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Cells of the myeloid lineage, particularly macrophages, serve as primary hosts for HIV 
in vivo, along with CD4 T lymphocytes. Macrophages are present in virtually every tissue 
of the organism, including locations with negligible T cell colonization, such as the brain, 
where HIV-mediated inflammation may lead to pathological sequelae. Moreover, infected 
macrophages are present in multiple other tissues. Recent evidence obtained in human-
ized mice and macaque models highlighted the capacity of macrophages to sustain 
HIV replication in vivo in the absence of T cells. Combined with the known resistance of 
the macrophage to the cytopathic effects of HIV infection, such data bring a renewed 
interest in this cell type both as a vehicle for viral spread as well as a viral reservoir. 
While our understanding of key processes of HIV infection of macrophages is far from 
complete, recent years have nevertheless brought important insight into the uniqueness 
of the macrophage infection. Productive infection of macrophages by HIV can occur by 
different routes including from phagocytosis of infected T cells. In macrophages, HIV 
assembles and buds into a peculiar plasma membrane-connected compartment that 
preexists to the infection. While the function of such compartment remains elusive, it 
supposedly allows for the persistence of infectious viral particles over extended periods 
of time and may play a role on viral transmission. As cells of the innate immune system, 
macrophages have the capacity to detect and respond to viral components. Recent 
data suggest that such sensing may occur at multiple steps of the viral cycle and impact 
subsequent viral spread. We aim to provide an overview of the HIV–macrophage inter-
action along the multiple stages of the viral life cycle, extending when pertinent such 
observations to additional myeloid cell types such as dendritic cells or blood monocytes.

Keywords: macrophages, sensing, viral assembly, antiretroviral therapy, reservoir, virus-containing compartment, 
restriction factors

iNTRODUCTiON

The introduction of antiretroviral therapy (ART) to treat HIV infection in the mid 1990s was met 
with extraordinary success and dramatically improved the lives of patients, by turning a deadly 
infection into a manageable chronic disease. However, while able to prevent progression to AIDS, 
ART cannot eradicate HIV from the body, and a viral reservoir quickly rebounds after interruption 
of the therapy. In addition, HIV patients under suppressive therapy are at elevated risk of developing 
several non-AIDS related diseases, including cognitive impairment and cardiovascular problems.
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HIV mainly replicates in CD4 T  cells and macrophages in 
the body. Loss of CD4 T cells has long been known as the major 
pathological event leading to AIDS. In macrophages, HIV infec-
tion does not induce immediate cell death and viral replication 
proceeds for extended periods of time.

Macrophages maintain tissue homeostasis by performing 
crucial housekeeping tasks. Their ubiquitous distribution in 
the body allows HIV to disseminate into organs and tissues and 
establish compartmentalized infection. Macrophages are also an 
important effector arm of the innate immune system. These cells 
detect HIV infection and express cellular factors that severely 
restrain the capacity of the virus to replicate.

Here, we discuss the interplay between HIV and macrophages. 
We review recent work highlighting the unique interaction 
between HIV and macrophages, at the cellular level. We further 
discuss evidence pointing to a role for macrophages as cellular 
reservoirs of HIV during ART and how they participate in the 
pathological morbidities that prevail in patients under therapy.

MACROPHAGe ONTOGeNY  
AND FUNCTiON

Macrophages populate virtually all tissues of the body, where 
they perform a multitude of functions that are essential for tissue 
homeostasis, architecture, and protection (1). This wide range of 
macrophage action was described more than a century ago by 
Elie Metchnikoff. In his pioneering work, Metchnikoff observed 
the swarming and subsequent clearance of foreign objects by 
phagocytic cells in starfish larvae and water fleas (1). He correctly 
foresaw the importance of macrophages in the removal of obso-
lete cells, pathogen elimination, or sterile inflammation (2, 3).

Tissue macrophages have classically been considered as 
originating exclusively and in a continuous manner from bone 
marrow-derived monocytes, as part of the mononuclear–phago-
cyte system, a concept put forward by Van Furth in the 1970s 
(4). However, fate-mapping studies over the past decade have 
drastically changed our views on macrophage ontogeny. It is now 
widely accepted that many tissues are seeded with macrophages 
derived from the yolk sac or the fetal liver, during embryonic 
development [reviewed in Ref. (5)]. Once at their site of resi-
dency, macrophages proliferate locally to maintain a population 
size able to meet the requirements of the developing tissue or 
organ (6). The ability to self-renew suggests the existence of a 
subpopulation of tissue-resident macrophages with stem cell 
properties and capable of asymmetric cell division, but no such 
cell has yet been described in the tissues (6), with the possible 
exception of a subpopulation of epidermal Langerhans cells (7). 
Alternatively, the whole population of macrophages residing in a 
given tissue may be endowed with self-renewal potential, as sug-
gested in studies with microglial cells or peritoneal macrophages 
(8–10). In some tissues, such as the brain or the liver, the resident 
macrophage population appears to be exclusively derived from 
embryonic cells throughout all adulthood (6). While monocytes 
may infiltrate these tissues under inflammatory or pathologic 
conditions, and differentiate into macrophages, they do not 
become part of the stable resident population (11). In stark 
contrast, embryonic macrophages that seed the gut prenatally 

appear to be completely replaced by monocyte-derived cells after 
birth (12). The factors that dictate this differential capacity of 
embryonically or monocyte-derived cells to stably engraft dif-
ferent tissues are not well understood and are an area of active 
research (6).

In their tissues of residency, macrophages perform a wide 
range of tasks. Some of these functions, such as apoptotic cell 
removal or extracellular matrix (MA) remodeling, are required 
in all tissues to different extents, indicating that macrophages 
are engaged in cross talks with their local microenvironment. 
The capacity to perform such general functions appears to 
be imprinted in the whole macrophage lineage and possibly 
involves the role of master transcription regulators such as 
PU (13). Other functions, by contrast, are specific to certain 
tissues. For instance, alveolar macrophages are specialized in 
clearing excessive surfactant, while macrophages of the red 
pulp of the spleen recycle iron from senescent erythrocytes 
(6). These site-specific functions are presumably imprinted 
on macrophages by tissue-specific signals and will induce 
transcriptional programs that define macrophage populations 
in different tissues (13).

Tissue macrophages are further subjected to environmental 
cues that occur in non-homeostatic conditions such as inflam-
mation. Evolution has shaped macrophages as primary tissue 
sentinels (14). These cells are equipped with a broad range of 
receptors capable of detecting molecular patterns from all classes 
of microbes and multiple types of tissue damage, as well as recep-
tors for chemokines and cytokines produced by immune cells (1). 
Integration of these multiple signals leads to what is commonly 
known as macrophage polarization (15). For instance, in an 
infected/inflamed tissue, macrophages may encounter microbial 
products such as LPS or be exposed to T cell-derived IFN-γ, lead-
ing to a polarized state known as M1, that is highly efficient in 
killing intracellular or ingested pathogens (15). Importantly, the 
majority of the knowledge gathered on macrophage polarization 
derives from well-defined in vitro experiments (16). These stud-
ies led to the M1 versus M2 model of macrophage polarization, 
which is unlikely to capture the complexity and the diversity of 
signals that macrophages can integrate in  vivo. Furthermore, 
these polarizing stimuli act upon macrophages with previously 
imprinted tissue-specific programs. As such, similar polarizing 
signals probably lead to distinct phenotypes in macrophages from 
different tissues (13).

