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Abstract

Aims/hypothesis

To develop a prediction model that can predict HbA1c levels after six years in the non-dia-

betic general population, including previously used readily available predictors.

Methods

Data from 5,762 initially non-diabetic subjects from three population-based cohorts (Hoorn

Study, Inter99, KORA S4/F4) were combined to predict HbA1c levels at six year follow-up.

Using backward selection, age, BMI, waist circumference, use of anti-hypertensive medica-

tion, current smoking and parental history of diabetes remained in sex-specific linear regres-

sion models. To minimize overfitting of coefficients, we performed internal validation using

bootstrapping techniques. Explained variance, discrimination and calibration were assessed

using R2, classification tables (comparing highest/lowest 50% HbA1c levels) and calibration

graphs. The model was externally validated in 2,765 non-diabetic subjects of the popula-

tion-based cohort METSIM.
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Results

At baseline, mean HbA1c level was 5.6% (38 mmol/mol). After a mean follow-up of six

years, mean HbA1c level was 5.7% (39 mmol/mol). Calibration graphs showed that pre-

dicted HbA1c levels were somewhat underestimated in the Inter99 cohort and overesti-

mated in the Hoorn and KORA cohorts, indicating that the model’s intercept should be

adjusted for each cohort to improve predictions. Sensitivity and specificity (95% CI) were

55.7% (53.9, 57.5) and 56.9% (55.1, 58.7) respectively, for women, and 54.6% (52.7, 56.5)

and 54.3% (52.4, 56.2) for men. External validation showed similar performance in the MET-

SIM cohort.

Conclusions/interpretation

In the non-diabetic population, our DIRECT-DETECT prediction model, including readily

available predictors, has a relatively low explained variance and moderate discriminative

performance, but can help to distinguish between future highest and lowest HbA1c levels.

Absolute HbA1c values are cohort-dependent.

Introduction

Lifestyle and drug interventions can prevent or delay the development of type 2 diabetes in

those at risk for the disease [1–3]. Therefore, it is important that screening tools are developed

to identify those at risk. To facilitate the use in clinical practice, such a prediction model should

include predictors that are non-invasive and should thus not include laboratory-based predic-

tors [4]. In addition, non-invasive screening models can be useful for research purposes, for

application in large databases where blood assays are not available. In the DIabetes REsearCh

on patient straTification (DIRECT) study [5], there was a need for such a prediction model to

select participants for a prospective cohort study.

Several non-invasive screening models have been developed to predict the risk of type 2 dia-

betes development [4]. One of those non-invasive prediction models that is often used is the

Finnish diabetes risk score [6]. This risk score was developed as a simple screening tool pre-

dicting the risk of developing drug-treated type 2 diabetes within the next 10 years, using age,

body mass index (BMI), waist circumference, use of anti-hypertensive drugs, and history of

high blood glucose (such as gestational diabetes) as predictors [6]. In the Evaluation of Screen-

ing and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance

(DETECT-2) project, an international data-pooling collaboration, the Finnish diabetes risk

score was updated by including clinically diagnosed and screen-detected type 2 diabetes as

endpoint, and by considering additional predictors: history of gestational diabetes, sex, smok-

ing, and family history of diabetes [7]. Both the Finnish diabetes risk score and the DETECT-2

model showed adequate discrimination [6,7].

The diagnosis of type 2 diabetes in these models was however based on fasting glucose levels

and/or glucose levels after an oral glucose tolerance test (OGTT). In 2010, glycated hemoglo-

bin (HbA1c) levels have been added to the diagnostic criteria for diabetes [8]. HbA1c levels are

strongly related to the risk of diabetic complications and show less variability compared to fast-

ing glucose levels and 2h OGTT glucose levels [9]. Using Hba1c or glucose as criteria for T2D

has been shown to identify additional and different amounts of diabetes patients [10,11].
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However, to our knowledge, no non-invasive models have previously been developed to pre-

dict HbA1c levels in the non-diabetic population.

The aim of the current study was therefore to develop a prediction model that predicts

HbA1c levels after six years in the non-diabetic population, including readily available predic-

tors that are part of the DETECT-2 diabetes risk score [7]. We combined data from three

European population-based cohorts to develop our DIRECT-DETECT prediction model and

a fourth cohort to externally validate the model.

