria, Liang, Miller, 
&	Mori,	2017;	Miller,	Faria,	Oishi,	&	Mori,	2013;	Mori,	Oishi,	Faria,	&	
Miller, 2013).

MRICloud (www.MRICl oud.org) (Mori et al., 2016) is a recently 
developed web‐based tool with which to perform automated seg‐
mentation and quantification of multiple MRI modalities. MRICloud 
provides a platform to characterize anatomy (using T1 high‐resolu‐
tion‐weighted images for volumetric analysis), white matter (using 
diffusion tensor images [DTI]), and resting‐state functional connec‐
tivity, built on structure‐based analysis. MRICloud can analyze all 
these modalities in the same anatomical framework, thus facilitating 
the integration of information from multiple domains in a biologically 
meaningful set of structures. In addition, MRICloud is a widely avail‐
able tool, which is free online, completely automated and, therefore, 
meets the requirements for a neuroimaging tool that is widely appli‐
cable to large‐scale multimodal processing.

The reliability and accuracy of MRICloud for whole‐brain seg‐
mentation, based on DTI or T1‐WIs, have been extensively tested 
and validated (Ceritoglu et al., 2009; Liang et al., 2015; Oishi et al., 
2008, 2009; Tang et al., 2015; Wu et al., 2016). A few other soft‐
ware that perform high‐resolution T1‐based automated segmenta‐
tion,	including	FreeSurfer	(Fischl,	2012),	FSL	(Jenkinson,	Beckmann,	
Behrens, Woolrich, & Smith, 2012), SPM (Penny, Friston, Ashburner, 
Kiebel,	&	Nichols,	2007),	ANTS	(Avants	et	al.,	2011),	also	underwent	
detailed reliability analysis, including testing the robustness of the 
respective pipelines to technical factors and artifacts (Ceritoglu  
et	al.,	2009;	Han	et	al.,	2006;	Jovicich	et	al.,	2009;	Tustison	et	al.,	
2014;	 Ye	 et	 al.,	 2018).	Most	 of	 these	 segmentation	 tools	 perform	
admirably when compared with the “gold standard” manual segmen‐
tation of selected structures, particularly when tested by the devel‐
opers, in healthy subjects. A different aspect, less often reported, is 
the reproducibility of such technologies, over the entire brain, par‐
ticularly when applied to DTI and resting‐state fMRI measurements, 
which has raised concerns about the interpretation of the results of 
these methods in the past (Huang et al., 2012; Morey et al., 2010; 
Shou et al., 2013; Vollmar et al., 2010).

Here, we assess the test–retest reproducibility of MRICloud 
structural quantification for different MRI modalities (T1‐based 
volumetric analysis, DTI for automated quantification of fractional 
anisotropy [FA] and mean diffusivity [MD], and resting‐state fMRI 
[rsfMRI] synchrony). We compare the MRICloud reproducibility 
with that of other well‐established methods, such as FreeSurfer and 
CONN‐SPM. Relevant information about biomarkers, particularly in 
longitudinal studies focused on subtle conditions, can be provided 
only by reliable neuroimaging tools and reproducible pipelines. It is 
the responsibility of the developers to provide users with the level of 

reproducibility of their tools, as the unknown reproducibility hinders 
the validation and the interpretation of the results.

3  | MATERIAL S AND METHODS

3.1 | Participants and images

We used the two independent and public datasets to measure the 
reproducibility of MRICloud multimodality results:

• Kirby21, the “multimodal MRI reproducibility resource” 
(Landman et al., 2011). Kirby21 is a public dataset available in the 
Neuroimaging Informatics Tools and Resources Clearinghouse 
(www.nitrc.org). This database consists of 21 healthy volunteers 
with no history of neurologic diseases (11 male, 22–61 years old), 
scanned twice in a day, on a 3T Phillips Achieva Scanner. One 
subject (#8) was excluded because the original DTI scan was not 
available. A brief description of the image protocol follows: (a) 
T1-weighted	 images:	sagittal	orientation,	matrix	240	×	256	mm,	
voxel	 size	 1	 ×	 1	 ×	 1.2	 mm3,	 TR/TE/TI	 6,300/3.1/842	 ms,	 flip	
angle 8°; (b) diffusion tensor images (DTI): spin echo sequence, 
reconstructed	matrix	256	×	256	mm,	voxel	size	(interpolated	to)	
2.2	×	2.2	×	2.2	mm3,	65	slices,	TE/TR	67/6,181	ms,	flip	angle	90°,	
32	 gradient	 directions,	 b-factor	 =	 700	 s/mm2; (c) resting‐state 
functional	MRI	(rsfMRI):	EPI	sequence,	voxel	size	3	×	3	×	3	mm3, 
slice	gap	1	mm,	TR/TE	2,000/30	ms,	flip	angle	75°,	voxel	matrix	
80	×	80	×	37,	210	frames	per	run.

• Human Connectome Project (HCP) test–retest dataset, which is 
a subset of the 1,200 individual MRIs, made public by HCP (Van 
Essen	et	al.,	2013).	It	includes	MRI	test–retest	MRIs	of	45	healthy	
individuals (13 male, 22–35 years old), scanned in 3T machines, 
in	variable	intervals	(4.7	±	2	months	interval,	minimum	=	1	month,	
maximum = 11 months). Two individuals have no rest–retest DTI. 
Note that the long retest interval increases likelihood of biological 
influences in the test–retest analysis, although these effects are 
presumably small in young healthy individuals. A brief descrip‐
tion of the image protocol follows: (a) T1‐WI: axial orientation, 
FOV	=	224	×	224	mm,	voxel	 size	0.7	mm3 (isotropic), TR/TE/TI 
2,400/2.14/1,000	ms,	flip	angle	8°;	(b)	DTI:	18	b0	images,	90	gra‐
dient directions, b = 3,000 s/mm2, TE/TR 89/5,520 ms, 1.25 mm 
voxel (isotropic); (c) rsfMRI: EPI sequence, voxel 2 mm3 (isotropic), 
TR/TE	720/33.1	ms,	flip	angle	52°,	72	slices,	1,200	frames	per	run.