A wealth of information on the ontogeny, differentiation, 
and function of macrophages, derived from multiple studies in 
recent years, has profound implications in how we perceive the 
role of the macrophage in pathological settings, such as cancer, 
metabolic disease, or infections like HIV.

MACROPHAGeS DURiNG ACUTe  
AND CHRONiC Hiv iNFeCTiON

The first description that tissue macrophages were permissive to 
HIV infection and capable of replicating the virus came in 1986, 
from the lab of Robert Gallo (17), amid the fast-paced period that 
characterized the early years of HIV/AIDS research. That very 
same pioneering study further provided the initial evidence that 
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macrophages produce HIV for extended periods of time, hence 
coping with viral-induced cytopathy (17). In addition, the study 
revealed that in macrophages, HIV accumulates in apparent 
intracellular compartments absent from T cells.

HIV can infect macrophages as these cells express both the 
viral entry receptor, CD4, and co-receptors, CCR5 and CXCR4, 
that bind the viral envelop protein, gp120. Macrophage infection 
by HIV requires initial adsorption of the virus to the cell surface, 
mediated by lectin-like receptors, integrins, and heparan sulfate 
proteoglycans (18). Entry then probably takes place following 
virion internalization into macropinosomes (19) or endosomes, 
where fusion between the viral envelope and the host cell appears 
to occur (20), as recently proposed by a study following the inter-
nalization of fluorescent quantum dots encapsulated by infectious 
HIV-1 particles in primary macrophages (21).

Classically, macrophage-tropic viruses (M-tropic) were 
thought to exclusively employ CCR5 for entry (R5 viruses), while 
CXCR4-using strains (X4 viruses) were viewed as unable to enter 
macrophages and establish productive infection (22). This simpli-
fied categorization of macrophage tropism based on co-receptor 
usage has been proven imperfect as many R5 viruses are unable 
to infect macrophages (23), whereas some X4 isolates can (24). 
While co-receptor usage may frequently predict macrophage 
tropism, categorizing a virus as M-tropic requires demonstra-
tion of its ability to replicate in vitro in macrophages, although, 
understandably, this may not be a practical approach to test every 
isolate (18).

Transmitted/founder (T/F) viruses are the viral variants 
that initiate infection in a new host, at genital or rectal mucosal 
surfaces. Their sequences can be inferred by the mathematical 
modeling of virus evolution after single-genome amplification 
analysis of the plasma viral population (25). These types of analy-
ses, across multiple studies, support the idea that most infections 
are initiated by a single or a very limited number of founder 
viruses (26). Biological characterization of T/F viruses demon-
strated that they are usually unable to replicate in macrophages 
(27, 28), possibly due to the lower densities of the CD4 molecule 
on the macrophage surface, as compared with CD4 T cells (29). 
This suggests that macrophages are not an important source of 
viral replication in the initial stages of infection, emerging only 
later, as the virus adapts to infect cells with a lower CD4 density 
at the surface. In agreement, studies with mucosal explants from 
the human reproductive tract (30–32), or in non-human primates 
(33) support the idea that CD4+ T cells are the crucial targets at 
very early time points of infection.

Following migration from mucosal entry points into regional 
lymph nodes, via yet poorly described mechanisms, HIV rapidly 
disseminates systemically in the host. In SIV-infected rhesus 
macaques, viral spread to distal tissues such as the gastrointes-
tinal (GI) tract or the spleen can be detected as early as 1  day 
after intravaginal inoculation and systemic distribution of SIV 
was observed by day 7 (34). This rapid but clinically silent spread 
is followed by the acute phase of HIV infection characterized by 
unrestrained viral replication in multiple tissues (35–37).

Macrophages are likely targets of HIV during the acute phase 
of infection, as viral nucleic acids have been detected in tissue 
macrophages from multiple organs in infected patients. These 

include Kupffer cells in the liver (38), microglial cells in the 
brain (39), alveolar macrophages in the lung (40), and intestinal 
macrophages obtained from several segments of the GI tract (41, 
42). Importantly, replication-competent virus can be recovered 
from cultures of macrophages purified from lymphoid tissues of 
acutely infected rhesus macaques (43), implying that productive 
infection is taking place. It remains unclear how HIV dissemi-
nates to establish infection in these cells and tissues.

Monocytes can seed many tissues and differentiate locally 
into macrophages, turning this cell type into a potential vehicle 
for HIV dissemination across the myeloid compartment. Several 
reports claim indeed that replication of HIV-1 can take place 
in  vivo in monocytes, even in patients under ART (44–46). 
Infected monocytes have been proposed to play a key role in 
viral dissemination to the brain due to their capacity to cross the 
blood–brain barrier (47), see Ref. (48).

At their sites of residency, macrophages constitutively patrol 
the tissues for danger signals, while also performing several 
housekeeping tasks. Interestingly, through the action of the viral 
accessory protein Nef, HIV is capable of reprogramming the 
migration of macrophages and selectively promotes a mesenchy-
mal type of migration, while inhibiting the amoeboid type (49). 
The mesenchymal mode of migration is characterized by exten-
sive extracellular MA remodeling, thus allowing the invasion 
of dense microenvironments, which may further promote viral 
dissemination and persistence. The relevance of these findings is 
supported by the increased accumulation of macrophages in the 
tissues of mice engineered to express the HIV Nef protein (49).

Alternatively, migratory, infected CD4+ T cells may serve as 
vehicles for HIV systemic dissemination, as suggested by intra-
vital microscopy in infected humanized mice (50), and possibly 
transmit the virus to tissue-resident macrophages. Interestingly, 
during the acute phase, SIV-DNA-positive myeloid cells present 
in lymphoid tissues also contain rearranged T cell receptor DNA 
(51). This suggests that phagocytosis of infected T  cells allows 
macrophages to acquire viral DNA, which is presumably taken 
to the macrophage degradative compartments for destruction 
preventing potential infection of macrophages (51). However, 
at least in  vitro, cultured macrophages become productively 
infected after ingesting infected T cells (52). This mode of direct 
T cell-to-macrophage HIV transmission results in more efficient 
macrophage infection than exposure to cell-free virus (52). While 
this mechanism has yet to be demonstrated in vivo, it seemingly 
represents a strategy employed by HIV to maximize its spread, by 
exploiting the extensive phagocytic capacity of macrophages (53).

