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ABSTRACT
Background  An elevated peripheral blood derived 
neutrophil-to-lymphocyte ratio (dNLR) is a negative 
prognostic marker for patients with non-small cell lung 
cancer (NSCLC) receiving chemotherapy and immune 
checkpoint inhibitors. Whether dNLR is also associated 
with clinical outcomes to first-line pembrolizumab among 
patients with NSCLC and a programmed cell death 
ligand 1 (PD-L1) Tumor Proportion Score (TPS) of ≥50% 
is uncertain. How dNLR relates to the tumor immune 
microenvironment is also unclear.
Methods  In two participating academic centers, we 
retrospectively analyzed the dNLR (defined as the absolute 
neutrophil count/white cell count – absolute neutrophil 
count) prior to initiation of first-line pembrolizumab 
in patients with metastatic NSCLC and a PD-L1 
TPS ≥50% and lacking genomic alterations in EGFR 
and ALK. An unbiased recursive partitioning algorithm 
was used to investigate an optimal dNLR cut-off with 
respect to objective response rate (ORR). Multiplexed 
immunofluorescence for CD8+, FOXP3+, PD-1+, and 
PD-L1 was performed on a separate cohort of NSCLCs to 
determine the immunophenotype associated with dNLR.
Results  A total of 221 patients treated with first-line 
pembrolizumab were included in this study. The optimal 
dNLR cut-off to differentiate treatment responders from 
non-responders was 2.6. Compared with patients with a 
dNLR ≥2.6 (n=97), patients with dNLR <2.6 (n=124) had 
a significantly higher ORR (52.4% vs 24.7%, p<0.001), 
a significantly longer median progression-free survival 
(mPFS 10.4 vs 3.4 months, HR 0.48, 95% CI 0.35 to 
0.66, p<0.001), and a significantly longer median overall 
survival (mOS 36.6 vs 9.8 months, HR 0.34, 95% CI 0.23 
to 0.49, p<0.001). After adjusting for age, sex, tobacco 
use, performance status, histology, serum albumin 
level, oncogenic driver status, and PD-L1 distribution 
(50%–89% vs ≥90%), a dNLR <2.6 was confirmed to be 
an independent predictor of longer mPFS (HR 0.47, 95% 
CI 0.33 to 0.67, p<0.001) and mOS (HR 0.32, 95% CI 

0.21 to 0.49, p<0.001). Among advanced NSCLC samples 
with a PD-L1 TPS of ≥50%, those with a dNLR <2.6 had 
significantly higher numbers of tumor-associated CD8+, 
FOXP3+, PD-1 +immune cells, and PD-1 +CD8+T cells 
than those with a dNLR ≥2.6.
Conclusions  Among patients with NSCLC and a PD-L1 
TPS ≥50%, a low dNLR has a distinct immune tumor 
microenvironment and more favorable outcomes to first-
line pembrolizumab.

BACKGROUND
Neutrophils are the most abundant myeloid-
derived leukocytes in the peripheral blood 
with a critical role in innate immunity after 
infection or injury.1 In cancer, neutrophils 
play a key function as a regulatory compo-
nent in the tumor microenvironment (TME), 
promoting stromal remodeling, metastasis, 
angiogenesis, thrombosis, and impairment of 
T-cell-dependent anti-tumor immunity.2 3 To 
date, most clinical data on the role of neutro-
phils in cancer have come from analyses of 
peripheral blood neutrophils rather than 
intratumoral (IT) neutrophils.4 5 Moreover, 
neutrophils accumulate in the peripheral 
blood, and a high neutrophil-to-lymphocyte 
ratio (NLR) is associated with poorer survival 
and a lower probability of response to immu-
notherapy in the advanced setting for various 
cancers.6–9

Immune evasion is a crucial process 
involved in cancer development. The mech-
anistic basis for immune escape is thought to 
occur through an increase in immunosup-
pressive molecules, such as programmed cell 
death ligand 1 (PD-L1), and an enrichment 
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of immunosuppressive cells, including regulatory T 
cells,10 myeloid-derived suppressor cells,11 and tumor-
associated neutrophils.3 Notably, recent evidence suggests 
that a low neutrophil cellular content in tumors may 
result in enhanced interferon-gamma T-cell signaling, 
increased CD8 +cytotoxic T cells, and improved efficacy 
of anti-PD(L)1 immune checkpoint inhibitors (ICIs) in 
non-small cell lung cancer (NSCLC).5 Whether NLR is 
a surrogate to identify a higher degree of infiltration of 
myeloid cells or correlates with diminished lymphocytes 
in the TME remains unknown.

