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Background: Liver cancer (LC) is well known for its prevalence as well as its poor
prognosis. The aberrant expression of lysyl oxidase (LOX) family is associated with liver
cancer, but their function and prognostic value in LC remain largely unclear. This study
aimed to explore the function and prognostic value of LOX family in LC through
bioinformatics analysis and meta-analysis.

Results: The expression levels of all LOX family members were significantly increased in
LC. Area under the receiver operating characteristic curve (AUC) of LOXL2was 0.946 with
positive predictive value (PPV) of 0.994. LOX and LOXL3 were correlated with worse
prognosis. Meta-analysis also validated effect of LOX on prognosis. Nomogram of these
two genes and other predictors was also plotted. There was insufficient data from original
studies to conduct meta-analysis on LOXL3. The functions of LOX family members in LC
were mostly involved in extracellular and functions and structures. The expressions of LOX
family members strongly correlated with various immune infiltrating cells and
immunomodulators in LC.

Conclusions: For LC patients, LOXL2 may be a potential diagnostic biomarker, while
LOX and LOXL3 have potential prognostic and therapeutic values. Positive correlation
between LOX family and infiltration of various immune cells and immunomodulators
suggests the need for exploration of their roles in the tumor microenvironment and for
potential immunotherapeutic to target LOX family proteins.

Keywords: liver cancer, lysyl oxidase, bioinformatic analysis, receiver operating curve, nomogram, prognostic
value, immune infiltration
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BACKGROUND

Liver cancer (LC) is the sixth most common malignant tumor
and the third leading cause of cancer-associated mortality
worldwide. Hepatocellular carcinoma (HCC) accounts for
75%-85% of all LC, according to the GLOBOCAN 2020
estimation (1). In east Asia, especially China, a high incidence
of HCC was noted, and similarly, the incidence and mortality of
LC in developing countries are significantly higher than those in
developed countries (2, 3). The variations in the prevalence of LC
amongst different populations and regions are attributed to a
variety of environmental and genetic factors, such as aflatoxin,
alcohol, smoking, chronic hepatitis virus infection, and type 2
diabetes (4–6). Despite significant advances in diagnosis and
treatment of LC, including surgical resection, local ablation, liver
transplantation, and sorafenib–regorafenib sequential therapy,
the prognosis of LC remains poor (6). Based on most recent data,
841,000 new cases and 782,000 deaths of LC around the globe
was estimated to occur each year (1). Therefore, it is of great
value to explore novel diagnostic and prognostic biomarkers that
are sensitive and specific, and to identify potential targets for
medications (7).

With the advent of next-generation sequencing (NGS) and
other techniques, increasing amount of information has become
available for a variety of cancer types and other diseases (8–11).
Thus, the mechanisms of cancers, as well as other diseases, have
become more widely investigated based on bioinformatic
methods, by combining information technology and molecular
biology. Bioinformatics methods, such as data-mining, are also
widely applied for identification of potential biomarkers as
therapeutic targets, as well as diagnostic and prognostic
predictors, and to explore the pathogenesis of malignancies at
the molecular level (12–14).

As an extracellular enzyme, lysyl oxidase (LOX) oxidatively
deaminates specific lysine and hydroxylysine residues to form
allysines in the telopeptide domains of the collagen molecule,
and thus plays a critical role in covalent cross-link formation in
collagen fibrils (15). LOX is highly expressed in tissues
containing elastic fibers and fibrillar collagen, such as skin,
lung, and the fibrous lamina propria in the small intestine,
stomach, and liver (16). In addition to LOX, four LOX-like
proteins (LOXL-1, -2, -3, and -4) have also been identified in
the LOX family (17–19). Studies have found that the LOX family
was involved in carcinogenesis and tumor metastasis, through
angiogenesis promotion, formation of mature extracellular
matrix at the secondary site, focal adhesion kinase (FAK)
activation, and other mechanisms (19–22).

The lysyl oxidase (LOX) family consists of five members:
LOX, the first described member of this family, and its four
related members called lysyl oxidase-like genes (LOXL1-4).
Recent evidence suggests that the LOX family play important
Abbreviations: LC, Liver cancer; HCC, Hepatocellular carcinoma; LOX, lysyl
oxidase; LOXL, lysyl oxidase-like; FAK, focal adhesion kinase; BAPN, b-
aminopropionitrile; ECM, extracellular matrix; SRCR, scavenger receptor
cysteine-rich; TME, tumor microenvironment; ECM, extracellular matrix;
MMP, matrix metalloproteinase.
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roles in liver cancer. LOX secreted by HCC promotes tube
formation of endothelial cells through upregulation of VEGF,
and overexpressed LOX increases angiogenesis, whereas LOXL1
was found to be increased in liver fibrosis models (23–25). As for
LOXL2, its expression level was found to be higher in HCC
tissues compared with non-tumor tissue (26). Although LOXL3
has been studied in different types of cancer, studies on its roles
in liver cancer are limited (25). LOXL4 was found to increase the
risk of invasion and metastasis, promote angiogenesis, and play a
role in the immunosuppressive microenvironment in HCC (25,
27, 28)