Methods

Study population

Three European population-based cohorts were used to develop the prediction model: the

Hoorn Study [12], the Inter99 Study [13] and the Cooperative Health Research in the Region

of Augsburg (KORA S4/F4 Study) [14].

• In the Hoorn Study (The Netherlands), 2,484 men and women aged 50 to 75 years partici-

pated at baseline (between 1989 and 1992). After 4–8 years, 1,513 of these participants had a

follow-up examination [15]. At baseline and follow-up, HbA1c levels were determined by

ion-exchange high-performance liquid chromatography (HPLC) [16], using a Modular Dia-

betes Monitoring System (Bio-Rad, Veenendaal, The Netherlands), with an inter-assay coef-

ficient of variation of 3.3%.

• In the Inter99 Study (Denmark), 6,906 men and women aged 30 to 60 years participated at

baseline (between 1999 and 2001). After 5–6 years, 4,031 of these participants had a follow-

up examination [17]. At baseline, HbA1c levels were determined by HPLC (Bio-Rad, USA),

with intra-assay and inter-assay coefficients of variation of< 1.5% and< 2%, respectively.

Also at follow-up, HbA1c levels were determined by HPLC (TOSOH, Minato, Japan) [18],

with intra-assay and inter-assay coefficients of variation of< 1% and< 2%, respectively.

• In the KORA S4/F4 Study (Germany), 1,653 men and women aged 55–74 years participated

at baseline (between 1999 and 2001, called KORA S4). After 6–8 years, 1,209 of these partici-

pants had a follow-up examination, called KORA F4 [19]. At baseline, HbA1c levels were

determined by a turbidimetric immunological method (Tina-Quant HBA1C II; Roche Diag-

nostics GmbH, Mannheim, Germany) on a Hitachi 717 instrument, with inter-assay coeffi-

cients of variation of 3.9% at HbA1c levels of 5.7% and 5.2% at HbA1c levels of 9.7%. At

follow-up, HbA1c levels were determined with a reverse-phase cation-exchange high perfor-

mance liquid chromatographic, photometric assay (A. Menarini Diagnostics, Florence, Italy)

on a HA 8160 Hemoglobin Analysis System, with inter-assay coefficients of variation of

1.2% at HbA1c levels of 5.95% and 1.2% at HbA1c levels of 10.6%. To correct for assay differ-

ences between baseline and follow-up, baseline measures were transformed using a previ-

ously published method [20].

In these three cohorts (from now on referred to as ‘the development dataset’), participants

with type 2 diabetes at baseline were excluded based on the following criteria: known diabetes,

fasting plasma glucose levels�7.0 mmol/l, 2h OGTT glucose levels�11.1 mmol/l, and/or

HbA1c levels�6.5% (48 mmol/mol; N = 673) [21]. After exclusion, information on HbA1c

levels at baseline and follow-up and on the relevant predictors was available for 5,762 partici-

pants: N = 1,337 from the Hoorn study; N = 3,526 form the Inter99 Study and N = 899 from

the KORA S4/F4 Study.

Additionally, the prediction model was externally validated in a fourth population-based

cohort: the METSIM Study [22]. In the METSIM Study (Finland), 10,197 men aged 45–73
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years participated at baseline (2005–2010) [23]. For the current study, 5-year follow-up data

was available for 3,255 participants. Excluding participants with type 2 diabetes at baseline

resulted in 2,765 eligible participants. At baseline and follow-up, HbA1c levels were deter-

mined with a Tosoh G7 glycohemoglobin analyser (Tosoh Bioscience, San Francisco, CA,

USA) [24], with an inter-assay coefficient of variation of 2.8%.

Participants provided written informed consent. The Hoorn Study was approved by the

VU University Medical Centre Ethics Committee. The Inter99 Study was approved by the Sci-

entific Ethics Committee of the Capital Region of Denmark. The KORA S4/F4 Study was

approved by the Ethics Committee of the Bavarian Medical Association. The METSIM Study

was approved by the Ethics Committee of the University of Eastern Finland and Kuopio Uni-

versity Hospital. This work was undertaken as part of the DIabetes REsearCh on patient straTi-

fication (DIRECT) study, an EU FP7 Innovative Medicines Inititative (http://www.direct-

diabetes.org/) that is described elsewhere [5].