Chronic untreated HIV infection leads to extensive depletion 
of the body’s CD4+ T  cell pool and progression to AIDS (54). 
Concurrently, the viral population evolves to become more 
M-tropic (55), presumably because extensive CD4+ T  cell loss 
makes the macrophage the most abundant cell target in advanced 
disease. Rhesus macaques treated with an antibody depleting 
CD4+ T  cells before SIV infection mimic this advanced stage 
AIDS (56). In these animals, macrophages represent about 80% 
of the SIV-RNA+ cells in the tissues with evidence of productive 
infection of macrophages from lymphoid tissues and the brain, 
frequently associated with activation markers. Remarkably, 
plasma viral loads were two logs higher in depleted animals as 
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compared with CD4+ T cell-sufficient controls, which led to rapid 
disease progression (56). Thus, in the context of CD4+ T  cell 
depletion that might reflect the advanced AIDS status, extensive 
activation and viral replication in macrophages drives a precipi-
tous progression of clinical disease.

MACROPHAGe SeNSiNG OF Hiv AND 
iNTRiNSiC ReSTRiCTiONS TO viRAL 
RePLiCATiON

The macrophage paradox refers to the fact that macrophages 
represent both the first line of defense against many pathogens, 
including viruses, and yet are exploited by many of these pathogens 
as their favorite cellular niche for replication (57). Such is the case 
of HIV-1, which efficiently replicates in macrophages. However, 
as sentinel cells, macrophages are equipped with a range of sen-
sors that detect ongoing infection at many steps of the viral cycle 
and trigger cellular responses that will activate antiviral immunity 
(58). A number of these induced antiviral effector genes, known 
as restrictions factors, will block infection at specific steps of the 
viral life cycle (59). Thus, from the viral perspective, the extent to 
which HIV-1 replicates in macrophages must be tightly regulated 
as to ensure viral transmission/dissemination, while avoiding 
significant antiviral responses. Such delicate balance is achieved 
by a combination of precise employment of viral accessory pro-
teins and usurpation of the normal function of cellular factors. 
Complete reviews devoted to the various restriction factors are 
available (59), we will focus here on factors that play important 
roles in infected macrophages.

Studies examining the initial stages of the viral cycle, i.e., upon 
viral entry and retro-transcription (RT) of the viral RNA into 
cDNA in the cytosol, proposed that HIV-1 escapes early innate 
sensing in myeloid cells before viral DNA integration. This would 
result from a combination of shielding the newly synthesized 
cDNA by viral and cellular factors (60, 61), and maintenance of 
very low levels of cytosolic viral cDNA due to the action of the 
cellular nuclease TREX1 (62, 63). However, induction of a weak, 
yet detectable, interferon-stimulated gene (ISG) response after 
HIV-1 infection of macrophages has also been reported (64, 65), 
with type I IFNs levels remaining undetectable (64, 66).

Examining these apparent discrepancies, we recently 
confirmed this transient response of monocyte-derived mac-
rophages (MDMs) to HIV-1 infection, detectable as soon as 6 h 
postexposure and peaking at 24 h (67). Such response induces 
an ISG signature and depends on the induction of low levels of 
type I IFN. This sensing step is macrophage specific as it does not 
occur in monocyte-derived dendritic cells (MDDCs) exposed to 
HIV-1 (Decalf et  al., unpublished results). The signal inducing 
the early ISG wave preceded reverse transcription but required 
viral fusion. Virus-like particles devoid of their genome, but 
capable of fusing, elicited a similar ISG response, indicating 
that viral nucleic acids were not implicated is this sensing step 
(67). Importantly, this early and transient ISG induction alone 
conferred partial protection to macrophages against subsequent 
HIV-1 infection. Different viruses carrying different envelopes 
and thus entering MDM although different receptors exhibited 

similar capacities to induce this response (67). The actual sensor 
of viral entry involved in this process remains to be identified. 
Membrane perturbations, such as fusion events, can elicit anti-
viral responses in macrophages, via the stimulator of IFN genes  
(STING)/tank-binding kinase-1 (TBK-1)/interferon-responsive 
factor-3 (IRF-3) pathway (68, 69). Thus, it is tempting to consider 
that the plasma membrane of the macrophage represents its first 
line of defense, and that sensing membrane perturbations, like 
viral entry, as soon as it occurs would be advantageous for the 
rapidity of the establishment of the antiviral response (Figure 1).

Retro-transcription represents a very specific and mandatory 
step for retroviral replication and is the target of SAM domain- 
and HD domain-containing protein 1 (SAMHD1), a major 
restriction factor for HIV-1 replication in macrophages and other 
cells of the myeloid lineage, such as DCs (71, 72). Upon fusion of 
the HIV envelope with the host cell membrane, the viral capsid 
(CA) is released into the cytoplasm and the viral reverse tran-
scriptase initiates reverse transcription of the viral RNA genome. 
SAMHD1 restricts HIV infection by depleting the cytosolic pool 
of dNTPs available for reverse transcription, via its deoxynucleo-
side triphosphate triphosphohydrolase activity (73) and possibly 
also by directly attacking viral RNA via its ribonuclease activity 
(74). While HIV-1 has no known factor to counteract SAMHD1 
restriction, HIV-2 and several SIV strains encode the accessory 
protein Vpx that targets SAMHD1 for degradation (71, 72). 
Yet, HIV-1 is capable of replicating in macrophages, suggesting 
alternative mechanisms to bypass restriction.

Cyclin-dependent kinases (CDKs) phosphorylate SAMHD1 
in proliferating cells, halting its activity (75, 76). Interestingly, 
primary macrophages in culture spontaneously and temporarily 
enter a G1-like state, without progressing to actual cell division, 
leading to CDK1 induction that limits the levels of SAMHD1 
in its active form (77). This provides HIV-1 with a window of 
opportunity, as the virus preferentially infects these G1-like 
phase macrophages (77). Importantly, microglial and peritoneal 
macrophages recovered from mouse tissues similarly exhibit 
spontaneous cycling between G0 and the G1 state, suggesting a 
relevance for this mechanism in vivo (77). Other recent studies 
reported elevated levels of different members of the cyclin family 
in macrophages, rendering them permissive to HIV-1 infection, 
further supporting an important role for cell cycle proteins in the 
mechanism through which HIV-1 bypasses SAMDH1 restriction 
(78, 79).

Packaging Vpx into HIV-1 virions leads to a strong increase in 
infection efficiency of macrophages and DCs (80). However, such 
increased infectivity comes at the cost of detection of the viral 
cDNA by the cytoplasmic DNA sensor cGAS and induction of 
antiviral type I IFN (63). This suggests that HIV-1, unlike HIV-2, 
adopts a strategy of co-habitation with SAMHD1 in myeloid cells 
to avoid triggering antiviral immunity (81).