Although previous studies have investigated the roles of the
LOX family in LC, their exact roles and mechanisms, especially
for LOXL1 and LOXL3, have yet to be further investigated (25).
Previous studies have shown evidence of the potential prognostic
values and therapeutic values of LOX family members (25, 26).
Thus, online databases were mined to analyze the expression,
mutation, function, and immune infiltration of LOX family
members in LC, with the goal to determine their potential
oncogenic role, as well as their diagnostic and prognostic value
in LC.
RESULTS

Differential Expression Levels of LOX
Family in LC
All five members of LOX family demonstrated higher expression
in liver cancer tumor tissues than normal tissues (Figure 1A and
Table 1). These findings were consistent with results from
UALCAN, which confirmed that the expression of all LOX
family members was statistically significantly higher in tumor
tissue (Figure 1B), and from TIMER, which showed higher
expression of LOX (P=1.5E-11), LOXL1 (P=2.39E-04), LOXL2
(P=4.02E-25), LOXL3 (P=1.53E-04), and LOXL4 (P=7.15-05).
Further analysis of ROC curve showed that AUC of LOXL2 was
0.946 (95%CI:0.915-0.978, with positive predictive value (PPV)
of 0.994 and a cutoff value of 1.050 (Figure 2).
Prognostic Value of LOX Family in LC
Evaluation of the value of differential expression of LOX family
members in LC prognosis found that LOX, LOXL3, and LOXL4
were associated with poor overall survival (OS) (Figure 3A and
Table 1). UALCANwas utilized for verification which found that
only LOX (P=0.023) and LOXL3 (P=0.031) were associated with
poor OS (Figure 3B). Further verification via TIMER also only
identified poor prognosis of LOX (P=0.003) and LOXL3
(P=0.023) (Table 1). The combined results indicated that high
expression of LOX and LOXL3 was associated with worse OS.

A nomogram model incorporating the overexpressed LOX
family members that were associated with poor prognosis,
namely LOX and LOXL3 and other predictors (pathologic
stage, histologic grade, AFP (ng/ml), Child-Pugh grade,
albumin (g/dl), adjacent hepatic tissue inflammation, vascular
invasion, Ishak Fibrosis score, prothrombin time, age, gender,
March 2022 | Volume 12 | Article 843880
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weight) is shown in Figure 4. The C-index of the nomogram was
0.738 (95% CI, 0.697-0.778).
Analysis of Genetic Mutations of LOX
Family in LC
Next, the genetic alterations of the LOX family in LC patients
were evaluated with the cBioPortal online tool. Among 1,066 LC
patients, 55 samples had genetic alteration of LOX family
members, with a mutation rate of 5.16%. The mutation rate of
LOXL2 was the highest (4%) (Figures 5A, B). Using cBioPortal
and TIMER online tools, we found significant (p<0.01) and
positive correlations amongst LOX family member proteins:
LOX with LOXL1, LOXL2, LOXL3, and LOXL4; LOXL1 with
LOX, LOXL2, LOXL3, and LOXL4; LOXL2 with LOX, LOXL1,
LOXL3, and LOXL4; LOX3 with LOX, LOXL1, LOXL2, and
LOXL4; LOX4 with LOX, LOXL1, LOXL2, and LOXL3
(Figures 5C, D).
Frontiers in Oncology | www.frontiersin.org 3
Exploration of Potential Drugs That
Are Interacted With LOX Family
Members in LC
As LOX and LOXL3 were both found to be overexpressed in LC
and associated with worse OS, further exploration of potential
interacting drugs was conducted by using Coremine Medical,
which identified 30 drugs that were associated with both LOX
and LOXL3 in liver neoplasms (Figure 6). The top three drugs
were Aminopropionitrile, quinone, and copper.

Analysis of Interaction of LOX Family
Members in Patients With LC
Using the STRING database, PPI network analysis was
performed on the differentially expressed LOX family members
and 10 proteins (BMP1, ELN, EFEMP2, FBLN5, FN1, MFAP2,
MFAP5, PCOLCE, TLL1, TLL2) that significantly interacted with
LOX family members to further explore their potential
interactions (Figure 7A). The results from GeneMANIA also
TABLE 1 | Expression level of LOX family members between normal tissue and tumor tissue in liver cancer, and overall survival of overexpressing LOX family members
in liver cancer.

Gene name Mean TCGA TIMER

Normal tissue group Tumor tissue group P value HR 95%CI P value HR 95%CI P value

LOX 0.418 ± 0.268 1.112 ± 0.898 < 0.001 1.53 1.08-2.16 0.017 1.223 1.073-1.416 0.003
LOXL1 0.540 ± 0.381 1.018 ± 0.944 = 0.001 0.93 0.66-1.32 0.693 0.999 0.897-1.113 0.986
LOXL2 0.623 ± 0.311 1.725 ± 0.735 < 0.001 1.19 0.84-1.68 0.333 1.188 0.984-1.434 0.073
LOXL3 0.312 ± 0.178 0.463 ± 0.300 < 0.001 1.65 1.16-2.35 0.005 1.524 1.059-2.194 0.023
LOXL4 1.307 ± 1.092 2.300 ± 1.625 < 0.001 1.44 1.02-2.05 0.038 1.080 0.980-1.191 0.119
Mar
ch 2022 | V
olume 12 | Article
A

B

FIGURE 1 | Expression level of LOX family members between normal tissue and tumor tissue in liver cancer. (A) analysis via R software, (B) analysis via ULCAN.
** means P < 0.01, *** means P < 0.001.
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revealed the function of differentially expressed LOX family
members. Their top 20 associated interactors were primarily
related to extracellular matrix organization, extracellular
structure organization, extracellular matrix, proteinaceous
extracellular matrix, extracellular matrix part, extracellular
matrix disassembly, and extracellular matrix structural
constituent (Figure 7B).

