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Abstract: We report the phase behavior of amorphous/semicrystalline conjugated polymer blends
composed of low bandgap poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)
-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) and poly{(N,N′-bis(2-octyldodecyl)naphthalene
-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)). As usual in polymer
blends, these two polymers are immiscible because ∆Sm ≈ 0 and ∆Hm > 0, leading to ∆Gm > 0,
in which ∆Sm, ∆Hm, and ∆Gm are the entropy, enthalpy, and Gibbs free energy of mixing, respectively.
Specifically, the Flory–Huggins interaction parameter (χ) for the PCPDTBT /P(NDI2OD-T2) blend was
estimated to be 1.26 at 298.15 K, indicating that the blend was immiscible. When thermally analyzed,
the melting and crystallization point depression was observed with increasing PCPDTBT amounts in
the blends. In the same vein, the X-ray diffraction (XRD) patterns showed that the π-π interactions
in P(NDI2OD-T2) lamellae were diminished if PCPDTBT was incorporated into the blends. Finally,
the correlation of the solid-liquid phase transition and structural information for the blend system
may provide insight for understanding other amorphous/semicrystalline conjugated polymers used
as active layers in all-polymer solar cells, although the specific morphology of a film is largely affected
by nonequilibrium kinetics.

Keywords: phase behavior; conjugated polymer; polymer blend; all-polymer solar cells; melting
point depression; amorphous; semicrystalline; polymer thermodynamics

1. Introduction

Conjugated polymer blends composed of polymer donor (PD) and polymer acceptor (PA) have
been used as an active material for all-polymer solar cells (all-PSCs), leading to a high power conversion
efficiency (PCE) of ~10–14.4% [1–8]. Here, when PD and PA are mixed together, the goal of this mixing
is not to make a miscible blend unlike the versatile commercial blends, e.g., poly(vinyl chloride)
(PVC)-butadiene/acrylonitrile copolymer (NBR) and polystyrene-poly(2,6-dimehtyl -1,4-phenylene
oxide) (PPO) blends [9], but an immiscible (or partially miscible) blend for the separation of Frenkel
excitons at the PD/PA heterojunction [10,11]. In general, the ideal size of phase-separated domains
is ~10–20 nm because the exciton has a limited diffusion length (LD = ~10 nm) due to low dielectric
constants of organic macromolecules [12–14]. However, if two homopolymers are mixed, the polymer
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blends may undergo macrophase separation because of the increased Gibbs free energy of mixing [15].
On the other hand, when PD and PA are linearly linked by covalent bonds, these block copolymers
may undergo microphase separation into ordered structures, such as cubic sphere, hexagonal cylinder,
bicontinuous gyroid, and lamellae [16,17]. Hence, considering the necessity of nanoscale phase
separation (much smaller than micro-/macro-scale domains) for organic photovoltaics (OPV), we need
to understand the polymer–polymer thermodynamic behavior in the PD/PA blend films.

If PD and PA are amorphous, there are two types of phase separation in liquid–liquid (L–L) phase
transition: nucleation and growth (NG), and spinodal decomposition (SD) [18,19]. Here, NG proceeds
in the metastable region, whereas SD takes place in the unstable region without any energy barrier.
However, if PD and/or PA are semicrystalline, the liquid–solid (L–S) phase transition (crystallization)
also takes place with L–L phase transition [20–22]. Indeed, in many PA/PD blend systems, they contain
a stereoregular (or regioregular) polymer, leading to both L–L and L–S phase transition, directly
affecting the morphologies of PD/PA blend films. Importantly, the pre-formed aggregation through
L–S phase transition in OPV blend solutions may play a significant role in generating nanoscale phase
domains instead of macrophase separation [20].

In previous studies, we reported the order-disorder phase equilibria of regioregular
poly(3-hexylthiophene-2,5-dyil) (r-reg P3HT) solution [20]. Then, we also studied the phase
diagrams of low bandgap poly[2,6-(4,4-bis(2-ethylhexyl)-4H–cyclopenta[2,1-b;3,4-b′]dithiophene)
-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT) solution as a function of solvent, polymer, and chain
length [21]. Recently, we investigated the phase behavior of crystalline/crystalline conjugated
polymer blends, composed of r-reg P3HT and poly{(N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8
-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)} (P(NDI2OD-T2)). Then, we also explained the
upper critical solution temperature (UCST) behavior of each polymer solution as a function of solvent
species, for which the Flory–Huggins lattice theory was employed [22].