Data analysis

Developing the model predicting HbA1c levels at follow-up. A prediction model was

developed considering non-invasive measures, which are part of the DETECT-2 risk score, as

potential predictors: age, BMI, waist circumference, use of anti-hypertensive drugs (yes or no),

smoking (current, former, or no) and parental history of diabetes (yes or no; for the KORA S4/

F4 Study, the answer category ‘unknown’ was considered as ‘no’). As age, BMI and waist cir-

cumference showed no linear relationship with HbA1c levels at follow-up, these variables were

categorized consistent with the DETECT-2 model [7]: age<45,�45 to<55,�55 to<65,�65

years; BMI<25,�25 to<30,�30 kg/m2; and waist circumference in sex-specific categories:

<94,�94 to<102,�102 cm for men, and<80,�80 to<88,�88 cm for women. History of

gestational diabetes was included in the original DETECT-2 risk score, but not in the current

analysis, because information on this variable was available in only one of the datasets resulting

in missing data for this variable for 77% of the women. For the same reason, information on

family history of diabetes was limited to parental history, as information on diabetes history of

siblings was missing for 27% of the participants. Sex-specific models were constructed.

Starting with the full model (i.e. including age, BMI, waist circumference, use of anti-hyper-

tensive drugs, smoking and parental history of diabetes), we used a backward selection proce-

dure to exclude variables that did not contribute significantly to the model. Significance was

set at p<0.157 according to Akaike’s information criterion [25].

Additionally, we evaluated whether a correction was necessary for cohort by including a

categorical variable for cohort source. As cohort source had an effect on the estimated regres-

sion coefficients, the regression coefficients of all predictors were first estimated including

the cohort variable. Next, all regression coefficients were fixed and the cohort variable was

removed from the model. Finally, using the fixed regression coefficients for all predictors (i.e.

using the linear predictor of this model as an offset variable), a new cohort-independent inter-

cept was calculated. This way, the regression coefficients for all predictors were corrected for

the effect of cohort source without having a variable for cohort source in the model, making it

possible to apply this model to new cohorts.

Internal and external validation. The prediction model was validated both internally and

externally. Because prediction models typically perform better in the dataset that was used to

develop the model compared to other datasets (owing to overfitting), validation is an impor-

tant step after the development of a prediction model. Internal validation was performed using

bootstrapping techniques: 500 bootstrap samples with replacement were taken from the origi-

nal dataset. These bootstrap samples had the same size as the original dataset, and because the
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sampling included replacement, participants from the original dataset could appear in the

bootstrap several times. In these bootstrap samples, the modelling process was repeated:

regression coefficients were calculated and a backward selection was performed, resulting in a

model for each bootstrap sample. These ’bootstrap models’ were then applied to the original

dataset. Next, the performance of the bootstrap models was evaluated both in the bootstrap

sample and in the original dataset. For each bootstrap sample, the difference between the per-

formance in the bootstrap sample and in the original dataset is called the optimism, which is a

measure for model overfitting. The mean of these values is the optimism of the original predic-

tion model [26,27]. Subsequently, the regression coefficients of our prediction model were

adjusted for this optimism.

After this internal validation step, the optimism-corrected model was externally validated

in the METSIM Study: the coefficients were applied to this external dataset and the external

performance of the model was evaluated.

In the external dataset, no information was available on parental history of diabetes. How-

ever, information was available on family history, which was defined as either parents, siblings,

or children with diabetes. To evaluate whether this difference could affect the performance of

the model, we applied all regression coefficients of the prediction model to the METSIM

Study, which included applying the parental history coefficient to the family history variable in

the METSIM Study. Next, we applied all coefficients except the one for parental history to the

METSIM Study and allowed the model to estimate the coefficient for family history. Finally,

we compared the performance of these two models.

Performance. The performance of the prediction model was assessed in the development

dataset and in the external validation dataset. We evaluated the explained variation of the mod-

els, which can be considered as an overall measure of the predictive ability of a model [26,28].

To assess calibration, i.e. the agreement between predicted and observed HbA1c levels, pre-

dicted HbA1c levels were divided in percentiles, and for each percentile the mean predicted

and the mean observed HbA1c levels were displayed in a calibration graph.