In NSCLC, a baseline derived NLR (dNLR, defined as 
the absolute neutrophil count/white cell count – abso-
lute neutrophil count) is associated with prognosis irre-
spective of treatment modality for patients with metastatic 
disease.12 13 An exploratory retrospective analysis on 3987 
patients from pooled clinical trials showed that a baseline 
dNLR  ≥3 was independently associated with impaired 
progression-free survival (PFS) and overall survival (OS) 
to second-line immunotherapy.13 Currently, little is known 
about the impact of dNLR on first-line immunotherapy 
efficacy in advanced NSCLC. In addition, with multiple 
approved first-line immunotherapy  +/−chemotherapy 
regimens for patients with advanced NSCLC,14–19 the 
identification of easily determined, accessible biomarkers 
beyond PD-L1 Tumor Proportion Score (TPS) is needed 
to determine which patients may be less likely to respond 
to anti-PD-(L)1 monotherapy.

To determine whether dNLR influences immuno-
therapy efficacy in treatment-naïve patients with NSCLC 
and a PD-L1 TPS of ≥50%, we assessed the impact of the 
pretreatment dNLR on clinical outcomes to pembroli-
zumab, and examined the relationship between dNLR 
and tumor immunophenotype in NSCLC.

METHODS
Study population
We retrospectively analyzed data from two participating 
academic centers: the Dana-Farber Cancer Institute 
(DFCI) and the Massachusetts General Hospital (MGH). 
Patients were included if they had consented to insti-
tutional review board-approved medical record review 
protocols at each institution and had advanced NSCLC 
without EGFR mutations or ALK rearrangements and a 
PD-L1 TPS of ≥50%. Patients were eligible if they received 
at least one dose of commercial pembrolizumab mono-
therapy in the first-line setting. Patients who had previ-
ously received cytotoxic chemotherapy and/or radiation 
therapy for early-stage NSCLC were eligible if they had 
completed prior therapy  ≥6 months before the start of 
pembrolizumab. Patients were excluded if they had a 
concurrent hematological malignancy, untreated HIV 
infection, or recent infection, antibiotic use, or cortico-
steroid administration within 7 days prior to the blood 
draw used to assess dNLR.

The most proximal complete blood count (CBC) with 
differential and serum albumin levels obtained prior 

to pembrolizumab initiation (up to 30 days before the 
first treatment) and prior to cycle 2 were extracted from 
electronic medical records. We obtained data for an 
additional cohort of patients treated at the DFCI for vali-
dation of the continuous nature of dNLR analyzed in the 
primary cohort, including patients treated with immune 
checkpoints inhibitors in the second-line and beyond. 
The patient studies were conducted under the ethical 
guidelines of the Declaration of Helsinki.

The CBC and white cell differential was abstracted at 
the time of tumor biopsy.