In this study, we further extended our works to an amorphous/crystalline conjugated polymer
blend, for which PCPDTBT and P(NDI2OD-T2) were chosen as a model system. Here, PCPDTBT is a
p-type polymer acting as PD [23–26]. Interestingly, if PCPDTBT with bulky branched alkyl side chains
(ethyl hexyl groups) has a relatively low number average molecular weight (Mn ≈ 3.2 kg/mol), it shows
amorphous or marginally crystallizable behavior, indicating that the chain ends (just like impurities)
may disturb polymer crystallization process [21]. However, PCPDTBT with high Mn ≈ 35 kg/mol
could be highly crystallized when this polymer was processed with exposure to chlorobenzene (CB)
vapors and/or with some solvent additives such as 1,8-diiodooctane (DIO), 1,8-octanedithiol (ODT),
and 1,8-dichlorooctane (DCO) [23–26]. Note that in such a case, we may not rule out the effect of
substrate on polymer’s crystallization. On the other hand, P(NDI2OD-T2) is a highly crystallizable
n-type polymer, acting as PA in all-PSCs or n-channels, exhibiting very high electron mobility (µn ≈

0.85 cm2/Vs) in the top-gate bottom-contact (TGBC) organic thin-film transistor (OTFT) [27–33]. Here,
it is notable that P(NDI2OD-T2)’s glass transition temperature (Tg) was reported to be −70 ◦C and
−40 ◦C, based on dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC),
respectively [34,35]. Hence, inspired by the important properties of these two polymers [21,23–35],
we further studied the thermodynamic behavior of PCPDTBT/P(NDI2OD-T2) blends based on the
thermal and structural analyses. Specifically, the melting phenomena of crystalline P(NDI2OD-T2) with
added amorphous PCPDTBT material was investigated using DSC and confirmed by X-ray diffraction
(XRD), in which π-stacking was observed to be dependent on the amount of amorphous PCPDTBT in
the blend film. Finally, the morphologies of the pure polymer and 1:1 blend films were investigated
using the tapping-mode atomic force microscopy (AFM).



Polymers 2020, 12, 1726 3 of 12

2. Materials and Methods

2.1. Materials

P(NDI2OD-T2) [Mn = 32.1 kg/mol, Mw = 90.0 kg/mol, polydispersity index (PDI) = 2.8,
and molecular formula = (C62H88N2O4S2)n] was purchased from 1-Material, Inc. (Quebec, Canada).
PCPDTBT [Mn = 4.50 kg/mol, Mw = 13.5 kg/mol, PDI = 3.0, and molecular formula = (C31H38N2S3)n],
chlorobenzene (CB), and chloroform (CF) were provided from Sigma-Aldrich, Inc. (Taufkirchen,
Germany). All these materials were used as received without further purification.

2.2. Film Processing

Two conjugated polymers, PCPDTBT and P(NDI2OD-T2), were dissolved in the mixed solvents,
CB:CF = 1:1 (wt. ratio) according to literature reports [36–38]. The total concentration of the blend
system was 10 mg/mL. After the solvent dissolved completely, the samples were spin-coated on a
glass substrate with the dimensions of 1.5 × 1.5 cm2 for thin film deposition. Prior to spin-coating,
the glass substrate was sequentially cleaned in deionized water, chloroform, and isopropanol for 5 min,
respectively, and then dried under a nitrogen atmosphere. The condition of spin-coating was 2000 rpm
for 15 s in the air, leading to the film thickness of about 140 nm. The annealing condition for a film was
180 ◦C for 15 min.

2.3. Thermal Property Characterization

Thermal analysis was performed using DSC (2920-DSC, TA Instruments, Champaign, IL, USA) to
characterize the transition temperature of polymers at the scan rate of 10 ◦C/min under N2. Thermal
decomposition of polymers was monitored using thermogravimetric analysis (TGA; a METTLER
TOLEDO STARe System, Warsaw, Poland), in which samples were heated from 50 to 600 ◦C using a
conventional heating ramp with a scan rate of 10 ◦C/min under N2.