3.2 | Image processing

3.2.1 | Multimodality processing with MRICloud

The images were automatically postprocessed, segmented, and 
quantified in MRICloud (www.MRICl oud.org) (Mori et al., 2016). 
Briefly, the process for segmenting the T1‐WI, used for volumetric 
analysis, involves orientation and homogeneity correction; two‐level 
brain segmentation (skull‐stripping, then whole brain); image map‐
ping based on a sequence of linear, nonlinear algorithms, and large 

http://www.MRICloud.org
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deformation diffeomorphic mapping (LDDMM); and a final step of 
multi‐atlas labeling fusion (MALF) (Tang et al., 2013), adjusted by 
PICSL	 (Wang	&	Yushkevich,	2013).	Please	 read	 (Tang	et	 al.,	 2015;	
Wu et al., 2016) for technical details. As for the multi‐atlas library, we 
chose “Adult_22_55yrs_283Labels_26atlases_M2_252_V9B” under 
MRICloud atlas choices. This atlaset contains 26 healthy individu‐
als, 22–55 years old, demographically close to our cohort, as recom‐
mended	for	atlas	mapping	(Ye	et	al.,	2018).

For the DTI, the tensor reconstruction and quality control fol‐
lowed the algorithm used by DtiStudio (www.MRISt udio.org). The 
automated DTI segmentation was similar to that used for T1‐WIs, ex‐
cept for the use of complementary contrasts (mean diffusivity [MD], 
fractional anisotropy [FA], and eigenvector [fiber orientation]) and 
a	 diffeomorphic	 likelihood	 fusion	 algorithm	 (Tang	 et	 al.,	 2014)	 for	
multi‐atlas mapping. Please read (Ceritoglu et al., 2009) for techni‐
cal details. We used the only atlas library available for DTI mapping 
in MRICloud: “Adults_168labels_12atlases_V1,” which contains 12 
healthy individuals, 20–50 years old.

For the rsfMRI postprocessing (Faria et al., 2012), the T1‐WI and 
the respective segmentations obtained as described above were 
coregistered to the motion and slice timing‐corrected, resting‐state 
dynamics. Time courses were extracted from all the cortical and sub‐
cortical gray matter regions defined in the atlases and detrended, 
regressed for motion and physiological nuisance (Behzadi, Restom, 
Liau,	Liu,	2007).	Intensity	and	motion	“outliers”	were	extracted	with	
ART (https ://www.nitrc.org/proje cts/artif act_detect). Seed‐by‐seed 
correlation matrices were obtained from the “nuisance‐corrected” 
time courses, and z‐transformed by the Fisher's method.

After the multimodal brain segmentation and quantification, 
each individual, in each session, was represented by a vector of 
image features. The image features considered in this study were 
226 structural volumes from T1‐WIs processing (listed in Table 1), 
97	white	matter	structural	FA,	and	97	white	matter	structural	MD	
measures	from	DTI	processing	(listed	in	Table	2),	and	1,431	pairwise,	
resting-state	z-correlations	between	54	gray	matter	seeds	from	rs‐
fMRI (listed in Table 3).

3.2.2 | T1‐WIs volumetric analysis with FreeSurfer

Volumes of Kirby21 cortical labels and the deep gray matter were 
obtained from FreeSurfer v.5.3, for further comparison of reliabil‐
ity with MRICloud. Briefly, images are aligned to the Talairach and 
Tournoux atlas, corrected for magnetic field inhomogeneity, skull‐
stripped, and the tissues are classified as gray matter, white mat‐
ter, or CSF. Next, the white surface (the interface between gray and 
white matter) and the pial surfaces are estimated by triangle meshes 
and smoothed with a Gaussian filter of 10 mm FWHM (Fischl & Dale, 
2000). Cortical thickness is calculated as the shortest distance be‐
tween the pial and white surface at each vertex across the cortical 
mantle. The cortical volume is the multiplication of cortical thick‐
ness and surface area. The volumes for subcortical regions are cal‐
culated as well (Fischl et al., 2002). For comparison of reliability, we 
determined the correspondence between MRICloud and FreeSurfer 

labels (listed in Table 1), which is feasible since both methods label 
according to structural anatomy.

3.2.3 | rsfMRI analysis with SPM CONN toolbox

We	used	 the	SPM	CONN	toolbox,	version	17e,	 to	preprocess	and	
perform first‐level statistics of Kirby21 rsfMRI data, and further 
compared the reliability of these results with those from MRICloud. 
The CONN toolbox is the most widely used tool for processing rs‐
fMRI and uses a combination of SPM12 and native‐implemented 
functions. The preprocessing was attuned to keep the rsfMRI in the 
native space and used the default CONN parameters for slice‐time 
correction and realignment. As in the MRICloud pipeline, ART identi‐
fied	the	outlier	scans	(97th	percentiles	in	a	normative	sample).	The	
effect of the rest model and its first‐order derivative were used as 
first‐level covariates (individual regressors). Sequentially, the pro‐
cessed functional images were detrended and band‐pass‐filtered 
(0.008–0.09 Hz). After tissue segmentation and skull‐stripping, 
the T1‐WIs and the respective parcellation maps obtained from 
MRICloud were brought to the rsfMRI space. The use of the same 
anatomic labels enabled a direct comparison between SPM CONN 
and MRICloud seed‐by‐seed correlations.