To be able to evaluate the discriminative performance of the model, i.e. the ability of the

model to discriminate between high and low HbA1c levels at follow-up, HbA1c levels were

dichotomized. Within the Direct Study, the purpose of this prediction model was to select

about half of the population of these existing cohort studies for inclusion in a new prospective

study, and therefore, this dichotomization was performed using the median HbA1c level

(HbA1c-levels < /� 5.643% (38 mmol/mol) for men and < /� 5.654% (38 mmol/mol) for

women). Additionally, sensitivity and specificity were calculated, where sensitivity indicates

the percentage of participants that were correctly classified as having high HbA1c levels

among the total number of participants with high observed HbA1c levels, and specificity indi-

cates the percentage of correctly classified participants among the participants with low

observed HbA1c levels.

Sensitivity analysis. As a sensitivity analysis, we assessed the discriminative performance

of the model when it is used to predict the incidence of pre-diabetes, defined as HbA1c

levels� 5.7% (mmol/mol) [21].

Secondly, we assessed the performance of the model when, next to the non-invasive predic-

tors, baseline HbA1c levels were considered to predict HbA1c levels at follow-up.

Software

Statistical analyses were performed using SPSS version 20 and R software version 2.15.2, using

the packages ‘rms’ and ‘pROC’.
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Results

Population characteristics

Table 1 shows the characteristics of the total development dataset and stratified per cohort: the

Hoorn Study, the Inter99 Study, and the KORA S4/F4 Study. Furthermore, the table shows the

characteristics of the external validation dataset: the METSIM Study. The mean HbA1c level at

baseline was 5.6% (38 mmol/mol) in the development dataset and 5.7% (39 mmol/mol) in the

external validation dataset. After a mean follow-up of 5.9 and 4.7 years, respectively, mean

HbA1c levels were 5.7% (39 mmol/mol) in the development dataset and 5.8% (40 mmol/mol)

in the external validation dataset.

Participants of the METSIM Study were on average older, had a larger waist circumference,

used antihypertensive drugs more often, and smoked less often compared to the development

dataset. Further, the prevalence of a positive family history in the external validation dataset

was higher than the prevalence of a positive parental history of diabetes in the development

dataset, and the external validation dataset only consisted of men (compared to 49% men in

the development dataset).

Table 1. Baseline characteristics of the 4 datasets.

Development datasets External validation

Total development dataset a Hoorn Study KORA S4 Study Inter99 Study METSIM Study

N 5762 1337 899 3526 2765

Sex, % male 48% 46% 51% 48% 100%

Age, years 52.1 (10.5) 60.3 (6.8) 63.7 (5.4) 46.0 (7.6) 59.5 (5.8)

BMI, kg/m2 26.2 (4.0) 26.2 (3.1) 28.1 (4.0) 25.7 (4.1) 26.7 (3.5)

Waist circumference, cm

• Men 93.5 (9.9) 94.0 (8.3) 99.7 (9.1) 91.6 (10.0) 97.1 (10.0)

• Women 82.0 (11.4) 85.7 (9.9) 89.1 (10.4) 78.7 (10.9) NA

Use of antihypertensive drugs 12% 15% 32% 6% 38%

Current smoking 27% 30% 12% 30% 12%

Former smoking 31% 35% 36% 28% 44%

Parental history of diabetes 16% 14% 23% 15% 32% b

Hba1c level at baseline, % 5.6 (0.4) 5.3 (0.4) 5.3 (0.4) 5.7 (0.4) 5.7 (0.3)

Hba1c level at baseline, mmol/mol 38 (4.4) 34 (4.4) 34 (4.4) 39 (4.4) 39 (3.3)

Hba1c level at follow-up, % 5.7 (0.4) 5.5 (0.6) 5.6 (0.4) 5.7 (0.3) 5.8 (0.4)

Hba1c level at follow-up, mmol/mol 39 (4.4) 37 (6.6) 38 (4.4) 39 (3.3) 40 (4.4)

Follow-up

• Follow-up duration, years 5.9 (0.7) 6.4 (0.5) 7.1 (0.2) 5.4 (0.2) 4.7 (0.8)