2.4. Film Characterization

X-ray diffraction (XRD) measurements (PANalytical Inc., Malvern, United Kingdom; PX 3040 PR;
Cu Kα radiation; λ = 1.5418 Å) were performed to examine the structure and ordering of a film on glass
substrate at room temperature. According to the XRD’s instrumental set-up condition, the diffraction
angle (2θ) ranged from 10◦ to 100◦. The morphologies of the polymer films were characterized by the
tapping-mode AFM (XE-100 Park Systems, Mannheim, Germany). Here, the data were analyzed using
the software Park Systems XEI.

3. Results

Figure 1 shows the chemical structures of (a) P(NDI2OD-T2) and (b) PCPDTBT. In the previous
works, we reported that the solubility parameter (δ) of P(NDI2OD-T2) is 7.99 [22], whereas that of
PCPDTBT (Mn = 3.2 kg/mol and PDI = 2.2) is 10.70 [21]. Note that in this work, PCPDTBT has Mn

= 4.5 kg/mol and PDI = 3.0, indicating a very minor difference between the two PCPDTBT samples.
Hence, based on the former δ data, the Flory–Huggins interaction parameter (χi j) [22,39,40] for the
PCPDTBT/P(NDI2OD-T2) polymer blends could be estimated using Equation (1),

χi j =
V̂s

RT
(δi − δ j)

2 (1)

where V̂s (= lattice site volume) and δi or j were the molar volume of a solvent [V̂s = (112.56 g/mol)/(1.11
g/cm3) = 101.41 cm3/mol for CB] and the solubility parameter [subscript i or j = 1, 2; PCPDTBT = 1
and P(NDI2OD-T2) = 2]. R and T were the gas constant and temperature (K). Then χ12 was estimated
to be 374.82 K/T, indicating that χ12 = 1.26 at T = 298.15 K and χ12 = 0.5 at T = 749.64 K. Hence,
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considering the critical value of interaction parameter [41], (χ12)crit =
1
2 ·

(
1
√

r1
+ 1
√

r2

)2
≈ 0.022 and

χ12 > (χ12)crit, we conclude that PCPDTBT and P(NDI2OD-T2) were immiscible as usual for many

polymer–polymer mixtures. Here, we used r1 =

(Mn,1
ρ1

)
(

MWs
ρs

) = ( 4500
1 )

( 112.56
1.11 )

≈ 44 and r2 =

(Mn,2
ρ2

)
(

MWs
ρs

) = ( 32100
1.1 )

( 112.56
1.11 )

≈ 288,

in which r1 and r2 were the relative molar volumes of component 1 and 2, Mn,1 and Mn,2 were the
number average molecular weights of component 1 and 2, MWs was the molecular weight of a solvent
(CB), and ρ1, ρ2, and ρs were the densities of component 1, 2, and solvent, respectively. At this moment,
keep in mind that the Flory–Huggins theory should be understood qualitatively, not quantitatively.
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Figure 1. Chemical structures of (a) P(NDI2OD-T2) (poly{(N,N′-bis(2-octyldodecyl)naphthalene
-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)}) and (b)
PCPDTBT (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)
-alt-4,7(2,1,3-benzothiadiazole)]), respectively.

As demonstrated in the aforementioned example, the PCPDTBT/P(NDI2OD-T2) mixture was
an immiscible blend, which could be understood based on ∆Gm = ∆Hm − T∆Sm where ∆Gm was the
Gibbs free energy of mixing, ∆Hm was the enthalpy of mixing, and ∆Sm was the entropy of mixing.
When mixing long chain macromolecules, ∆Sm ≈ 0 and ∆Hm > 0 leading to ∆Gm > 0. Note that the

stability condition for a single phase is
(
∂2∆Gm
∂φ i

2
)

T,P
> 0 where φi is volume fraction of component i

and P is pressure. Hence, most polymer–polymer blends including PCPDTBT and P(NDI2OD-T2) are
immiscible but phase-separated. Usually, the same structural units are more attractive to each other
than different ones, leading to aggregation and clusters, i.e., the phase separation of blends.