Although there are descriptions of automated white matter par‐
cellations using cortical‐parcellation‐based strategies and fiber clus‐
tering parcellation (Zhang et al., 2019), to the best of our knowledge, 
MRICloud is the only automated pipeline available for whole‐brain, 
DTI structure‐based analysis. Therefore, the reproducibility of DTI 
regional quantification outputted from MRICloud was not directly 
compared with that from other software.

3.3 | Statistical analysis

3.3.1 | Test–retest reproducibility

To assess the test–retest reliability of the different metrics in each 
region of interest, we used the intraclass correlation coefficient (ICC) 
(Shrout	&	Fleiss,	1979).	To	access	a	global	measure	of	the	reproduc‐
ibility for a given modality, we used the image intraclass correlation 
coefficient (I2C2) (Shou et al., 2013), which takes in account the total 
variability of the data. Because I2C2 is less sensitive to regions with 
low variability, it tends to be lower, and more realistic, than the aver‐
age of regional ICCs.

A problem that cannot be intuitively solved by looking at I2C2 
or ICCs is whether the global individual pattern of image features is 
reproducible. This “fingerprint” problem has recently been explored 
in neuroimaging (Finn et al., 2015; Liu, Liao, Xia, & He, 2018; Mars  
et al., 2018). Assuming that the MRI data itself are reproducible 
(which is a valid assumption for structural data, such as T1‐based 
volumes), if the postprocessing and quantification tool is reliable, a 
given individual will be closer to him/herself rather than to someone 
else in the space of the image features.

In order to explore this idea, we used principal component anal‐
ysis (PCA) to reduce the dimensionality of the data in each modality. 

http://www.MRIStudio.org
https://www.nitrc.org/projects/artifact_detect
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TA B L E  2   ICCs for regional fractional anisotropy (FA) and mean diffusivity (MD), outputted by MRICloud, using Kirby21 and HCP

MRICloud

Kirby 21 HCP

ICC for FA ICC for MD ICC for FA ICC for MD

L R L R L R L R

Superior parietal gyrusa 0.885 0.880 0.812 0.885 0.753 0.725 0.696 0.811

Cingulate gyrusa 0.808 0.709 0.878 0.938 0.804 0.796 0.800 0.824

Superior frontal gyrusa 0.925 0.850 0.901 0.856 0.796 0.669 0.489 0.474

Middle frontal gyrusa 0.842 0.809 0.883 0.788 0.798 0.635 0.432 0.625

Inferior frontal gyrusa 0.861 0.902 0.785 0.757 0.873 0.649 0.411 0.624

Precentral gyrusa 0.887 0.865 0.804 0.902 0.872 0.767 0.815 0.783

Postcentral gyrusa 0.959 0.928 0.918 0.894 0.712 0.735 0.774 0.816

angular gyrusa 0.774 0.863 0.726 0.883 0.732 0.710 0.691 0.773

Precuneusa 0.869 0.799 0.883 0.914 0.814 0.782 0.802 0.851

Cuneusa 0.907 0.764 0.832 0.777 0.851 0.756 0.795 0.822

Lingual gyrusa 0.625 0.691 0.655 0.753 0.762 0.715 0.615 0.744

Fusiform gyrusa 0.819 0.725 0.676 0.681 0.727 0.656 0.782 0.765

Superior occipital gyrusa 0.908 0.875 0.892 0.844 0.842 0.840 0.897 0.856

Inferior occipital gyrusa 0.825 0.839 0.506 0.740 0.825 0.707 0.855 0.769

Middle occipital gyrusa 0.888 0.841 0.785 0.795 0.821 0.723 0.869 0.829

Superior temporal gyrusa 0.416 0.604 0.623 0.727 0.851 0.714 0.775 0.776

Inferior temporal gyrusa 0.724 0.648 0.491 0.558 0.821 0.892 0.802 0.811

Middle temporal gyrusa 0.895 0.798 0.770 0.763 0.784 0.763 0.774 0.758

Lateral fronto‐orbital gyrusa 0.884 0.865 0.681 0.617 0.868 0.602 0.612 0.695

Middle fronto‐orbital gyrusa 0.786 0.787 0.512 0.406 0.713 0.785 0.687 0.635

Supramarginal gyrusa 0.896 0.937 0.875 0.885 0.876 0.770 0.766 0.794

rectus gyrusa 0.746 0.753 0.823 0.716 0.635 0.744 0.675 0.602

Insulaa 0.847 0.887 0.964 0.671 0.804 0.796 0.777 0.734

Cerebellum 0.790 0.901 0.936 0.901 0.813 0.750 0.733 0.751

Corticospinal tract 0.897 0.858 0.741 0.659 0.886 0.897 0.886 0.893

Inferior cerebellar peduncle 0.436 0.649 0.478 0.588 0.800 0.853 0.836 0.819

Medial lemniscus 0.735 0.626 0.621 0.595 0.927 0.912 0.831 0.749

Superior cerebellar peduncle 0.642 0.781 0.605 0.607 0.797 0.756 0.791 0.775

Cerebral peduncle 0.817 0.814 0.785 0.404 0.921 0.935 0.714 0.880

Anterior limb internal capsule 0.755 0.659 0.653 0.616 0.891 0.803 0.552 0.797

Posterior limb internal capsule 0.818 0.846 0.427 0.716 0.868 0.895 0.641 0.814

Retro lenticular internal capsule 0.790 0.875 0.525 0.811 0.897 0.831 0.711 0.739