There is, however, a second phase of ISG induction in 
macrophages, peaking around 96  h postinfection that requires 
retro-transcription (67) and viral integration (70). This response 
is induced by detection of newly transcribed viral RNA by the 
RNA sensor retinoic acid-inducible gene I, and it requires the 
activity of the trans-activating (tat) HIV-1 accessory protein, 
responsible for the elongation of HIV-1 transcripts (70). Together, 
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FiGURe 1 | Schematic view of HIV-1 sensing by macrophages. (A) Macrophages sense HIV-1 at two independent steps of the viral cycle. Left panel—Early sensing 
of HIV-1 by macrophages requires viral fusion with the plasma membrane but precedes retro-transcription (RT). This sensing step is detectable by 4 h after cell 
exposure to the virus and declines after 24 h when RT is inhibited. While the actual sensor involved remains to be identified, it activates the kinase tank-binding 
kinase-1 (TBK1), leading to production of type I IFN, signaling via IFNAR, and triggering of interferon-stimulated genes (ISGs). Right panel—The second wave on 
HIV-1 sensing is measurable only 48 h after cell exposure to the virus. It requires integration of the viral genome in the host DNA and transcription of viral RNAs, 
which appear to be the viral component triggering the late ISG response. Here also, the actual sensor remains to be identified, but retinoic acid-inducible gene I 
(RIG-I) is a likely candidate as the signaling cascade involves the adaptor MAVS and IRF-1 and IRF-7, leading to type I IFN production. (B) Schematic representation 
of the two ISG waves induced by the sensing steps described in panel (A). The full line represents the putative measurable ISG response, whereas the dashed lines 
indicate the contribution of the individual waves for the measurable response. (C) This table resumes the main characteristics associated with the two sensing 
mechanisms through which macrophages detect HIV-1 and was established based on Ref. (67, 70).
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the two sensing steps confer an ISG signature in HIV-1-infected 
macrophages that may contribute to maintaining a low level of 
viral replication in this cell type (67, 70) (Figure 1).

Once viral proteins are produced, a key step in the assembly 
of new viral particles is the incorporation of the viral envelope. 
Two recently identified restriction factors, active in macrophages, 
target the viral envelope and thus reduce infectivity. Membrane-
associated RING-CH 8 is highly expressed in myeloid cells where 
it retains the viral envelope glycoproteins intracellularly hence 
impairing their incorporation into the budding viral particles 
(82). The guanylate binding protein-5 (GBP5) is highly induc-
ible by type I IFN and interferes with processing, trimming and 
incorporation of the HIV-1 envelope, rendering the produced 
virions less infectious (83). Interestingly, the viral genes encod-
ing Env and the HIV-1 accessory protein Vpu are expressed 
from the same bicistronic RNA (84). Deletion of Vpu from the 
viral genome enhances Env expression and renders HIV-1 less 

susceptible to GBP5 restriction (83). These observations may 
explain the high frequencies of defective Vpu gene observed in 
M-tropic HIV-1 strains (85).

Not surprisingly, restriction also takes place during the late 
phase of HIV replication cycle in macrophages. Tetherin (or BST2) 
is an interferon-inducible transmembrane protein that restricts 
HIV-1 particle release by inserting its C-terminal end into the viral 
lipid bilayer (86). As a result, newly formed virions are unable to 
leave the surface of infected T cells; i.e., they stay tethered (87). 
Tetherin activity is counteracted by Vpu that mediates its surface 
downregulation and degradation (88). HIV-1 infection of mac-
rophages upregulates tetherin in an apparently IFN-independent 
but Nef-dependent manner (89). However, despite the presence of 
Vpu, HIV-1-infected macrophages still express detectable levels of 
tetherin that appears to partially restrict viral particle release (89).

The interferon-induced transmembrane (IFITM) proteins 
belong to a small family of highly related proteins and act has 
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as broad restriction factors able to interfere with the replication 
of many viruses. These relatively short proteins (around 130 aa) 
were initially characterized for their capacity to protect IFITM 
expressing cells from HIV-1 infection (90, 91). In addition, viral 
particles produced by IFITM expressing cells exhibit a reduced 
infectivity due to their incorporation of IFITM into the viral 
envelope (92). Whether present in the membrane of the target cell 
or the viral particles, IFITM proteins appear to impair viral fusion. 
Of note, endogenous IFITM3 also inhibits cell-to-cell transmis-
sion, and its inhibitory effect is stronger when it is present in viral 
particles than when part of the target cell membrane (92). The 
mechanism of action of IFITM is still unclear but probably relies 
on their capacity to reduce the fluidity of the membranes where 
they insert, thereby preventing viral fusion (or hemifusion). The 
precise topology of IFITM proteins is probably key to understand 
how they work, but this aspect is still debated. Mutagenesis stud-
ies combined with secondary structure predictions indicate that 
IFITM3 is a type 2 transmembrane protein that possesses an 
amphipathic helix adjacent to two palmitoylated cysteines (93). 
Silencing of IFITM1, 2, and 3 in HIV-1 producing cells resulted in 
increased infectivity of the viruses released (94). Importantly, the 
impact of such silencing was more striking in MDM than in any 
other cell type (94), raising the possibility that IFITM expression 
induced early in HIV-1-exposed MDM, as we documented (67), 
reduces the infectivity of the viral progeny.

In conclusion, low-level sensing of HIV-1 by macrophages 
results in the induction of a panoply of restriction factors that 
severely restricts infection. This antiviral state still allows for a 
certain degree of replication-competent viral production and may 
explain why HIV-1-infected macrophages are so resistant to the 
cytopathic effects that the virus exhibits in other cell types. The net 
effect, however, is that macrophages produce HIV-1 for extended 
periods of time which may favor long-term viral persistence.

CeLL BiOLOGY OF Hiv ASSeMBLY  
iN MACROPHAGeS: FROM GAG 
SYNTHeSiS TO PARTiCLe ReLeASe

In CD4+ T  cells and model cell lines, HIV assembly and bud-
ding take place at the plasma membrane. By contrast, in infected 
macrophages HIV buds into an apparently intracellular compart-
ment, known as the virus-containing compartment (VCC). The 
VCC is a unique compartment with topological and biochemical 
properties distinct from late endosomes or multivesicular bodies, 
see Ref. (95). Indeed, the VCC (i) lacks classical markers of endo-
somal and lysosomal compartments (96, 97); (ii) possesses a near 
neutral pH (97); and (iii) is connected to the extracellular milieu 
making its lumen accessible to small membrane-impermeable 
dies (96, 98–100). The compartment consists of a complex mem-
branous system of interconnected tubules and vesicles enclosing 
immature and mature viral particles in its lumen as well as 
budding virions in its limiting membrane (99) (Figure 2). The 
limiting membrane of the VCC possesses specific biophysical 
properties due in part to the particular membrane topology of 
the proteins that are inserted and the presence of high levels of 
cholesterol (101).