Figure 2 exhibits TGA data, indicating that PCPDTBT and P(NDI2OD-T2) generally decompose
at around ~400–500 ◦C in organic molecules. Figure 3 shows the DSC thermograms for the
PCPDTBT/P(NDI2OD-T2) blends. As shown in Figure 3a, P(NDI2OD-T2) was a semicrystalline
polymer with Tm = 324 ◦C (1st heating) or 318 ◦C (2nd heating) and Tc = 294 ◦C (1st cooling).
On the other hand, PCPDTBT did not show any melting point, indicating it was a typical amorphous
polymer [42]; see Figure 3b–d. About the glass transition temperature (Tg), P(NDI2OD-T2) showed it at
−44 ◦C in the DSC thermogram, which agreed with Gu et al.’s report (Tg = −40 ◦C) within experimental
uncertainties [35]. Although in the previous work [21], PCPDTBT showed Tg ≈ 112 ◦C, in this work we
could not observe it clearly. That is because, as shown in Figure 3d, some artifacts were observed for
all the samples around 100 ◦C from the DSC instrumental conditions. Note that Tg is a second order
transition, but in many conjugated polymer systems, it is hard to determine Tg due to a weak signal in
DSC thermal curves. It may be from the rigid or semirigid backbone structure of conjugated polymers,
leading to relatively small free volume (and heat capacity) changes around the second-order transition
when compared to flexible coil polymers.



Polymers 2020, 12, 1726 5 of 12

Polymers 2020, 12, x 5 of 13 

 

 
Figure 2. TGA curves for P(NDI2OD-T2), P(NDI2OD-T2)/PCPDTBT blend, and PCPDTBT. 

Note that, in this work, our research interest lies primarily in the S-L phase equilibria (the 1st 

order transition) of conjugated polymer blends composed of the semicrystalline P(NDI2OD-T2) and 
the amorphous PCPDTBT polymers because it is relatively more clear than other 2nd order 
transition. As shown in Figure 3a, the 1st heating curve, the melting point is depressed from 323.35 
°C at 100% P(NDI2OD-T2) to 317.83 °C at 80% to 312.79 °C at 50%, which is a trend observed in the 
1st cooling and 2nd heating curves, as well. Here, note that in Figure 3b, at 
PCPDTBT:P(NDI2OD-T2) = 50:50, the melting peak looks very broad, indicating that, in a blend 
system, a semicrystalline component should be required at least at 50% for observing a clear and 
sharp Tm peak. Then, the results were summarized in Figure 4, displaying both the Tm and Tc 
depression, in which the average difference (ΔT = Tm – Tc) between Tm and Tc is 30.0 ± 1.6 °C in the 
first-cycling thermal curve. The origin of this depression comes from the new equilibrium between 
crystalline lamellar and amorphous (liquid) chains of P(NDI2OD-T2) when a diluent PCPDTBT was 
introduced into the semicrystalline P(NDI2OD-T2) system for forming polymer blends. Specifically, 
PCPDTBT has one order lower molecule weight, Mn = 4.5 kg/mol compared to P(NDI2OD-T2) with 
Mn = 32.1 kg/mol, indicating that many available end groups in PCPDTBT may serve as impurities in 
blend systems. However, a liquid state PCPDTBT chain molecule itself may act as impurities in 
semicrystalline P(NDI2OD-T2) blends, depressing the melting point of the polymer blend systems. 

Figure 2. TGA curves for P(NDI2OD-T2), P(NDI2OD-T2)/PCPDTBT blend, and PCPDTBT.

Note that, in this work, our research interest lies primarily in the S-L phase equilibria (the 1st
order transition) of conjugated polymer blends composed of the semicrystalline P(NDI2OD-T2) and
the amorphous PCPDTBT polymers because it is relatively more clear than other 2nd order transition.
As shown in Figure 3a, the 1st heating curve, the melting point is depressed from 323.35 ◦C at 100%
P(NDI2OD-T2) to 317.83 ◦C at 80% to 312.79 ◦C at 50%, which is a trend observed in the 1st cooling
and 2nd heating curves, as well. Here, note that in Figure 3b, at PCPDTBT:P(NDI2OD-T2) = 50:50,
the melting peak looks very broad, indicating that, in a blend system, a semicrystalline component
should be required at least at 50% for observing a clear and sharp Tm peak. Then, the results were
summarized in Figure 4, displaying both the Tm and Tc depression, in which the average difference
(∆T = Tm − Tc) between Tm and Tc is 30.0 ± 1.6 ◦C in the first-cycling thermal curve. The origin
of this depression comes from the new equilibrium between crystalline lamellar and amorphous
(liquid) chains of P(NDI2OD-T2) when a diluent PCPDTBT was introduced into the semicrystalline
P(NDI2OD-T2) system for forming polymer blends. Specifically, PCPDTBT has one order lower
molecule weight, Mn = 4.5 kg/mol compared to P(NDI2OD-T2) with Mn = 32.1 kg/mol, indicating that
many available end groups in PCPDTBT may serve as impurities in blend systems. However, a liquid
state PCPDTBT chain molecule itself may act as impurities in semicrystalline P(NDI2OD-T2) blends,
depressing the melting point of the polymer blend systems.