Posterior thalamic radiation 0.848 0.863 0.692 0.869 0.892 0.907 0.829 0.758

Anterior corona radiata 0.952 0.902 0.774 0.625 0.873 0.810 0.424 0.634

Superior corona radiata 0.910 0.941 0.715 0.861 0.924 0.875 0.683 0.729

Posterior corona radiata 0.928 0.886 0.647 0.838 0.867 0.950 0.828 0.894

Cingulum 0.915 0.907 0.750 0.730 0.878 0.810 0.679 0.859

Fornix stria terminalis 0.805 0.843 0.808 0.707 0.841 0.818 0.677 0.815

Superior longitudinal fasciculus 0.879 0.926 0.544 0.772 0.879 0.876 0.586 0.707

Superior fronto‐occipital 
fasciculus

0.760 0.851 0.822 0.872 0.760 0.677 0.822 0.453

Inferior fronto‐occipital 
fasciculus

0.828 0.912 0.641 0.453 0.891 0.848 0.710 0.720

(Continues)
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The first three principal components, which are linear combinations 
of the features in question, are those that explain most of the data 
variability. The distances across different subjects in the 3D PCA 
plots (indicated by circles with different colors in our figures) reflect 
anatomical variability among normal brains, as well as the measure‐
ment variability. Through the test–retest pairs (indicated by circles of 
same colors in our figures), one can estimate the size of the measure‐
ment variability, that is, the precision of the measurement, with re‐
spect to the anatomical variability of the population. We also ranked 
the Euclidean distance among subjects in the three‐dimensional PCA 
space. The lowest rank of 1 represents a pair of individuals that are 
closest in the feature space (i.e., a pair with the lowest variability). If 
the measurement variability is lower than the anatomical variability, 
a test–retest pair has a low score, ideally, 1. We judged “correct clas‐
sification” when the two closest neighbors were the first and second 
scans of the same subject (the “test–retest” pair), and “misclassifica‐
tion” otherwise.

Finally, we checked for significant differences in the diverse met‐
rics between groups (test and retest) using Wilcoxon, corrected for 
multiple comparisons with false discovery rate. We also calculated 
the percentage of difference between the test and retest metrics, 
as ([test metric + retest metric]/test metric) * 100. Furthermore, al‐
though this study is not designed to test the reliability of the seg‐
mentation itself, we calculated the Dice index between each pair 
(test–retest) of parcels obtained by the T1 and DTI processing in 
MRICloud, as a sanity check. Note that the Dice was the only metric 
calculated not in the native space, but in a MNI space, to ameliorate 
differences in the head position between the test–retest scans.

3.3.2 | Power analysis: illustrating the effect of the 
data variability

Power analysis was used to illustrate the effects of data vari‐
ability (both biological and technical) on the automated imaging 

quantification. For a proof of concept, we chose two regions (one 
with a large ICC and the other with a low ICC), from the volumetric 
T1‐based analysis and from the DTI analysis. We calculated the sam‐
ple size necessary to detect group differences at an alpha of 0.05 
and a power of 0.8, using GPOWER (http://www.gpower.hhu.de/). 
The sample size that resulted was inversely proportional to the data 
variability, which was inversely proportional to the ICC.

4  | RESULTS

4.1 | Volumetric (T1‐based) test–retest reliability

The global I2C2 coefficients for the MRICloud volumetric analy‐
sis were very high (1 indicating perfect agreement): HCP dataset: 
0.989	 (confidence	 interval,	CI:	0.987–0.992)	and	0.936	 (CI:	0.870–
0.998),	 Kirby21	 dataset:	 0.988	 (CI:	 0.982–0.991)	 and	 0.997	 (CI:	
0.995–0.999), for the cerebral cortex and deep gray matter, respec‐
tively (Figure 1). The ROIs showed consistently high ICCs (Table 1, 
Figure 2), including those in the white matter, which we were able to 
obtain because MRICloud performs whole‐brain parcellation. Only a 
few small parcels, primarily in the brainstem, had ICCs below 0.9, and 
no region had an ICC below 0.8.

Compared to MRICloud, the I2C2s for Kirby21 were slightly 
lower	for	the	FreeSurfer	results:	0.920	(CI:	0.871–0.951)	for	the	ce‐
rebral	cortex	and	0.967	(CI:	0.933–0.988)	for	the	deep	gray	matter.	
The regional ICCs were also lower, in general (Figure 2, bottom), with 
a few regions, particularly at the deep gray matter, showing an ICC 
of approximately 0.8.

The three‐dimensional PCA plot (Figure 3, top) for Kirby21 data 
shows that the measurement variability was higher for the results of 
FreeSurfer (average Euclidian distance between the test–retest pair 
0.043	±	0.025)	compared	to	those	from	MRICloud	(average	Euclidian	
distance	between	the	test–retest	pair	0.016	±	0.007	for	Kirby21	and	
0.016	±	0.010	for	HCP),	while	still	lower	than	that	of	the	anatomical	

MRICloud

Kirby 21 HCP

ICC for FA ICC for MD ICC for FA ICC for MD

L R L R L R L R

Sagittal stratum 0.889 0.861 0.588 0.823 0.819 0.786 0.665 0.756

External capsule 0.802 0.860 0.455 0.710 0.854 0.758 0.477 0.684

Uncinated fasciculus 0.638 0.936 0.696 0.767 0.807 0.881 0.785 0.811

Pontine crossing tract 0.723 0.882 0.693 0.602 0.881 0.905 0.858 0.866

Middle cerebellar peduncle 0.677 0.775 0.312 0.284 0.829 0.757 0.845 0.864

Fornix 0.893 0.718 0.946 0.703 0.774 0.875 0.602 0.676

Genu corpus callosum 0.896 0.923 0.574 0.617 0.901 0.850 0.554 0.641

Body of the corpus callosum 0.878 0.914 0.922 0.830 0.898 0.900 0.598 0.828

Splenium corpus callosum 0.880 0.919 0.736 0.894 0.866 0.920 0.686 0.770

Abbreviations: HCP, Human Connectome Project; ICC, intraclass correlation coefficients.
aWhite matter labels beneath the gray matter. 