Statistical analysis
Clinicopathological data and immunotherapy response 
data were abstracted from the electronic medical record. 
The objective response rate (ORR) and PFS were deter-
mined by blinded radiology (DFCI cohort) and investi-
gator (MGH cohort) review using Response Evaluation 
Criteria In Solid Tumors, V.1.1. PFS was defined as the 
time from pembrolizumab start to progression or death, 
and for those without progression, censoring was done 
at the time of the last disease assessment scan showing 
no progression. OS was calculated from the time of 
pembrolizumab start to death. Patients who were still 
alive at the time of data analysis were censored at the 
date of last contact. Event-time distributions were esti-
mated using the Kaplan-Meier method and compared 
with the log-rank test. All p values are two sided and CIs 
are at the 95% level. Linear correlations were evaluated 
using Spearman’s test, and categorical variables were 
evaluated using Fisher’s exact test. An unbiased recursive 
partitioning algorithm was used to investigate an optimal 
grouping of dNLR with respect to the ORR to first-line 
pembrolizumab, using the partykit function in R. Log-
rank tests were used to test for differences in event-time 
distributions, and Cox proportional hazards models were 
fitted to obtain estimates of HRs in univariate and multi-
variate models. Multivariable Cox regression was analyzed 
in each of independent cohorts (DFCI and MGH) and 
in the combined cohort. A backward stepwise selection 
was used to generate the final models. All p values are 
two sided and CIs are at the 95% level, with significance 
predefined to be at <0.05.

Programmed death ligand 1 testing
The PD-L1 TPS was determined by immunohistochem-
istry using validated anti-PD-L1 antibodies: E1L3N (Cell 
Signaling Technology, Danvers, Massachusetts, USA) and 
22C3 (Dako North America Inc, Carpinteria, California, 
USA).

Multiplexed immunofluorescence (ImmunoProfile)
Multiplexed immunofluorescence (mIF) was performed 
on samples from the DFCI by staining 5 µm formalin-
fixed, paraffin-embedded whole tissue sections with stan-
dard, primary antibodies sequentially and paired with a 
unique fluorochrome, followed by staining with nuclear 
counterstain/4′,6-diamidino-2-phenylindole (DAPI).20 21 
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All samples were stained for PD-L1 (clone E1L3N), PD-1 
(clone EPR4877(2)), CD8 (clone 4B11), FOXP3 (clone 
D608R), cytokeratin (clone AE1/AE3), and DAPI 
(nuclear counterstain). Each sample had a single slide 
stained and scanned at ×20 resolution by a Vectra Polaris 
imaging platform. Regions of interest (ROIs) were 
defined for each image, and only these regions were used 
for quantitative image analysis currently. Within each 
ROI, InForm Image Analysis software (PerkinElmer/
Akoya) was run to phenotype and score cells based on 
biomarker expression. A custom script quantified the 
number/percentage of cells which are positive for rele-
vant biomarkers in specific tissue regions. Each ROI was 
divided into one or more of these defined regions: IT, 
which was defined as the region of the slide consisting 
of tumor beyond the tumor-stroma interface (TSI); TSI, 
which was defined as the region within 40 microns to 
either side of the defined border between tumor and 
stroma; and total (IT+TSI). Cell count was calculated per 
ROI and averaged (unweighted) across ROIs, reported as 
count per millimeter squared±SE. Statistical significance 
of differential cell type enrichment between groups was 
estimated with Wilcoxon rank sum test.

RESULTS
Patient population and dNLR
A total of 221 patients met eligibility criteria and were 
included in this study, with 147 (66.5%) in the DFCI 
cohort and 74 (33.5%) in the MGH cohort. The baseline 
clinicopathological characteristics of the 221 patients 
with advanced NSCLC (EGFR and ALK negative) and a 
PD-L1 TPS ≥50% who received first-line pembrolizumab 
are shown in table  1. The median age was 70 (range: 
42–92), 95.9% were current/former smokers, and 80.1% 
had adenocarcinoma histology. In the entire cohort of 
patients, the median baseline dNLR was 2.5 (range 0.87–
13.31). In 86.9% of cases (n=192), the CBC used for anal-
ysis was collected on the same day prior to the first dose of 
pembrolizumab (range 0–21 days prior to infusion).

Efficacy of pembrolizumab according to dNLR group
Among 221 patients with NSCLC and high-level PD-L1 
treated with first-line commercial pembrolizumab, the 
ORR was 40.2% (95% CI 33.1% to 47.3). At a median 
follow-up of 26.9 months (95% CI 23.6 to 31.7), the 
median PFS (mPFS) was 6.8 months (95% CI 5.1 to 8.6), 
and the median OS (mOS) was 24.8 months (95% CI 17.8 
to 30.7) calculated from the start date of immunotherapy. 
Patients who experienced a complete or partial response 
to pembrolizumab had a significantly lower median dNLR 
than patients with a best objective response of stable or 
progressive disease in the combined DFCI +MGH cohort 
(dNLR 2.27 vs 2.72, p<0.001, figure 1A), as well as in the 
individual DFCI and MGH cohorts (online supplemental 
figure 1).