Evidence supports the notion that the VCC originates from 
intracellular sequestration of domains of the plasma membrane 
with a specific protein and lipid composition (102, 103). Cell 
surface proteins found in the limiting membrane of the VCC 
include the tetraspanins CD9, CD53, CD81, and CD82 (96, 104) 
that provide membrane rigidity; the scavenger receptor CD36 
(105) that contains two cytoplasmic tails; CD44 (98), a receptor 
with promiscuous capacity to bind numerous ligands; and MHC 
II complexes (106) (Figure  2). The restriction factors IFITM, 
with their peculiar topology of membrane insertion, are incor-
porated into viral membranes, especially in viruses produced by 
MDM (94), and may therefore also associate with the limiting 
membrane of the VCC, potentially contributing to a decreased 
membrane fluidity. As in T cells, the ESCRT complex is in charge 
of promoting the fission of nascent particles (107) and ESCRT 
III proteins that are key players in the late abscission process 
have been found at the VCC limiting membrane (108). Further 
supporting a surface origin for the VCC, fluorescence recovery 
after photobleaching (FRAP) experiments demonstrated that the 
VCC limiting membrane and the plasma membrane are in rapid 
equilibrium (102).

Given that newly formed particles bud away from the cytosol 
toward the lumen of the VCC, they become wrapped with VCC-
derived membrane (Figure 2). The proteomic analysis of purified 
HIV-1 particles released by infected MDM published more than 
10 years ago (109) thus reflects the protein composition of the 
VCC limiting membrane, and still represents a valuable source 
of information. Studies published thereafter indeed confirmed 
not only the presence of the given proteins at the VCC limiting 
membrane but also revealed their role in the viral assembly 
process [see, for instance, CD36 (105), IFITM (94), and CD18 or 
Filamin A (110)].

An issue debated since the initial characterization of the VCC 
is whether some degree of viral budding can also occur at the 
surface of the macrophage. Indeed, some studies claimed that 
budding at the surface occurs alongside budding at the VCC 
(99, 111). A recent study provided an exhaustive examination of 
the site of virion assembly in individual macrophages by using 
a viral mutant arrested at the budding stage (103). Although 
such arrested buds could potentially move toward the plasma 
membrane, the analysis indicated that only about 5–12% of bud-
ding events occur at the cell surface. Moreover, these events were 
concentrated in the region where the VCC connected with the 
surface (103). These observations confirm that the VCC is the 
primary site of HIV assembly in macrophages, while budding at 
the surface is, at best, rare.

Thus, the specific lipid and protein composition of the limiting 
membrane of the VCC seem to constitute an assembly platform 
(101, 112), and presumably possess specific properties required for 
assembly and budding. However, which cellular and viral deter-
minants direct HIV assembly and budding in macrophages to the 
VCC, remain poorly elucidated. The Gag polyprotein precursor 
drives the multistep process of HIV assembly and coordinates the 
activity of the cellular players involved. Recent studies indicate 
that viral genomic RNA is an important player/cofactor in the 
viral assembly process. Using elegant cross-linking immunopre-
cipitation sequencing coupled to membrane flotations, Kutluay 
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et  al. established that assembly starts in the cytoplasm where 
monomers and dimers of newly synthesized Gag bound to viral 
genome accumulate (113, 114). Oligomerization of Gag requires 
interactions with membrane enriched in cholesterol (115), via its 
MA domain that directly binds to membrane phosphatidylino-
sitol 4,5-bisphosphate (PI(4,5)P2) (116) [see Ref. (112)]. The 
levels of PI(4,5)P2 in the VCC are similar to those at the surface 
(102) and hence should not be a determining factor that directs 
viral assembly to the VCC. Assembly of the viral particle at the 
membrane is coordinated via lateral interactions promoted by the 
CA and nucleocapsid (NC) domains of Gag, leading to a nascent 
virion that buds off the membrane (117). Gag possesses two RNA 
binding domains (NC and MA) with different specificities (115). 
In addition, the RNA binding specificities for the viral genome 
versus cellular RNA, i.e., mRNA and tRNA, present in the cytosol 

change during these processes finally promoting packaging of 
viral genomic RNA into the nascent viral particles (115).

Aiming to elucidate the role of the viral factors dictating the 
assembly site of HIV in macrophages, Inlora and colleagues 
evaluated the impact of targeted deletions or mutations in the 
different Gag domains, on virion assembly at the VCC (118). 
Viral mutants unable of high-order multimerization, due to 
NC substitutions, distributed equally between the VCC and 
the cell surface (118). This indicates that Gag initially binds the 
membrane arbitrarily at the surface membrane or the VCC and 
initiates low-order multimerization. However, in macrophages, 
high-order multimerization and complete virion assembly occur 
at the VCC but not at the surface.

Assembly of the polyprotein Gag precursor leads to the 
formation of a bud head and stalk. Gag further coordinates 
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the recruitment of important cellular factors. These include 
the ESCRT proteins; key players critically required for proper 
abscission of the nascent viral particles. Gag recruits components 
of the ESCRT complex through its late p6 C-ter domain, thus 
promoting severance of the viral stalk and particle release in the 
VCC. The precise molecular mechanisms involved in membrane 
abscission have stimulated numerous studies and corresponding 
excellent reviews [see, for instance, Ref. (107, 119)], and thus will 
not be discussed here.

The molecular players implicated in the establishment and 
maintenance of the VCC’s intricate architecture remain poorly 
characterized. The cytoskeleton appears to play a key role in 
maintaining the integrity of the VCC. Indeed, a meshwork of 
filamentous actin surrounds the VCC and treating MDMs with 
actin-depolymerizing agents causes dispersion of the VCC 
throughout the cell (102). Moreover, the VCC limiting membrane 
is often surrounded by an electron dense and thick molecular 
coat visible by EM and containing CD18, a β2 integrin and its 
associated α integrins CD11b and CD11c (Figure  2) (120). 
Proteins known to interact with integrins are also associated with 
the molecular coat, including actin and focal adhesion scaffold/
linker proteins such as talin, vinculin, and paxillin (120). These 
adherent complexes appear to be involved in the maintenance of 
the architecture of the VCC; however, CD18 silencing does not 
affect the amount of virus released nor its infectivity (120). Links 
between VCC and the autophagy machinery in HIV-1-infected 
macrophages have been investigated in a few studies that should 
be extended in the future (121).

The VCC limiting membrane appears tightly associated with 
the microtubule network and disruption of this network by 
nocodazole exposure leads to relocalization of the VCC into the 
perinuclear area (122). This suggested that kinesins, molecular 
motors associated with microtubules, could be involved in 
maintaining the correct positioning of the compartment. The 
kinesin II, KIF3A, is closely associated with VCCs in infected 
macrophages (122). Moreover, time-lapse microscopy in primary 
MDM showed paired movements of Gag and KIF3A. Importantly, 
KIF3A silencing in HIV-1-infected macrophages reduced viral 
particle release and increased intracellular Gag and the VCC 
volume. Overall, KIF3A is likely involved in the transport of the 
VCC along microtubules and toward the macrophage periphery 
or provides a force for particle release from the VCC (122). Other 
molecular motors are likely involved in the transport and posi-
tioning of the VCC but also in transport steps of viral components 
toward the assembly sites, i.e., the VCC (123). Future work will 
aim to establish at the molecular level how viral release from VCC 
is regulated.