TA B L E 2 (Continued)

http://www.gpower.hhu.de/
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variability in both cases. Similar results were obtained using the 
deep	gray	matter	volumes	(Figure	4,	top).	Again,	the	measurement	
variability for deep gray matter volumes was higher for the results 
of FreeSurfer (average Euclidian distance between the test–retest 
pair	 0.042	 ±	 0.033)	 compared	 to	 those	 from	 MRICloud	 (average	
Euclidian	distance	between	the	test–retest	pair	0.028	±	0.017	and	
0.028	±	0.073	for	Kirby21	and	HCP	respectively),	while	still	 lower	
than that of the anatomical variability in both cases.

This idea was reinforced by the ranked distance matrix (Figures 
3	 and	 4,	 bottom).	 For	 the	 results	 of	MRICloud,	 individuals	 in	 the	
test–retest pair were always the closest (ranked distance of 1) when 
using cortical volumes (Figure 3, bottom right), or almost always 

the closest (except by one case), when using the deep gray matter 
volumes	 (Figure	4,	bottom	right).	There	were	7	“misclassifications”	
(i.e., the closest individual in the first scan was not him/herself in 
the second scan) when using the volumetric results of FreeSurfer, 
both for the superficial and for the deep gray matter (Figures 3 and 
4,	bottom	left).

There were no significant differences in regional volumes, as 
outputted by MRICloud, between the test and the retest sets. The 
average	difference	between	the	test	and	retest	volumes	was	1.76%	
for	 Kirby21,	 and	 2.8%	 for	 HCP.	 The	 Dice	 indices	 between	 pairs	
(test–retest)	 of	 parcels	 were	 high	 0.814	 ±	 0.141	 for	 Kirby21	 and	
0.8	±	0.097	for	HCP.

Structure

ICC for Mricloud
ICC for SPM 
CONN

Kirby 21 HCP Kirby 21

L R L R L R

Angular gyrus 0.387 0.376 0.482 0.527 0.155 0.264

Cuneus 0.433 0.438 0.392 0.417 0.153 0.080

Fusiform gyrus 0.342 0.419 0.253 0.339 0.163 0.249

Rectus gyrus 0.384 0.340 0.444 0.458 0.150 0.077

Inferior frontal gyrus/pars opercularis 0.243 0.369 0.470 0.432 0.228 0.238

Inferior frontal gyrus/pars orbitalis 0.283 0.413 0.417 0.449 0.092 0.208

Inferior frontal gyrus/pars triangularis 0.302 0.367 0.350 0.442 0.183 0.103

Inferior occipital gyrus 0.356 0.355 0.381 0.396 0.156 0.282

Inferior temporal gyrus 0.329 0.387 0.362 0.446 0.130 0.107

Lingual gyrus 0.374 0.394 0.334 0.304 0.219 0.150

Middle frontal gyrus 0.317 0.418 0.435 0.532 0.270 0.216

Middle frontal gyrus (dorsolateral 
prefrontal cortex)

0.258 0.378 0.421 0.460 0.124 0.216

Middle occipital gyrus 0.332 0.447 0.342 0.338 0.189 0.246

Middle temporal gyrus 0.323 0.400 0.443 0.446 0.276 0.129

Middle temporal gyrus/pole 0.402 0.337 0.465 0.397 0.116 0.025

Postcentral gyrus 0.388 0.380 0.327 0.366 0.176 0.166

Posterior cingulate cortex 0.363 0.364 0.385 0.189 0.147 0.213

Precentral gyrus 0.424 0.378 0.333 0.393 0.223 0.164

Precuneus 0.425 0.443 0.412 0.386 0.135 0.270

Superior frontal gyrus 0.372 0.406 0.415 0.444 0.133 0.185

Superior frontal gyrus/pole 0.413 0.416 0.280 0.388 0.012 0.000

Superior frontal gyrus/prefrontal 
cortex

0.356 0.328 0.431 0.469 0.195 0.202

Superior occipital gyrus 0.425 0.434 0.030 0.188 0.253 0.204

Superior parietal lobule 0.284 0.261 0.387 0.366 0.229 0.128

Superior temporal gyrus 0.364 0.350 0.333 0.383 0.240 0.178

Superior temporal gyrus/pole 0.413 0.391 0.456 0.399 0.171 0.185

Supramarginal gyrus 0.316 0.382 0.445 0.437 0.233 0.178

Abbreviations: HCP, Human Connectome Project; ICC, intraclass correlation coefficients.

TA B L E  3   Averaged ICCs of seed‐by‐
seed correlations outputted by the rsfMRI 
processed with MRICloud (using Kirby21 
and HCP) and SPM CONN (using Kirby21)



     |  13 of 22REZENDE Et al.

4.2 | DTI test–retest reliability

The global I2C2 coefficients for the MRICloud analysis of the frac‐
tional anisotropy (FA) and mean diffusivity (MD) were as follows: 
Kirby21:	 0.836	 (CI:	 0.798–0.869)	 and	 0.787	 (CI:	 0.735–0.851),	 re‐
spectively;	 HCP:	 0.844	 (CI:	 0.751–0.892)	 and	 0.733	 (CI:	 0.666–
0.793),	respectively	(Figure	1).	The	regional	ICCs	(Table	2,	Figure	5)	
were higher for FA than for MD. The FA ICCs were virtually higher 
than 0.8, while, for MD, a few regions scored below this level, par‐
ticularly in the brainstem. In contrast to the volumetric analysis, 
there was more variation on the ICCs, with some areas scoring high 
(ICC > 0.9) and others low (ICC < 0.5).The cerebellar peduncles had 
the lowest ICCs.