An unbiased recursive partitioning algorithm was 
used to assess for an optimal dNLR value with respect to 

ORR (online supplemental figure 2), which identified a 
primary split at a dNLR level of 2.59. This dNLR value was 
rounded up to 2.6 for further investigation; 124 patients 
(56.1% of the combined cohort) had a dNLR  <2.6 and 
97 patients (43.9% of the combined cohort) had a 

Table 1  Clinical and pathological characteristics of the 221 
patients

Clinical characteristic Overall cohort n=221

Age, median (range) 70 (42–92)

Sex

 � Male 100 (45.2)

 � Female 121 (54.8)

Smoking status

 � Current/former 212 (95.9)

 � Never 9 (4.1)

ECOG PS

 � PS 0–1 173 (79.4)

 � PS 2 45 (20.6)

 � N.A. 3

Histology

 � Adenocarcinoma 177 (80.1)

 � Squamous 23 (10.4)

 � NSCLC NOS 21 (9.5)

Oncogene driver

 � KRAS 80 (39.2)

 � BRAF 14 (6.9)

 � Other drivers* 19 (9.3)

 � None identified 91 (44.6)

 � None assessed 17

Allbumin

 � ≥3.5 g/dL 159 (76.4)

 � <3.5 g/dL 49 (23.6)

 � N.A. 13

PD-L1 expression

 � ≥90% 100 (45.2)

 � 50%–89% 121 (54.8)

dNLR level

 � Median (range) 2.5 (0.87–13.31)

Blood draw (CBC)

 � Same day of infusion 192 (86.9)

 � 1–30 days before infusion 29 (13.1)

*Other drivers HER2, MET, and RET
CBC, complete blood count; dNLR, derived neutrophil-to-
lymphocyte ratio; ECOG PS, Eastern Cooperative Oncology Group 
Performance Status; N.A, not available; NSCLC NOS, non-small 
cell lung cancer not otherwise specified; PD-L1, programmed cell 
death ligand 1.

https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536


4 Alessi JV, et al. J Immunother Cancer 2021;9:e003536. doi:10.1136/jitc-2021-003536

Open access�

dNLR  ≥2.6. Baseline clinicopathological characteristics 
were generally balanced between the two cohorts in terms 
of age, sex, performance status, tobacco use, histology, 
KRAS mutation status, presence of other potentially targ-
etable driver mutations (BRAF, MET, HER2, RET), and 
PD-L1 TPS distribution (50%–89% vs  ≥90%). Tumor 
mutational burden (TMB) was available for a subset of 
patients (n=111, 50.2%), and there was no significant 
difference between the groups. Higher albumin levels 
≥3.5 g/dL were more common among patients with a 
dNLR <2.6 than ≥2.6 (p<0.001, table 2).

In patients with a dNLR  <2.6, the ORR to pembroli-
zumab was 52.4% (95% CI 41.4% to 63.4%), which was 
significantly higher than the ORR of 24.7% (95% CI 
16.2% to 33.2%) observed in patients with a dNLR ≥2.6 
(p<0.001, figure 1B). The mPFS was significantly longer 
in the dNLR  <2.6 group compared with dNLR  ≥2.6 
group (10.4 vs 3.4 months, HR 0.48, 95% CI 0.35 to 0.66, 
p<0.001, figure 1C). The mOS was also significantly longer 
in the dNLR <2.6 group compared with the dNLR ≥2.6 
group (36.6 vs 9.8 months, HR 0.34, 95% CI 0.23 to 0.49, 
p<0.001, figure 1D). In each of the independent cohorts 
(DFCI and MGH), a dNLR  <2.6 was associated with a 
significantly higher ORR, longer mPFS, and longer mOS 
to first-line pembrolizumab (online supplemental figure 
3) (online supplemental table 1).