Figure 5 shows the XRD patterns of pure P(NDI2OD-T2), mixed P(NDI2OD-T2)/PCPDTBT blends,
and pure PCPDTBT, respectively, in the range of 2θ = 10–100◦. At 2θ = ~26◦, some peaks related
with π-π stacking are observed. Here, the crystallite size (t) could be estimated based on Scherrer’s
equation, t = 0.9λ/(B cos θ) [43,44], where λ is the X-ray wavelength (= 0.154 nm) and B is the full
width at half maximum (FWHM) at the diffraction angle θ. The results are summarized in Table 1,
indicating that the crystallite size decreases from 2.5 nm at 100% P(NDI2OD-T2) to 2.0 nm at 50%.
In the case of PCPDTBT, its nominal crystallite size is very small ~ 1.4 nm, indicating that it is an
amorphous material because the length scale is around the unit cell. Importantly, if we recall the DSC
results in Figure 3, when the crystallite size (related with π-stacking) is larger than 2 nm, we may
observe the melting transition in DSC. It is notable also that, in polymer science, the typical unit cell,
chain-folded lamella and spherulite have dimensions of ~0.2–2 nm, ~10–50 nm thick and several
microns wide, and ~100–1000 µm, respectively [42]. In the case of conjugated polymer, thin-film
samples for OPV, we usually observe up to a lamella scale because a film thickness is ~100–200 nm.
However, there are some exceptions reporting a three-dimensional spherulite structure [26,45–47].
At this moment, for interested readers, the detailed XRD data about P(NDI2OD-T2) films are available
in the literatures [28–33], in which edge-on and face-on morphologies were also reported.
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Table 1. Crystallite size (t) and d-spacing of P(NDI2OD-T2):PCPDTBT blends with 100:0, 80:20, 50:50,
and 0:100 (wt. ratio) at the diffraction angle θ, when X-ray has wavelength (λ) of 0.154 nm. Herein,
d-spacing between lattice planes is calculated based on Bragg’s law, λ = 2d sinθ.

P(NDI2OD-T2):PCPDTBT 2θ (◦) θ (◦) B (Radians) t (nm) d-Spacing (nm)

100:0 26.16 13.08 0.05667 2.5 0.34
80:20 26.31 13.05 0.06319 2.3 0.34
50:50 26.26 13.13 0.06606 2.0 0.34
0:100 25.47 12.74 0.09980 1.4 0.35

Based on the crystallite size analysis in Table 1, as well as the melting point depression in Figure 4,
we suggest the scheme displayed in Figure 6. When we add the amorphous chain molecule PCPDTBT
into the semicrystalline P(NDI2OD-T2) sample, the crystalline region of P(NDI2OD-T2) may be
destroyed, which could be confirmed through the decrease in XRD peaks’ intensity at 2θ = ~26◦, i.e.,
π-π stacking, as well as the diminished melting peak in DSC thermograms in Figure 3. However,
it is notable that the aforementioned phenomena do not necessarily mean the miscibility of the two
polymers, i.e., they are still in phase-separate state. They are immiscible because of the thermodynamic
reason, ∆Gm > 0. However, the above observation may affect the nano- and micro-structure of blend
films, which should be important in all-PSCs because of the limited diffusion length of Frenkel excitons
in the organic/polymer semiconductors with low dielectric constants.