• Cumulative incidence of type 2 diabetes, % c 6% 11% 11% 3% 9%

• Incidence rate, n per 1,000 person years d 10.8 17.9 16.4 5.8 25.5

Data are mean (SD) or % yes

BMI: body mass index
a Total development dataset: Hoorn Study, KORA S4 Study and Inter99 Study combined
b In the METSIM Study, no information was available on parental history of diabetes. Instead, information was available on family history (either parents,

siblings, or children with diabetes)
c Based on ADA 2014 criteria [21]
d Estimated incidence rate in participants per 1,000 person-years was calculated by assumption that the date of diagnosis was in the middle of the follow-up

period

doi:10.1371/journal.pone.0171816.t001
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Predicting HbA1c levels at follow-up

For both men and women, age, BMI, waist circumference, use of anti-hypertensive medica-

tion, current smoking, and parental history of diabetes were significant predictors of HbA1c

levels at follow-up. Table 2 shows the prediction model for men and women before and after

correction for cohort source, and the final model after internal validation.

Explained variance of the final model after internal validation was 2% for women and 1.3%

for men (Table 3). When assessed separately in the different cohorts, explained variance was

6.1%, 4.1%, and 14.7% for women and 7.1%, 9.7% and 5.2% for men from the Hoorn Study,

KORA S4/F4 Study and Inter99 Study, respectively.

Regarding calibration, the prediction model somewhat underestimated the lower observed

HbA1c levels and somewhat overestimated the higher observed HbA1c levels, in both men

Table 2. Linear regression model predicting HbA1c levels after 6 years.

Model without correction for cohort source,

after backward-selection

Model corrected for cohort source, after

backward-selection

Final model after internal

validation

Women Men Women Men Women Men

Regression

coefficient

P-

value

Regression

coefficient

P-

value

Regression

coefficient

P-

value

Regression

coefficient

P-

value

Regression

coefficient

Regression

coefficient

Intercept 5.541 <0.001 5.621 <0.001 5.138 <0.001 5.231 <0.001 5.398 5.502

Age (years)

• <45 [Reference] [Reference] [Reference] [Reference] [Reference] [Reference]

•�45—<55 0.097 <0.001 -0.027 0.175 0.178 <0.001 0.055 0.005 0.173 0.053

•�55—<65 -0.010 0.665 -0.125 <0.001 0.219 <0.001 0.093 <0.001 0.213 0.091

•�65 -0.014 0.653 -0.113 <0.001 0.316 <0.001 0.193 <0.001 0.307 0.188

BMI (kg/m2)

• <25 [Reference] [Reference] [Reference] [Reference] [Reference] [Reference]

•�25—<30 0.041 0.083 -0.023 0.233 0.034 0.135 -0.029 0.123 0.033 -0.028

•�30 0.157 <0.001 0.064 0.070 0.111 0.001 0.033 0.326 0.108 0.032

Waist circumference (cm)

• Female <80;

male <94

[Reference] [Reference] [Reference] [Reference] [Reference] [Reference]

• Female�80—

<88; male�94—

<102

-0.040 0.102 0.052 0.013 0.002 0.934 0.067 <0.001 0.002 0.065

• Female�88;

male�102

0.043 0.152 0.116 <0.001 0.109 <0.001 0.118 <0.001 0.106 0.115

Use of anti-

hypertensives (y/

n)

0.055 0.034 0.059 0.023 0.051 0.042 0.052 0.039 0.050 0.050

Former smoking

(y/n)

Current smoking

(y/n)

0.093 <0.001 0.125 <0.001 0.096 <0.001 0.137 <0.001 0.093 0.133

Parental history of

diabetes (y/n)

0.074 <0.001 0.076 <0.001 0.073 <0.001 0.071 <0.001 0.071 0.069

Cohort source

• Hoorn Study [Reference] [Reference]

• KORA S4 Study 0.096 <0.001 0.164 <0.001

• Inter99 Study 0.392 <0.001 0.390 <0.001

BMI: body mass index

doi:10.1371/journal.pone.0171816.t002
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(Fig 1A) and women (Fig 1C). Stratifying the calibration graphs for the different cohorts (Fig

1B and 1D) showed that the predictions were systematically overestimated in the Hoorn Study

and the KORA S4/F4 Study, while they were systematically underestimated in the Inter99

Study. This indicates that absolute HbA1c levels were cohort specific, and updating the inter-

cept for each cohort would improve calibration [26].