We also found that the ORR, PFS, and OS rates 
improved with decreasing dNLR values when dNLR was 
divided into tertiles (online supplemental figure 4A-C) 
or quartiles (online supplemental figure D-F) in the 
combined cohort of 221 patients. We found that a dNLR 
in the lowest vs highest quintile was associated with higher 
ORR (62.2 vs 18.2%), longer mPFS (17.1 vs 3.2 months), 
and longer mOS (not reached vs 7.4 months) to first-line 
pembrolizumab (figure 2). Individual immune cells and 
outcomes to pembrolizumab are shown in online supple-
mental figure 5). Highlighting the continuous nature of 
dNLR, we also observed the impact of increasing dNLR 

values and worsening clinical outcomes to ICI in a larger 
cohort of patients (n=924, (online supplemental table 2) 
who received immunotherapy as any line of therapy (first-
line or subsequent line, online supplemental figure 6).

As a very high PD-L1 expression levels (TPS ≥90%) are 
associated with improved clinical outcomes to pembroli-
zumab in the first-line setting,22 23 we also investigated 
the impact of dNLR among NSCLCs with a PD-L1 TPS 
of  ≥90% and 50%–89%. In the cohort of 221 cases, 

Figure 1  (A) Derived neutrophil-to-lymphocyte ratio (dNLR) 
from patients with NSCLC who experienced complete/partial 
response (CR/PR) or stable/progressive disease (SD/PD) as 
the best objective response to pembrolizumab. (B) Objective 
response rate, (C) progression-free survival (PFS), and (D) 
overall survival (OS), in patients with a dNLR <2.6 vs ≥2.6. 
NSCLC, non-small cell lung cancer. NR (not reached).

Table 2  Distribution of clinical characteristics by dNLR 
level

Clinical characteristic
dNLR <2.6
n=124

dNLR ≥2.6
n=97 P value

Age

 � <70 59 (55.3) 51 (52.6) 0.49

 � ≥70 65 (44.7) 46 (47.4)

ECOG PS

 � PS 0–1 100 (81.9) 73 (76.0) 0.31

 � PS 2 22 (18.1) 23 (24.0)

 � NA 2 1

Sex

 � Male 59 (47.6) 41 (42.3) 0.49

 � Female 65 (52.4) 56 (57.7)

Smoking status

 � Current/former 119 (96.0) 93 (95.9) 0.61

 � Never 5 (4.0) 4 (4.1)

Histology

 � Adenocarcinoma 105 (84.7) 72 (74.2) 0.07

 � Squamous 8 (6.4) 15 (15.5)

 � NOS 11 (8.9) 10 (10.3)

 � TMB, median (mut/Mb) 9.9 9.9 0.60

Oncogene driver

 � KRAS 39 (33.3) 41 (47.1) 0.08

 � BRAF 8 (6.8) 6 (6.9)

 � Other drivers* 15 (12.9) 4 (4.6)

 � None identified 55 (47.0) 36 (41.4)

 � None assessed 7 10

Allbumin

 � ≥3.5 g/dL 104 (86.7) 55 (62.5) <0.001

 � <3.5 g/dL 16 (13.3) 33 (37.5)

 � NA 4 9

PD-L1 expression

 � ≥90% 54 (43.5) 46 (47.4) 0.58

 � 50%–89% 70 (56.5) 51 (52.6)

*Other drivers, HER2, MET, and RET.
dNLR, derived neutrophil-to-lymphocyte ratio; ECOG PS, Eastern 
Cooperative Oncology Group Performance Status; N.A., not 
available; NSCLC NOS, non-small cell lung cancer not otherwise 
specified; PD-L1, programmed cell death ligand 1; TMB, tumor 
mutational burden.

https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536
https://dx.doi.org/10.1136/jitc-2021-003536


5Alessi JV, et al. J Immunother Cancer 2021;9:e003536. doi:10.1136/jitc-2021-003536