While the VCC is defined by its viral content, the question 
of its induction by HIV or its existence in macrophages before 
infection was of interest. Analysis of primary MDMs by ultra-
structural approaches suggested that indeed similar compart-
ments are present in non-infected macrophages (96, 99, 120). 
Confocal microscopy confirmed the presence in non-infected 
MDMs of compartments sharing specific features with the 
VCC; i.e., containing CD36 and CD9, rapid accessibility to small 
dextran and therefore connected to the external medium (105). 
The direct proof of HIV capacity to highjack such compartments 

was obtained when transduced macrophages exhibiting CD36-
GFP+ compartments were subjected to time-lapse epifluorescent 
microscopy after infection with HIV-1 Gag-iCherry allowing the 
visualization in real time of Gag recruitment and accumulation 
only to preexisting CD36+ compartments (105). Thus, in mac-
rophages, HIV-1 hijacks these CD36+ compartments for viral 
assembly (105), and expands them (96).

Viral particles accumulate in the VCC over time (100). 
Infected MDMs initially contain sparse, barely filled VCCs, but 
as the time after infection progresses the compartments become 
crowded with virions and Brownian-like movements of particles 
within the VCC become highly limited as shown by FRAP experi-
ments (100). In parallel, viral release into the extracellular media 
decreases over time, suggesting that viral particles remain within 
the VCC (100). The restriction factor tetherin is concentrated 
in the VCC where it may connect viral particles to each other 
or to the VCC limiting membrane, hence apparently tethering 
virions to the compartment (89, 124). Indeed, silencing tetherin 
expression increases viral release and reduces the size of the 
compartment (89).

Whether HIV-1 release from the VCC is inducible remains 
indeed elusive. The connections between the VCC and the 
membrane appear too narrow to allow passive viral diffusion to 
the extracellular media (99). The release of HIV-1 from infected 
MDMs can be induced by exposure to extracellular ATP, via 
activation of the P2X7 purinergic receptor that triggers a drastic 
remodeling of the cytoskeleton and the VCC, accompanied by 
sudden release of the viral particles packed within the VCC 
(125). However, we also propose that the highly dynamic nature 
of the plasma membrane of macrophages, which is subjected to 
a very active flux of exocytosis and endocytosis/phagocytosis, 
may promote the temporary widening of the VCC connections 
to the plasma membrane and allow the release of viral particles 
to the extracellular media. Supporting this hypothesis, antibodies 
specific for VCC components, such as tetraspanins (96), gp120 
(126), or CD36 (105) had access to the VCC only after several 
hours of incubation at 37°C and not at 4°C. These observations 
suggest that the access of extracellular molecules to the VCC 
depends on the dynamics of the macrophage’s plasma membrane, 
which possibly promotes a frequent opening of the connections 
between the lumen of the compartment and the surface. Future 
insight into the role of the cytoskeleton and its associated proteins 
in regulating the dynamics of the VCC and its impact on viral 
release may open new avenues to pharmacologically target the 
VCC (123, 127).

Whether tissue macrophages in  vivo possess VCCs remains 
poorly investigated. Indeed, our current view of the VCC results 
almost exclusively from studies in vitro with MDMs. Of note, for-
mer ultrastructural analysis of tissue macrophages from patient’s 
organs confirmed the presence of mature and immature virions 
in intracellular compartments (128, 129). Accumulation of viral 
particles within VCC in macrophages in vivo could be advanta-
geous for the virus to be less accessible to (i) soluble immune 
mediators such as neutralizing antibodies as observed in  vitro 
(126), (ii) to innate sensors that are cytoplasmic or endosomal, 
and (iii) to anti-pathogen effector mechanisms such as reactive 
oxygen species or acidic pH.
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Direct cell-to-cell transfer is more efficient for spreading HIV 
infection than the cell-free route (130). This process involves the 
formation of a stable interface between an infected and an unin-
fected cell, known as viral synapse. Interaction between the viral 
envelope present at the membrane of the infected cell and CD4+ 
in the target cell initiates formation of the viral synapse, which is 
then maintained via additional interactions between cell adhesion 
molecules (131). Directed release leads to virion accumulation at 
the viral synapse and efficient infection of the target cell (132). 
Macrophages can transfer HIV directly to T cells (133), and the 
VCC appears to play a role in this process. Real-time imaging 
suggested a recruitment of the compartment to the proximity of 
viral synapses leading to subsequent T  cell infection (134, 135), 
and the VCC markers CD9, CD18, and CD81 were found enriched 
at the macrophage to T cell interface (124). However, the precise 
mechanisms underlying viral transfer from infected macrophages 
to target cells (T  cells or macrophages) remains incompletely 
understood as compared with T  cell to T  cell transfer and thus 
deserve further studies.

Despite their monocytic origin MDDCs are rather resistant 
to HIV-1 infection as compared with MDMs. Yet, MDDCs, 
when activated by LPS, can capture and retain vial particles in 
surface-connected compartments that bear some resemblance 
with the VCC. Although activated MDDCs are resistant to 
the infection and do not produce new viral progeny, they can 
efficiently transfer captured viruses to activated CD4+ T  cells 
that get then productively infected. This transfer mode known 
as infection in trans [see accompanying review by Izquierdo-
Useros or Izquierdo-Useros et  al. (136)] appears to be highly 
related to the virological synapse established between HIV-1-
infected T cells and target cells (137). This process is thought 
to play an important role in viral dissemination at the early 
stages of HIV-1 infection at mucosal entry sites (138). Intravital 
microscopy revealed that subcapsular sinus macrophages from 
the peripheral lymph nodes can capture and transfer HIV-1 to 
target cells without getting productively infected in the process 
(139). Viral capture is mediated by the sialoadhesin CD169/
SIGLEC1 that binds gangliosides embedded in the envelope 
glycoprotein (139). Interestingly, CD169-mediated capture of 
HIV-1 in macrophages leads to virion retention in the VCC 
and subsequent transfer to and productive infection of CD4+ 
T  cells (140). Remarkably, viral particles captured via CD169 
intermingled with virions endogenously produced by the mac-
rophage in the same VCCs (140), suggesting that the VCC is 
not only the site of HIV budding and assembly in macrophages 
but also a compartment of retention of particles captured from 
the extracellular media. Indeed, compartments with topologies 
resembling the VCC have been described in the past after expo-
sure of macrophages to various particulate matter, including 
latex, cholesterol, or low-density lipoprotein (95).

MACROPHAGeS AND THe Hiv 
ReSeRvOiR iN THe POST-ART eRA

While ART can efficiently prevent AIDS by restoring CD4+ T cell 
counts and suppressing viral load to undetectable levels, it fails to 

provide a sterilizing cure (141). A viral reservoir remains stable 
in HIV-infected patients under prolonged therapy (142, 143), 
and is responsible for the quick viral rebound observed within 
weeks after ART interruption (144). The cumulative toxicity 
and the cost associated with lifelong ART made it imperative 
to devise new strategies to eliminate or curb the viral reservoir 
(145). Unfortunately, such goal has remained elusive.