Figure 7 shows the AFM images of pure P(NDI2OD-T2), P(NDI2OD-T2)/PCPDTBT blend, and pure
PCPDTBT. As shown in Figure 7a, P(NDI2OD-T2) film displays rod-shaped crystalline lamellae with a
fewµm. However, when P(NDI2OD-T2) was mixed with PCPDTBT with a 1:1 wt. ratio, the morphology
changed dramatically. Here, elongated crystal domains were destroyed and diminished into a granular
shape. Finally, PCPDTBT exhibits somewhat homogenous images when compared with P(NDI2OD-T2).
This smoothness is expected because PCPDTBT is amorphous (disordered liquid or glass) based on
both the DSC and XRD results.
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Figure 7. Tapping-mode AFM images of (a) pristine P(NDI2OD-T2), (b) annealed P(NDI2OD-T2),
(c) pristine P(NDI2OD-T2):PCPDTBT = 1:1 blend, (d) annealed P(NDI2OD-T2):PCPDTBT = 1:1 blend,
(e) pristine PCPDTBT, and (f) annealed PCPDTBT films, respectively.
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4. Conclusions and Future Works

Two low bandgap conjugated polymers, semicrystalline P(NDI2OD-T2) and amorphous PCPDTBT,
were mixed together for a study on phase behavior. Here, P(NDI2OD-T2) is a high-performance n-type
semiconductor whereas PCPDTBT is a p-type one when applied to optoelectronic devices. In this
work, although two polymers were immiscible with χ12 = 1.26 at T = 298.15 K, the blend exhibited the
melting and crystallization temperature depression phenomena because PCPDTBT acts as a diluent or
impurity for the P(NDI2OD-T2) lamellae. In this process, PCPDTBT molecules make it difficult for
the P(NDI2OD-T2) chains to form lamellae, leading them to destroy the regular π-π stacking in the
polymer lamellae, which was confirmed through XRD and AFM data. Specifically, when the size of
crystallite-related π-stacking was larger than 2 nm, we observed the melting points in DSC. Finally,
when we apply conjugated polymer blends to electronic and optoelectronic devices, it is very important
to understand a phase-separation mechanism leading to a specific morphology. Further study will
be designed for understanding other photovoltaic polymer blends with amorphous/amorphous,
semicrystalline/amorphous, and semicrystalline/semicrystalline structures.
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Abbreviations

B full width at half maximum
d distance between crystallographic planes (d-spacing)
LD diffusion length
Mn number average molecular weight
Mn,1 or 2 number average molecular weight of component 1 or 2
Mw weight average molecular weight
MWs molecular weight of a solvent
P pressure
PA polymer acceptor
PD polymer donor
R the gas constant
r1 or 2 relative molar volume of component 1 or 2
T temperature
Tc crystallization temperature
Tg glass transition temperature
Tm melting temperature
t crystallite size
V̂s molar volume of a solvent
∆Gm Gibbs free energy of mixing
∆Hm enthalpy of mixing
∆Sm entropy of mixing
δ solubility parameter
δi or j solubility parameter of component i or j
θ diffraction angle
λ X-ray wavelength (= 0.154 nm)
µn electron mobility
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φi volume fraction of component i
ρ1 or 2 or s density of component 1 or 2 or solvent
χ Flory–Huggins interaction parameter
χi j Flory–Huggins interaction parameter between component i and j
(χ12)crit Flory–Huggins interaction parameter between component 1 and 2 at critical point
AFM atomic force microscopy
all-PSCs all-polymer solar cells
CB chlorobenzene
CF chloroform
DCO 1,8-dichlorooctane
DIO 1,8-diiodooctane
DMA dynamic mechanical analysis
DSC differential scanning calorimetery
FWHM full width at half maximum
L–L liquid–liquid
L–S liquid–solid
NBR butadiene/acrylonitrile copolymer
NG nucleation and growth
ODT 1,8-octanedithiol
OPV organic photovoltaics
OTFT organic thin-film transistor

P(NDI2OD-T2)
poly{(N,N′-bis(2-octyldodecyl)naphthalene
-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-5,5′-(2,2′-bithiophene)}

PCE power conversion efficiency

PCPDTBT
poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b′]dithiophene)
-alt-4,7(2,1,3-benzothiadiazole)]

PDI polydispersity index
PPO polystyrene-poly(2,6-dimehtyl -1,4-phenylene oxide)
PVC poly(vinyl chloride)
r-reg P3HT regioregular poly(3-hexylthiophene-2,5-dyil)
SD spinodal decomposition
TGA thermogravimetric analysis
TGBC top-gate bottom-contact
UCST upper critical solution temperature
XRD X-ray diffraction
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