Open access

100 (45.2%) and 121 (54.8%) of NSCLCs had a PD-L1 
expression level of  ≥90% and 50%–89%, respectively. 
In the PD-L1 TPS  ≥90% subgroup, a dNLR grouping 
of <2.6 vs ≥2.6 was also significantly associated with immu-
notherapy efficacy in terms of ORR (59.3% vs 34.8%; 
p=0.01), mPFS (13.6 months vs 4.0 months; HR 0.52, 95% 
CI 0.32 to 0.86; p=0.01), and mOS (40.1 months vs 13.2 
months; HR 0.34, 95% CI 0.19 to 0.63; p<0.001) (online 
supplemental figure 7A-C). Similarly, among cases with a 
PD-L1 TPS of 50%–89%, a dNLR <2.6 conferred a higher 
ORR (47.1% vs 15.7%; p<0.001), a significantly longer 
mPFS (8.4 months vs 2.8 months; HR 0.40, 95% CI 0.27 
to 0.61; p<0.001), and a significantly longer mOS (36.6 
months vs 8.1 months; HR 0.33, 95% CI 0.20 to 0.54; 
p<0.001) compared with cases with dNLR  ≥2.6 (online 
supplemental figure 7D-F).

Multivariable analysis
After adjusting for age, sex, tobacco use, performance 
status, histology, serum albumin level, oncogenic driver 
status, and PD-L1 distribution (50%–89% vs  ≥90%), 
the presence of a dNLR <2.6 was confirmed to be inde-
pendently associated with longer mPFS (HR 0.47, 95% CI 
0.33 to 0.67, p<0.001) and mOS (HR 0.32, 95% CI 0.21 
to 0.49, p<0.001) in multivariable analysis (online supple-
mental table 3). A low dNLR  <2.6 also demonstrated 
improved immunotherapy outcomes in univariate and 
multivariable analysis in the independent DFCI (online 
supplemental table 4) and MGH cohorts (online supple-
mental table 5

Early dNLR change correlates with clinical outcomes to 
pembrolizumab
We next examined whether a change in the dNLR 
between baseline to the second cycle of pembrolizumab 
was associated with clinical outcomes. Among patients 
who initially had an unfavorable baseline dNLR  ≥2.6 
prior to starting first-line pembrolizumab we found that a 
decrease in dNLR at cycle 2 was associated with a higher 
ORR (37% vs 11.1%; p=0.02), longer mPFS (4.1 months vs 
2.1 months; HR 0.50, 95% CI 0.30 to 0.83; p=0.007), and 
longer mOS (18.1 months vs 6.0 months; HR 0.40, 95% 
CI 0.23 to 0.69; p<0.001), when compared with patients 
with an increase in dNLR at cycle 2 (figure  3A–C). 
By contrast, among patients with a favorable baseline 
dNLR <2.6, we did not observe significant differences in 

clinical outcomes to pembrolizumab whether there was 
a subsequent increase or decrease in dNLR at cycle 2 
(figure 3D–F). Among patients with a decrease in dNLR 
at cycle 2, the level of decrease (<25% vs ≥25%) did not 
significantly impact clinical outcomes to pembrolizumab 
(online supplemental figure 8).

Association of dNLR with immunophenotype of the TME
To better understand how a peripheral blood dNLR might 
be associated with improved tumorous responses to ICIs, 
we performed mIF for CD8, FOXP3, PD-1, and PD-L1 on 
a separate cohort of 243 NSCLCs at DFCI (n=141 early 
stage; n=102 advanced stage) to correlate dNLR with 
tumor immunophenotype.