Table 4 shows the sensitivity and specificity of the prediction models for women and men

when HbA1c levels were dichotomized using the median HbA1c level. Sensitivity (95% CI)

was 55.7% (53.9, 57.5) for women and 54.6% (52.7, 56.5) for men, specificity (95% CI) was

56.9% (55.1, 58.7) and 54.3% (52.4, 56.2), respectively.

External validation

External validation of the model showed an explained variance of 4.3% in the METSIM Study.

The calibration graph (Fig 1E) indicates that the predictions were systematically underesti-

mated in the METSIM Study.

In the external validation in the METSIM Study, sensitivity was 56.4% (95% CI 54.6, 58.2)

and specificity was 57.7% (95% CI 55.9, 59.5), while 54.3% had observed ‘high’ HbA1c levels.

Allowing for estimation of the regression coefficient for family history of diabetes did not

considerably change the performance of the model, compared to applying the coefficient for

parental history of diabetes to this variable (results not shown).

Sensitivity analyses

When the model was used to predict the incidence of pre-diabetes, sensitivity (95% CI) was

55.6% (53.8, 57.4) for women and 36% (34.2, 37.8) for men and specificity (95% CI) was 65.3%

(63.6, 67.0) and 71.3% (69.6, 73.0), respectively.

As expected, adding baseline HbA1c levels as a predictor next to the non-invasive predic-

tors considerably improved model performance. Explained variance was 34% for women and

39% for men. Sensitivity (95% CI) of this model was 75.1% (73.6, 76.6) for women and 76.3%

(74.7, 77.9) for men, and specificity (95% CI) was 72.2% (70.6, 73.8) and 74.6% (73.0, 76.2),

respectively, when follow-up HbA1c levels were dichotomized using the median HbA1c level.

When this model was used to predict the incidence of pre-diabetes, sensitivity (95% CI) was

69.3% (67.6, 71.0) and 71.4% (69.7, 73.1), and specificity (95% CI) was 79.1% (77.6, 80.6) and

78.8% (77.3, 80.3) for women and men, respectively.

Discussion

Our aim was to develop a prediction model for HbA1c levels after six years of follow-up in a

non-diabetic general population, using a sex-specific model and including readily available

predictors that are part of the DETECT-2 diabetes risk score [7]. We showed that for men

and women, age, BMI, waist circumference, use of anti-hypertensive medication, current

smoking and parental history of diabetes were relevant predictors of HbA1c levels at follow-

Table 3. Explained variance after internal validation.

Women Men

Total development dataset 2% 1.3%

• Hoorn Study 6.1% 7.1%

• KORA S4/F4 Study 4.1% 9.7%

• Inter99 Study 14.7% 5.2%

External validation: Metsim Study 4.3% 4.3%

doi:10.1371/journal.pone.0171816.t003
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Fig 1. Calibration graphs (in deciles) of the prediction model after internal validation. (A) For men, in

the development dataset (The Hoorn Study, The KORA S4/F4 Study and the Inter99 Study combined). (B)

For men, in the development dataset, stratified per cohort: Hoorn Study (dots), KORA F4/S4 Study (squares),

Inter99 Study (triangles). (C) For women, in the development dataset (The Hoorn Study, The KORA S4/F4

Study and the Inter99 Study combined). (D) For women, in the development dataset, stratified per cohort:

Hoorn Study (dots), KORA F4/S4 Study (squares), Inter99 Study (triangles). (E) For men, in the external

validation dataset (The METSIM Study). The diagonal line indicates perfect calibration.

doi:10.1371/journal.pone.0171816.g001
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up, although these predictors could only explain 4–15% of the observed variance in HbA1c lev-

els within each cohort. In addition, the discriminative performance of the DIRECT-DETECT

prediction model was moderate. Calibration of the model could be improved by using differ-

ent intercepts for each cohort.