Although higher than in the volumetric analysis, the measure‐
ment variability for Kirby21 FA and MD (the distance between the 

rest–retest individuals, or dots with the same color in the PCA plots 
of Figure 6) was, on average, lower than the anatomical variability 
(the distance among different individuals). The measurement vari‐
ability was higher for MD (average Euclidian distance between the 
test–retest	 pair	 0.147	±	0.079	 and	0.119	±	0.072	 for	Kirby21	 and	
HCP, respectively) than for FA (average Euclidian distance between 
the	 test–retest	pair	0.060	±	0.039	and	0.057	±	0.032	 for	Kirby21	
and HCP, respectively). Again, the ranked distance matrices offered 
a different view of the same findings. Using the FA metrics, individ‐
uals in a test–retest pair were the closest (ranked distance of 1) in 
the majority of cases (Figure 6, bottom right), although there were 
9 “misclassifications” (i.e., the closest individual in the first scan was 
not him/herself in the second scan). Using MD, individuals in the 
test–retest pair were often not the closest (Figure 6, bottom left, 19 
“misclassifications”).

F I G U R E  1   I2C2 for the results of T1‐
volumetric analysis, fractional anisotropy 
(FA), and mean diffusivity (MD) from 
DTI, and resting‐state fMRI, in two 
independent datasets (Kirby21 and HCP), 
using different platforms (MRICloud [MC], 
FreeSurfer [FS], Connectivity toolbox in 
SPM [CONN‐SPM])

F I G U R E  2   Color‐coded regional ICCs for the volumetric outputs of MRICloud (MC) and FreeSurfer (FS), in two independent datasets 
(Kirby21 and HCP), overlaid on a representative brain
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There was no significant difference in FA or MD between the 
test and the retest sets. The difference between the test and retest 
metrics	was	0.64%	for	FA	and	1.79%	for	MD,	in	Kirby21,	and	0.5%	
for	 FA	 and	1.9%	 for	MD,	 in	HCP.	 The	Dice	 indices	 between	pairs	
(test–retest)	of	parcels	were	high	(0.896	±	0.05	and	0.838	±	0.066	
for Kirby21 and HCP, respectively).

4.3 | rsfMRI test–retest reliability

The rsfMRI showed the lowest global I2C2 and regional ICCs among 
all the tested modalities. The global I2C2 for the MRICloud outputs 
(z-transformed	correlation	among	pairs	of	cortical	seeds)	was	0.437	
(CI:	0.337–0.530)	 in	HCP	and	0.403	 (CI:	0.309–0.507)	 in	Kirby21.	

F I G U R E  3   Top: 3D PCA plot created with the volumes of Kirby21 cortical areas, outputted by MRICloud (MC) and FreeSurfer (FS). 
Individuals are color‐coded, that is, the same color represents a “test–retest” pair. Bottom: matrix of ranked distance between individuals 
in the three‐dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test–retest pair was scored 1 
(dark blue). Test–retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than him/herself in the second 
scan) are framed in red
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For	the	SPM	CONN	outputs,	the	I2C2	was	0.227	(CI:	0.164–0.293)	
in Kirby21 (Figure 1). The ICC for a given label was calculated as 
the mean of the ICCs for correlations between that given seed to 
each other seed (Table 3). The maximum ICC for a parcel using the 
MRICloud outputs did not exceed 0.6, with the majority of ICCs fluc‐
tuating	around	0.4	 (Figure	7).	For	 the	SPM	CONN	processing,	 the	
maximum ICC did not exceed 0.5, with the majority of ICCs fluctuat‐
ing around 0.25.

The measurement variability, or the distance among test–retest 
pairs (same color dots) in the PCA plots created with the pairwise z‐
rsfMRI correlations (Figure 8, top), was lower, on average, than the 
anatomical/functional variability, or the distance among different in‐
dividuals, although the variability was seemingly higher than that ob‐
tained for volumes or DTI metrics.The ranked distance among Kirby21 
individuals (Figure 8, bottom) showed predominantly “misclassifica‐
tions” (the closest individual in the first scan was not him/herself in 

F I G U R E  4   Top: 3D PCA plot created with the volumes of the Kirby21 deep gray matter areas, outputted by MRICLoud (MC) and 
FreeSurfer (FS). Individuals are color‐coded; that is, the same color represents a “test–retest” pair. Bottom: matrix of ranked distance 
between individuals in the three‐dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test–retest 
pair was scored 1 (dark blue). Test–retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than to him/
herself in the second scan) are framed in red
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the second scan): 15 for MRICloud, 15 for CONN‐SPM. The individual 
variability was still lower for MRICloud (average Euclidian distance 
between	 the	 test–retest	 pair	 0.163	±	0.093	 and	0.134	±	0.090	 for	
Kirby21 and HCP, respectively) compared to CONN‐SPM (average 
distance	between	the	test–retest	pair	0.175	±	0.131).

There were no significant differences in the outputs of MRICloud 
between the test and the retest sets.