Compared with cases with dNLR  ≥2.6 (n=84), we 
found that patients with a dNLR  <2.6 (n=159) at the 
time of tumor biopsy had significantly higher numbers 
of CD8+, PD-1  +immune cells, and PD-1  +CD8+T cells, 
IT, within the TSI, and in total (IT+TSI) (figure 4). Addi-
tionally, patients with a dNLR <2.6 also had significantly 
higher number of FOXP3 +T cells both IT and in total, 
as shown in figure 4. By contrast, the PD-L1 expression 
levels on tumor cells, on immune cells, and in total, were 
not significantly different between dNLR high and low 
groups (online supplemental figure 9). We also observed 
that the immune cell subsets increased with decreasing 
dNLR values when dNLR was divided into quartiles 
and quintiles (online supplemental figures 10 and 11). 
Among the subset of NSCLCs with advanced stage disease 
and a PD-L1 TPS ≥50% by IHC (n=46), a dNLR <2.6 was 
still significantly associated with enrichment of IT CD8+, 
PD-1+, PD-1  +CD8+, and FOXP3  +cells (online supple-
mental figure 12). In this subgroup, 33 of 46 cases subse-
quently received first-line pembrolizumab, with a median 
interval between biopsy with ImmunoProfile and treat-
ment initiation of 40 days (range 6–180).

Figure 3  (A) Objective response rate, (B) progression-free 
survival (PFS), and (C) overall survival (OS) to pembrolizumab 
in patients with a baseline dNLR of ≥2.6, followed by 
a decrease or an increase in dNLR at cycle 2 (C2) of 
pembrolizumab. (D) Objective response rate, (E) PFS, and 
(F) OS to pembrolizumab in patients with a baseline dNLR 
of <2.6, followed by a decrease or an increase in dNLR at 
cycle 2 (C2) of pembrolizumab. dLNR, derived neutrophil-to-
lymphocyte ratio. NR (not reached).

Figure 2  (A) Objective response rate, (B) progression-free 
(PFS), and (C) overall survival (OS) by quintiles of derived 
neutrophil-to-lymphocyte ratio (dNLR) values in the cohort of 
first-line pembrolizumab-treated patients.
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An increasing dNLR was associated with decreases in 
CD8+, PD-1+, PD-1  +CD8+, and FOXP3  +cells IT and 
in total but not at the tumor-stromal interface (online 
supplemental figure 13). An increasing dNLR was asso-
ciated with increasing tumorous PD-L1 expression, but 
there was no significant association with PD-L1 expres-
sion on immune cells or in total (online supplemental 
figure 14).

DISCUSSION
In this study, we report that among patients with NSCLC 
and a PD-L1 expression level ≥50% treated with first-line 
pembrolizumab, clinical outcomes are improved with 
decreasing dNLR levels and particularly a dNLR  <2.6. 
Additionally, for patients with an unfavorable baseline 
dNLR  ≥2.6 prior to starting pembrolizumab, a subse-
quent decrease in dNLR at cycle 2 of pembrolizumab was 
associated with better clinical outcomes than for patients 
who experienced an increase in dNLR at cycle 2. We also 
demonstrate that an increased peripheral blood dNLR is 
associated with decreased immune cells within the TME. 
To our knowledge, this study represents the largest retro-
spective cohort of patients with advanced NSCLC and a 
PD-L1 TPS  ≥50% treated with first-line pembrolizumab 
and dNLR analysis to date.

PD-L1 expression levels often impact current treatment 
decisions in the first-line setting for patients with NSCLC 
lacking targetable genomic alterations.14 24 Although 
high levels of PD-L1 on tumor cells enrich for response 
to immunotherapy, less than half of patients with NSCLC 
and a PD-L1 TPS  ≥50% respond to pembrolizumab 
monotherapy.14 A lingering question is whether to use 
single-agent PD-(L)1 inhibition or a PD-(L)1 inhibitor 
plus chemotherapy in patients with NSCLC and a PD-L1 
level of ≥50% since there has been no direct comparison 
between the two regimens in this population. Our results 
suggest that patients with NSCLC and a low baseline 

dNLR might have favorable outcomes to pembrolizumab 
monotherapy and avoid the potential added toxicities of 
immunotherapy plus chemotherapy.22 23