At the cellular level, the HIV reservoir during ART is mainly 
composed of resting memory CD4+ T  cells that are latently 
infected; i.e., cells bearing integrated, transcriptionally silent, 
but replication-competent proviruses (146). The mechanism 
behind HIV latency is not fully understood but likely results from 
multiple factors acting together, such as sequestration of cellular 
transcription factors in the cytoplasm, epigenetic regulation, or 
the action of transcriptional repressors [reviewed in Ref. (147)]. 
T cells with central memory (TCM), transitional memory (TTM), 
and effector memory (TEM) phenotypes contain the highest levels 
of latent HIV-1 (148–150). A major breakthrough in the charac-
terization of the latent CD4+ reservoir is the recent identification 
of CD32a as a surface marker highly enriched in circulating cells 
harboring replication-competent quiescent proviruses (151). 
The HIV reservoir is seeded very early after infection (within 
2–3 days) (152, 153), and its size remains stable even after years 
of suppressive therapy (154, 155).

Whether residual viral replication under ART, the so-called 
active reservoir, contributes to HIV persistence is a rather 
contentious issue in the field (156). Low-level viremia (“Blips”) 
can be detected in patients under therapy (157, 158). However, 
HIV shows little sign of genetic evolution during ART (159, 
160), and the emergence of drug-resistant virus is remarkably 
low (158, 161), suggesting that ongoing residual replication 
does not significantly influence long-term viral persistence. 
However, a recent high-depth temporal analysis of the phylogeny 
of viral sequences from the blood and lymph node of patients 
under ART revealed a constant replenishment of the circulating 
reservoir as a result of low-level viral replication in sanctuary 
sites within lymphoid tissues (162). Experimental evidence for 
the existence of such lymphoid sanctuaries has emerged in the 
last years. B cell follicles and more specifically germinal centers 
have long been known as primary sites of HIV replication (163), 
possibly due to lower antiretroviral drug penetration (164), 
exclusion of cytotoxic CD8+ T cells (165, 166), and retention of 
infectious virions within immune complexes on the surface of 
follicular dendritic cells (167). In patients under treatment and 
with an aviremic status, CD4+ T cells with a T follicular helper 
phenotype that reside within germinal centers are the major 
source of residual infectious virus and contain the highest levels 
of HIV DNA (168–170).

These recent advances highlight the importance of accurately 
defining the HIV reservoir, with respect to its cellular and 
anatomic composition (171). However, studies evaluating the 
importance of cellular reservoirs other than CD4+ T lymphocytes 
have been scarce and, for the most part, non-conclusive. Analysis 
of the rebounding viral sequences in patients after therapy 
interruption revealed that they differ from proviral sequences 
integrated in resting CD4 T  cells (172). Recovery of M-tropic 
sequences among the pool of rebounding virus has been recently 
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reported (173). However, there is no readily available method to 
measure viral rebound from macrophages or other cellular res-
ervoirs, equivalent to the viral outgrowth assay (VOA) typically 
used to quantify the latent CD4+ reservoir (171). Usually, VOAs 
require the culture of several million purified cells for accurate 
quantification of the CD4 reservoir, due to the rarity of latently 
infected cells (150), making an adaptation of the assay to tissue 
macrophages unfeasible. Alternatively, quantification of viral 
nucleic acids provides a more practical manner to evaluate the 
macrophage reservoir (174). In patients under ART, HIV DNA 
and/or RNA has been detected in alveolar (175) and duodenal 
(41) macrophages, microglia in the brain (39), as well as in liver 
Kupffer cells (176).

Evaluation of the HIV reservoir based on cell-associated DNA 
or RNA tends to largely overestimate the pool of replication-
competent virus, as many defective viral genomes accumulate in 
patients (177, 178). Also, macrophages may acquire viral DNA 
via phagocytosis of infected T cells (51), as discussed previously. 
In the absence of a reliable outgrowth assay to measure the 
macrophage HIV reservoir from treated patients, animal models 
become a valuable alternative.

In a recent study with Asian macaques chronically infected 
with SIV, replication-competent virus could be recovered from 
macrophages purified from the spleen and mesenteric lymph 
nodes, using a modified version of the VOA (43). However, in 
macaques that had been under ART for 5 months, no replication-
competent virus could be recovered after macrophage culture, 
from any of the animals under study and despite the presence 
of detectable SIV-DNA in macrophages in 40% of the animals 
(43). A possible limitation of this study is the small number 
of macrophages that could be purified for the viral outgrowth 
experiments. However, in parallel experiments, replicating virus 
could be recovered after culture of purified memory CD4+ T cells 
from all animals under therapy (43). This suggests that, in the 
SIV model, the macrophage reservoir, if existent, is clearly smaller 
than the memory CD4 reservoir.

T cell-deficient humanized mice can be generated by trans-
ferring CD34+ human hematopoietic cells into NOD/SCID 
mice. These mice are reconstituted with human myeloid cells 
and B cells, but completely devoid of T cells (179). As only mac-
rophages can sustain HIV replication, these myeloid-only mice 
(MoM) provide a valuable model to test the HIV macrophage 
reservoir without the confounding effects conferred by the pres-
ence of the more abundant CD4+ T  cell compartment. When 
infected with macrophage-tropic HIV-1, MoM present sustained 
viremia, and viral nucleic acids were detected in macrophages of 
the liver, bone marrow, spleen, lungs, and brain (179). Initiation 
of ART in infected MoM leads to undetectable viremia within 
2  weeks, and a drastic reduction in the levels of HIV DNA 
and RNA in the tissues. Importantly, ART interruption led to 
viral rebound about 7 weeks later, although only in three out of 
nine animals under study (180). This represents a significantly 
longer period of viral remission after treatment interruption 
when compared with T cell-sufficient humanized mice, where 
rebound occurs within 1–2 weeks after ART interruption (181). 
Due to the short life span of the MoM mice, the authors could 
not extend the study and evaluate whether the non-rebounding 

group of mice would eventually show signs of reactivation of the 
infection (180).

The absence of T cells in the MoM model of HIV infection, 
certainly constitute a large deviation from the regular course of 
HIV infection in humans. Nevertheless, these observations pro-
vide the first direct evidence for HIV persistence in macrophages, 
in the setting of suppressive therapy. Whether such persistence is 
due to latent infection or ongoing residual replication remains 
unclear from the data available, as both viral DNA and RNA 
dropped to undetectable levels in most treated mice (180). Efforts 
to purge the CD4+ T  cell reservoir have mostly employed the 
“shock and kill” approach (145); a latency-reversal agent (LRA) 
is initially administered to reactivate viral production in latently 
infected cells (shock), and followed by an immune-modulatory 
intervention that renders infected cells susceptible to destruction 
by the immune system (kill) (182). However, HIV latency in mac-
rophages is not well understood (183), and LRAs that efficiently 
purge the CD4 reservoir may not have a similar effect in latently 
infected macrophages. Worse, if the macrophage reservoir is 
maintained mostly via residual ongoing replication or retention 
of infectious viral particles within VCCs then LRA therapy will 
be of negligible effect.