4.4 | Power

The power analysis illustrated the effects of data variability on the 
automated imaging quantification. For proof of concept, we chose 
regions with the highest and the lowest test–retest reliability, as 
measured	 by	 ICCs.	 The	 power	 analysis	 (Table	 4)	 showed	 that	 the	
volumetric data were very stable, meaning that there is a small ef‐
fect size among scan sets and that thousands of subjects would be 
needed to detect differences between them. The results are even 
more drastic for regions with a high ICC (e.g., precentral gyrus > glo‐
bus pallidus). For the DTI analysis, here represented by the fractional 
anisotropy, the results were the same for highly reproducible areas 
(e.g., projection fibers at the pons level), namely, a small effect size 
between examinations, and a large sample needed to detect dif‐
ferences between them. However, as the range of ICCs was wider 
compared to volumes in areas with low ICCs (e.g., inferior cerebellar 
peduncle), the effect size between scans was relatively high (0.69) 

and less than 100 patients would be needed to detect differences 
between the scan sets. As this uses a test–retest design, these dif‐
ferences are technical, rather than biological.

5  | DISCUSSION

We test–retested an automated web‐based tool (MRICloud) that 
performs segmentation and quantification of multimodality MRI 
(volume from T1‐WIs and FA, and MD from DTI and rsfMRI seed‐
by‐seed synchrony). The reproducibility rivaled, or was slightly su‐
perior, to that from other well‐established methods (FreeSurfer, 
SPM CONN). As discussed in detail below, the reproducibility was (a) 
globally very high for T1‐volumetric analysis; (b) high for DTI analy‐
sis, but regionally more variable than for T1‐volumetric analysis; and 
(c) globally low for rsfMRI. To shed light on the reproducibility of 
postprocessing and quantification tools for MRI is essential, particu‐
larly when, by their nature (automated, user‐friendly), these tools are 
used for processing data on a large scale.

5.1 | Reproducibility of volumetric quantification

The I2C2 and the regional ICCs were high for the volumetric analy‐
sis (vast majority > 0.9, while perfect agreement is 1), reflecting 
the high stability of the volumetric data and suggesting that subtle 

F I G U R E  5   Color‐coded regional ICCs for the DTI outputs of MRICloud (FA, fractional anisotropy, MD, mean diffusivity) in two 
independent datasets (Kirby21 and HCP), overlaid on a representative brain
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differences appointed by them are reliable (Wonderlick et al., 2009). 
Although we observed a tendency of small areas to have lower ICCs 
than large areas, the small variation of ICCs prevented the determi‐
nation of a significant relationship between the ROI volume and the 
respective reproducibility of its volume measures. We found repro‐
ducibility similar to that in previous studies for data processed with 

FreeSurfer (Morey et al., 2010; Wonderlick et al., 2009) using differ‐
ent scanners, inclusion criteria, scan–rescan intervals, and software 
versions, indicating that the stability of T1‐based volumetric analysis 
overcomes all these factors.

Both MRICloud and FreeSurfer had extremely high ICCs for 
volumetric analysis (0.98 vs. 0.92), which indicates very high 

F I G U R E  6   Top: 3D PCA plot created with the Kirby21 regional measures of fractional anisotropy (FA) and mean diffusivity (MD). 
Individuals were color‐coded; that is, the same color represents a “test–retest” pair. Bottom: matrix of ranked distance between individuals 
in the three‐dimensional PCA plot. If the variance in the measurement between scan sections was minimal, a test–retest pair scored 1 (dark 
blue). Test–retest pairs that scored higher than 1 (i.e., the individual was closer to someone else rather than to him/herself in the second 
scan) are framed in red
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reproducibility, suggesting both methods perform adequately in 
anatomically normal data. Nevertheless, understanding the source 
of ICCs variability can lead to improvements in data postprocess‐
ing by identifying factors (such as the parcellation scheme, mapping 
algorithm or set of atlases) that may impact reproducibility. For in‐
stance, MRICloud uses diffeomorphic mapping (LDDMM) and mul‐
tiple atlases, with a large range of anatomical variability. This makes 
the method effective on both normal brains and brains with a large 
range of nonlocalized deformations (“atrophy‐like”), while methods 
that assume a stable, healthy pattern may perform worse on these 
scenarios {Oishi, 2009 #1831}. This is illustrated in Figure 9, where 
MRICloud outputted a qualitatively reasonable segmentation for an 
individual with marked brain atrophy, due to hereditary spastic para‐
plegia type 11.

5.2 | Reproducibility of DTI results

The I2C2s for DTI‐derived data, processed with MRICloud, were 
high, while lower than those from the volumetric analysis. Although 
most of the previous studies looked at DTI reliability on different 
scans and/or from multiple centers (Deprez et al., 2018; Fox et al., 
2012;	Jovicich	et	al.,	2014),	a	few	previous	studies	that	addressed	
test–retest reproducibility (Huang et al., 2012; Shou et al., 2013; 
Zhang et al., 2019) found results comparable to ours. DTI‐derived 
metrics are calculated from multiple images and, thus, are inherently 
more noisy and affected by coregistration errors and other types of 
stability‐related issues (Morey et al., 2010). In addition, DTI is highly 
prone to voxel‐level motion of the subject, which would lead to vari‐
ous types of intensity‐modulating artifacts (Alexander, Lee, Wu, & 
Field, 2006; Ni, Kavcic, Zhu, Ekholm, & Zhong, 2006). Finally, a long 

retest interval may introduce technical and biological effects in the 
test retest analysis, which may partially explain the slightly lower 
DTI reproducibility we found for HCP, compared to Kirby21.