Our observation that an early increase in dNLR between 
cycle 1 and cycle 2 of pembrolizumab in patients with a 
baseline dNLR value ≥2.6 is associated with worse clinical 
outcomes may identify individuals who are at greatest risk 
for disease progression on pembrolizumab monotherapy 
prior to radiological assessment. In these patients, an 
early identification of non-response to pembrolizumab 
through dNLR monitoring could potentially inform how 
to implement alternative therapeutic approaches in a 
timely fashion. In contrast to a previous report showing 
that a moderate decrease in NLR, but not a steep decrease, 
was associated with response to immunotherapy,9 we did 
not find that a drop in dNLR by ≥25% vs<25% impacted 
ORR, PFS, or OS to pembrolizumab. While the prior study 
was also conducted on a large cohort of patients, base-
line clinicopathological characteristics were not reported 
among those who received ICIs; therefore, whether 
imbalances in such features and other contributors could 
have impacted the outcomes is unknown. Lastly, a recent 
retrospective analysis of 115 patients with NSCLC treated 
with PD-(L)1 inhibitors showed that a low pretreatment 
NLR may predict for the occurrence of immune-related 
adverse events (irAEs); whether dNLR changes may 
further correlated with the risk of irAE develop needs to 
be assessed in future studies.25

There are an increasing number of continuous 
biomarkers associated with ICI efficacy, including PD-L1 
expression, infiltrating immune cells, and TMB.26–28 Like-
wise, dNLR appears to behave in a continuous fashion, 
both in terms of therapeutic outcomes to ICI, and also 
with the tumor immunophenotype. To gain insight of 
the potential mechanism by which dNLR in the periph-
eral blood was associated with PD-1 efficacy in NSCLC, 
we interrogated the immune cell infiltrates by mIF, and 
found that tumors display distinct immunophenotypes 
according to dNLR level. In our cohort of NSCLC samples, 
increasing dNLR values were associated with decreases in 
tumor immune infiltrates. Importantly, increasing levels 
of CD8  +T cells and PD-1 expression by CD8  +T cells 
within the TME of NSCLCs have shown improved clinical 
outcomes with PD-1 blockade.29 Therefore, integration of 
TMB and PD-L1 expression with dNLR may refine treat-
ment selection for patients with NSCLC.6 30 In addition, 
examination of the immunophenotype of circulating 
immune cells along with dNLR may help determine 
which patients are more likely to respond to ICIs.10 31

Our study is limited by its retrospective nature. Further-
more, a different dNLR cut-off of 2.6 was used in this 
study compared with a dNLR of 3 previously reported in 
NSCLC.32 However, the dNLR threshold of 3 was previ-
ously derived from patients with melanoma receiving 
ipilimumab.32 33 Here, using an unbiased approach, we 
identified a dNLR cut-off of 2.6 as the strongest discrim-
inator of response to first-line pembrolizumab in two 
independent cohorts of NSCLC. In contrast to similar 

Figure 4  Distribution of intratumoral, tumor-stroma 
interface, and total (intratumoral +tumor-stroma interface) 
(A) CD8 +T cells, (B) PD-1 +immune cells, (C) PD-1 +CD8+T 
cells, and (D) FOXP3 +T cells in tumors according to derived 
neutrophil-to-lymphocyte ratio (dNLR) group (<2.6 vs ≥2.6).
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studies that included patients on corticosteroid therapy 
at the time of dNLR assessment, our study only examined 
cases with no history of steroid use, which may reflect a 
more accurate relationship between dNLR and ICI effi-
cacy because corticosteroid administration can increase 
the peripheral neutrophil count.34 Lastly, the predictive 
role of dNLR for first-line treatment with pembrolizumab 
in patients with NSCLCs and a PD-L1 TPS ≥50% needs to 
be validated prospectively.

In conclusion, NSCLCs with PD-L1 TPS ≥50% and a low 
dNLR have a distinct immune microenvironment and 
more favorable outcomes to first-line pembrolizumab. 
Therefore, additional strategies to antagonize neutro-
phils and correlated pathways may represent a viable 
secondary therapeutic strategy to enhance ICI treatment 
outcomes. Furthermore, incorporation of dNLR may 
have implications for treatment decision making, guide 
the design of clinical trials, and the direction of future 
research in this area.
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