Definitive proof of the macrophage reservoir will require 
demonstration in human patients under therapy. This will likely 
require more sensitive methods of measuring the reservoir. A 
promising alternative is the recent report of an in  vivo VOA, 
wherein cells from patients with undetectable viremia are trans-
planted into humanized mice (184). This method appears more 
sensitive than in vitro VOAs, although its widespread application 
will likely be hampered by the costs associated (185).

MACROPHAGeS DURiNG CHRONiC 
DiSeASe iN TReATeD Hiv-1 iNFeCTiON

Introduction of ART effectively halted the AIDS pandemic, 
improved health, and prolonged the life of patients. However, a 
new group of problems, commonly known as “non-AIDS-related 
conditions,” is emerging in HIV patients with long-term sup-
pressed viremia (186). People living with HIV are at increased risk 
of developing, among others, cardiovascular and neurocognitive 
disease, osteoporosis, or cancer (187).

Persistent inflammation appears to lie at the origin of these 
pathologies, although its causes remain incompletely elucidated 
and may involve multiple factors. Microbial translocation 
across the gut mucosa is a well-established cause of systemic 
inflammation during HIV-1 (188, 189). Long-term suppressive 
therapy does not completely reconstitute the pool of CD4+ 
T cells in the gut mucosa, particularly those of the Th17 subset 
(190). This leads to loss of integrity of the epithelial mucosa 
and translocation of bacterial products through the lamina 
propria to mesenteric lymph nodes and extranodal sites (189). 
These microbial products engage pattern-recognition receptors 
in cells of the innate immune system, particularly monocytes, 
macrophages and DCs, leading to widespread production of 
inflammatory mediators (191). Indeed, myeloid cell-derived 
biomarkers of microbial translocation, such as IL-6, soluble 
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CD14 (sCD14) or sCD163 are found elevated in ART-treated 
individuals, as compared with age-matched controls, and are 
strongly associated with premature mortality of HIV-infected 
individuals (191, 192). This persistent pro-inflammatory 
state appears to feedback on intestinal macrophages as they 
become unable to phagocyte microbial debris in the lamina 
propria and are thus unable to halt this inflammatory cycle 
(193). Importantly, persistent systemic inflammation drives the 
occurrence of non-AIDS comorbidities. For instance, inflam-
matory monocytes migrate to the heart and contribute to HIV-
associated myocarditis (194).

Before the implementation of ART, more than half of HIV-
infected patients exhibited HIV-1-associated dementia (HAD); 
a broad term used to described symptoms of cognitive impair-
ment, including psychiatric disorders, loss of motor coordina-
tion, and in severe cases, HIV-1-associated encephalitis (195). 
The incidence of HAD has dramatically decreased with ART, 
but a set of milder cognitive problems have emerged and are 
collectively known as HIV-associated neurological disorders 
(HAND) that still affect about half of the HIV-1-infected popu-
lation (196).

Residual viral replication in the CNS and neuronal death 
has been proposed has an explanation for the occurrence of 
HAND (197). This effect is probably indirect, as neurons and 
cells of the macroglia do not support productive HIV infection. 
Instead, residual viral replication in macrophages leads to the 
production of inflammatory mediators with neurotoxic action 
(196). While it is challenging to assess productive infection of 
brain-resident cells, macrophages are known to contain the 
highest levels of viral nucleic acids of all CNS cell populations 
(198). Both perivascular macrophages and microglial cells are 
targeted by HIV in the CNS (199) and HIV DNA has been 
detected in brain macrophages from patients under long-term 
therapy (39). HIV RNA persists in the cerebrospinal fluid (CSF) 
of ART-treated patients even after suppression of plasma viral 
RNA to undetectable levels (200), and genetic analysis revealed 
a significant compartmentalization between the CSF and plasma 
viral populations (201). Importantly, viruses isolated from the 
CSF are frequently M-tropic (202). Taken together, these studies 
suggest that the CNS is a tissue reservoir of HIV-1 during ART, 
likely maintained through low-level viral replication in resident 
macrophages (203).

Systemic inflammation is also likely to play a role in the 
progression of HAND. There is a strong association between 
circulating levels of sCD14 and the development of neurological 
disorders in HIV-1 infected individuals (204). It has been pro-
posed that microbial products activate circulating monocytes, 
particularly those of the CD16+ subset that subsequently cross the 
blood–brain barrier and differentiate into a pro-inflammatory 
macrophage population in the brain by producing chemokines, 
cytokines, and neurotoxic factors such as nitric oxide (48). 
Supporting this model, CD14+CD16+ cells accumulate in the 
white matter and perivascular space of brains from non-treated 
patients (205). Also, these CD14+CD16+ monocytes are capable 
of transmigrating across in vitro models of the blood–brain bar-
rier in response to the chemokine CCL2 (206).

These selected examples highlight the pathological role played 
by macrophages and other myeloid cells in non-AIDS conditions 
that afflict HIV-1-infected patients with suppressed viremia. It 
is thus crucial to devise new therapies able to complement ART 
and capable of targeting the persistent inflammation that drives 
these morbidities.

CONCLUSiON

Because of their localization in many tissues, their long life span 
and the unique nature of their interaction with HIV-1, mac-
rophages play a key role in HIV-1 pathogenesis. The last decade 
of research brought new and exciting insight into the ontogeny 
and functional specialization of tissue-resident macrophages. 
Whether these recently described macrophage properties, such 
as their proliferative potential, are explored HIV for dissemina-
tion and persistence remains unknown, but this subject should 
deserve increased interest in future studies. Macrophages are 
susceptible to HIV-1 infection but also sense the virus and thus 
participate in the general immune activation observed in infected 
patients. However, initiation of the antiviral immune response 
relies on the DC population whose capacity to perform antigen 
presentation and deal with infection is highly organized in space 
and time. This dual function appears to be ensured by a division 
of labor between DC subsets (207). While cDC1 (CD141+) are 
resistant to productive HIV-1 infection, they can cross-present 
viral antigens derived from cDC2 (CD1c+) that are susceptible 
to HIV-1. Thus, this dissociation of the viral infection and the 
antigen presentation function provides to DC populations the 
capacity to elicit antiviral immune responses and prime T  cell 
responses (207). How macrophages cross talk with DCs and con-
tribute to the antiviral response remains obscure. Reciprocally, 
how HIV succeeds to cope with these immune cells specialized in 
antiviral immunity is similarly incompletely understood. Future 
work addressing these questions should keep on producing 
exciting results enlightening our general comprehension of the 
virus–immune system relationships.
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