Regionally, we found more variation in the DTI ICCs than in the 
volumetric ICCs. Again, small parcels, which are more susceptible to 
noise and partial volume effects (Deprez et al., 2018; Vollmar et al., 
2010), and parcels in the extremes of the sample (e.g., brainstem, 
extreme frontal and occipital areas), where the mapping is more 
challenging, tended to have lower ICCs. In addition, labels with a 
clearly predominant direction of fibers (high FA) tended to have high 
ICC, which was corroborated by the observed higher reducibility for 
an anisotropic phantom compared to human subjects (Morey et al., 
2010). This has to be taken in account when planning or interpret‐
ing the results of clinical studies. Since DTI measures experience 
large variability, their sensitivity to detect biological effects may be 
low. For instance, our power analysis revealed that, while the scan 
session has a very small effect size in the volumetric analysis (and 
thousands of subjects would be needed to detect volumetric dif‐
ferences), the effect size of different sessions is much higher for FA, 
and less than hundred subjects would be needed to detect a signif‐
icant difference between scan sessions for the same individuals, in 
areas of low ICC. Therefore, group differences in DTI metrics must 
be carefully evaluated depending on effect size, location, and related 
technical conditions.

Despite the lower reproducibility of DTI compared to T1 volu‐
metric data analysis, the regional ICCs were, in general, high, and the 
measurement variance was still lower than that of the population 
variance (the distance between rest–retest pairs was lower than the 
distance among difference subjects, as demonstrated in Figure 6), 
revealing that MRICloud is a reasonably stable tool.

F I G U R E  7   Color‐coded regional mean ICCs for the resting‐state fMRI outputs of MRICloud (MC) and CONN‐SPM, in two independent 
datasets (Kirby21 and HCP), overlaid on a representative brain, overlaid on a representative brain
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5.3 | Reproducibility of rsfMRI results

The I2C2s for rsfMRI data, processed with MRICloud, were lower 
than those for volumetric and DTI data; the averaged ICCs for the 
regional	correlations	among	seeds	fluctuated	around	0.4.	Although	
there are a few reports of higher ICCs, the majority of previous 

studies that addressed the reproducibility of rsfMRI across individu‐
als are in agreement with our findings (Andellini, Cannata, Gazzellini, 
Bernardi, & Napolitano, 2015; Deprez et al., 2018; Huang et al., 
2012; Shou et al., 2013). As for the DTI data, but on larger scale, the 
(well‐known) rsfMRI low reproducibility is attributed not only to the 
postprocessing (which is extremely variable in methodology), but 

F I G U R E  8   Top: 3D PCA plot created with z‐transformed correlations between the Kirby21 fMRI time courses of a pair of seeds, 
outputted by MRICloud (MC) and SPM CONN. Individuals were color‐coded, that is, the same color represents a “test–retest” pair. Bottom: 
matrix of ranked distance between individuals in the three‐dimensional PCA plot. If the variance in the measurement between scan sections 
was minimal, a test–retest pair scored 1 (dark blue). Test–retest pairs that scored higher than 1 (i.e., the individual was closer to someone else 
rather than to him/herself in the second scan) are framed in red
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also to the actual nature of the sequence (Birn et al., 2013; Noble et 
al.,	2017;	Patriat	et	al.,	2013).	For	instance,	here	we	found	reproduc‐
ibility slightly superior for HCP data than for Kirby21. HCP has more 
frames per run and higher resolution that Kirby21, which may have 
contributed to the observed difference. Multiple technical factors 
(magnetic fields, sequence artifacts, motion) and biological condi‐
tions (physical and mental states, even in healthy individuals) con‐
tribute to data variability, some with a biologically relevant effect, 
and others as just noise (Airan et al., 2016; Kelly, Biswal, Craddock, 
Castellanos, & Milham, 2012). To isolate and quantify the contribu‐
tion of each of these factors is one of the biggest challenges in the 
field and is not within the scope of this study.

We found that the reproducibility of the outputs of MRICloud is 
comparable, and slightly higher, to that obtained using SPM CONN. As 
the parcellation scheme applied in both methods is the same, as well 
as most of the postprocessing steps (slice‐time correction, coregistra‐
tion, motion correction, outlier rejection, nuisance correction, etc.), 
the differences in the reproducibility are likely attributable to meth‐
odological differences in the image mapping. Likewise in the T1‐volu‐
metric analysis, while this seems to have low influence in anatomical 

normal data, the differences in mapping may affect anatomically ab‐
normal data differently and the indices of reliability may present a 
great variation, both absolutely and comparatively, among methods.

6  | CONCLUSION

We tested–retested the reproducibility of MRICloud, a free, auto‐
mated method for multimodal MRI segmentation and quantification, 
on two public, independent datasets. The reproducibility was ex‐
tremely high for T1‐volumetric analysis, high for DTI (however, re‐
gionally variable), and low for resting‐state fMRI. The reproducibility 
for T1‐volumetric analysis and rsfMRI slightly over performed that of 
widely used software. The knowledge about the global reproducibil‐
ity of each modality pipeline, as well as the regional reproducibility 
for each label, is essential for both study planning and data interpre‐
tation and is in line with the efforts to increase reproducibility and 
transparence in science.
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F I G U R E  9   Segmentation of cortex and white matter outputted 
from MRICloud (left) and FreeSurfer (right) of a brain with large 
degree of atrophy

 T1‐based volumes Fractional anisotropy (FA) – DTI

High ICC area Precentral (ICC = 0.99)
d	=	0.04/n = 20,260

Projection fibers at pons level (ICC = 0.89)
d = 0.1/n	=	3,234

Low ICC area Globus pallidus 
(ICC = 0.92)

d = 0.06/n	=	8,072

Inferior	cerebellar	peduncle	(ICC	=	0.43)
d = 0.69/n	=	70

Abbreviations: DTI, diffusion tensor images; ICC, intraclass correlation coefficients.

TA B L E  4   Power analysis illustrated for 
regions with high and low ICCs in the T1‐
volumetric analysis and DTI quantification 
performed with MRICloud
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