Previous studies on non-invasive prediction models predicted the risk of developing type 2

diabetes, either drug-treated, clinically diagnosed, self-reported and/or screen-detected

[6,7,29–38]. However, none of these models included HbA1c levels as a diagnostic criterion to

define type 2 diabetes. We showed that non-invasive predictors can also be used to predict

HbA1c levels after six years, although with moderate performance. Predictors for higher

HbA1c levels in our study were also associated with a higher risk of developing type 2 diabetes

in previous non-invasive models: higher age [6,7,29–32,35–37], higher waist circumference

[6,7,29–31,33,37], use of anti-hypertensive medication [7,31,32,36,38], current smoking [7,30–

32,36–38], and parental history of diabetes [7,29–31,35,36]. In line with previous studies, we

observed higher HbA1c levels with a higher BMI [6,7,32,35,36]. Only for men, a small and not

statistically significant negative regression coefficient was found for the middle BMI category.

As the total BMI-variable did contribute to the model, it was kept in the model. Finally, previ-

ous prediction models that included former smoking had inconclusive results [7,32,36,37]. In

our study, we included former smoking as a potential predictor, but this factor was excluded

after backward selection.

A limitation of our study is that our development dataset included data from three cohorts

with some population differences between the cohorts, and different assays were used to mea-

sure HbA1c levels. We corrected for these differences by correcting for cohort source. We

observed that predicted HbA1c levels were systematically overestimated in the Hoorn Study

and the KORA S4/F4 Study, and underestimated in the Inter99 Study and in the external vali-

dation in the METSIM Study. This indicates that calibration of the model could be improved

by applying cohort-specific intercepts. We therefore advise to estimate a new intercept when

applying this model to new populations. In addition, we evaluated whether differences in fol-

low-up duration between participants affected the results, which they did not do. A second

limitation is that the cohorts that were used in this study contain predominantly Caucasians.

While racial differences are observed in HbA1c levels [39,40], future research might evaluate

the performance of the prediction model for other ethnic groups. A third limitation is the pos-

sibility of attrition bias: in the cohort studies that we used to develop our prediction model,

Table 4. Discriminative performance after internal validation a.

Discriminative performance in the development dataset b

Women Men

Sensitivity (95% CI) 55.7% (53.9, 57.5) 54.6% (52.7, 56.5)

Specificity (95% CI) 56.9% (55.1, 58.7) 54.3% (52.4, 56.2)

Discriminative performance in the external validation dataset c

Women Men

Sensitivity (95% CI) NA 56.4% (54.6, 58.2)

Specificity (95% CI) NA 57.7% (55.9, 59.5)

a To assess the discriminative performance of the model, HbA1c levels were dichotomized using the median

HbA1c level (HbA1c-levels < /� 5.643% (38 mmol/mol) for men and < /� 5.654% (38 mmol/mol) for

women).
b Development dataset: Hoorn Study, KORA S4 Study and Inter99 Study combined
c External validation dataset: METSIM Study

doi:10.1371/journal.pone.0171816.t004
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participants at follow-up were on average more healthy at baseline compared to those only

participating at baseline [15,17]. This could have led to an underestimation of the association

between predictors at baseline and HbA1c levels at follow-up. Finally, our external validation

cohort, the METSIM Study, only consisted of men. This way, we were able to externally vali-

date the prediction model for men, but not for women.

A strength of our study is that four large international population-based cohort studies

were used to develop this prediction model, thus, results of this study are expected to be valid

for Caucasian non-diabetic populations. Secondly, to our knowledge, we were the first to

develop a non-invasive prediction model to predict HbA1c levels in the non-diabetic

population.

The low explained variance and the moderate discriminative performance of the DIRECT-

DETECT prediction model limit its use as a screening tool in clinical practice. Previous studies

showed that additional information on blood lipid and glycaemic levels can improve the per-

formance of a model [29]. In addition, our sensitivity analyses showed that adding baseline

HbA1c levels to the prediction model, considerably improved model performance. Future

research might therefore focus on developing a model including biomarkers that can predict

change in HbA1c levels. However, the current prediction model can be used for purposes for

which it was originally designed: as a first step in large databases where blood assays are not

available, to select participants at risk of glycaemic deterioration for prevention or inclusion in

clinical trials [5].

In conclusion, we found that non-invasive measurements—age, BMI, waist circumference,

use of anti-hypertensive medication, current smoking and parental history of diabetes—were

relevant predictors of HbA1c levels at follow-up both for men and women, although the

explained variance and the discriminative performance of the model were moderate.
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