GO Enrichment and KEGG Pathway
Analysis of LOX Family Members in LC
GO enrichment and KEGG pathway analysis of LOX family
members and their 20 interactors were conducted by using
DAVID. Receptor-mediated endocytosis, extracellular matrix
organization, and extracellular matrix disassembly were the top
three biological processes that were associated with LOX family
members and their interactors (Figure 8A). The extracellular
region, proteinaceous extracellular matrix, and extracellular
matrix were the top three major cellular components of the
target genes (Figure 8B). As for molecular function, scavenger
receptor activity, oxidoreductase activity (acting on the CH-NH2
group of donors, oxygen as acceptor), and copper ion binding
Frontiers in Oncology | www.frontiersin.org 4
were the top three functions (Figure 8C). In regard to KEGG
pathways, protein digestion and absorption, PI3K-Akt signaling
pathway, and ECM-receptor interaction were the top three
pathways involved in LC (Figure 8D).

Immune Cell Infiltration of LOX
Family Members in LC
The TIMER database was utilized to investigate the association
between LOX family members and immune cell infiltration, as
immune cell level correlates with the proliferation and
progression of cancer cells (Figure 9). The expression of each
LOX family member was positively correlated with the
infiltration of B cell, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils, and dendritic cells (DCs). Among them,
Macrophage and CD4+ T Cells demonstrated the strongest
positive correlation. In addition, the Cox proportional hazard
model showed that B cells (p=0.031), CD8+ T cells (p=0.036),
macrophages (p=0.027), and DCs (p=0.004) were significantly
associated with adverse clinical outcomes in LC patients
(Table 2). The association between immunomodulators
and LOX family members with poor prognosis, namely,
A

B

FIGURE 3 | Survival analysis of LOX family members in liver cancer. (A) analysis via R software, (B) analysis via ULCAN.
FIGURE 2 | ROC curve analysis for LOX family members in liver cancer.
March 2022 | Volume 12 | Article 843880
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LOXand LOXL3, were then further explored. The top
three immunoinhibitors associated with LOXL3 were CSF1R,
HAVCR2, and LGALS9, whilst the top three immunostimulators
correlated with LOXL3 were CD86, TNSF13B, and CXCR4.
MHCs associated with LOXL3 were HLA-DOA, HLA-DPA1,
and HLA-DPB1. As for LOX, TGFB1, TGFBR1, and VTCN1
were the most positively correlated immunoinhibitors.
TNFRSF9, CXCR4, and TNFSF15 were the three most
positively associated immunostimulators. However, for
MHC molecules, their associations were relatively low, with
HLA-DQA2, HLA-DOA, and HLA-DPA1 as the top three
molecules (Figure 10).

Co-Expression Network and GSEA
Analysis of Each Member of LOX
Family in LC
For each member of LOX family, more genes (dark red dots) are
positively correlated than negatively correlated (dark green dots)
(Figure 11 and Table 2). GO term annotation of co-expressed
genes of each member of LOX family as well as KEGG pathway
analysis were shown in Figure 12. These results showed a wide
range of influence of LOX family expression network in LC.

Meta-Analysis of the Prognosis of LOX,
LOXL2 and LOXL4 in LC
Based on the search strategy, four studies (28–31) investigating
LOX, LOXL2 and LOXL4 were included for the meta-analysis,
while no potential literature on other LOX family members were
found. We combined the results of our bioinformatics analysis
from the TCGA with those retrieved in the database and
obtained the HR values. One study (29) provided results
regarding lower expressed LOXL2 compared with higher
expressed LOXL2, therefore, the HR was transformed using the
Frontiers in Oncology | www.frontiersin.org 5
formula new HR=e^(-ln HR) to convert the result to the OS of
higher expressed LOXL2 compared to lower expressed LOXL2.
This resulted in the new HR of 1.761 (95% CI: 1.215-2.551).

The pooled results revealed that overexpression of LOX and
LOXL4 were associated with worse OS of LC patients (HR: 1.59,
95% CI: 1.19-2.12, I2 = 0%; HR: 1.58, 95% CI: 1.28-1.96, I2 = 0%),
while the association between overexpression of LOXL2 and OS
of LC patients showed no statistical significance (HR: 1.33, 95%
CI: 0.99-1.79, I2 = 29.5%) (Figure 13). Sensitivity analysis
indicated stable results of this meta-analysis.
DISCUSSION

As a common malignancy with the third leading cause of cancer-
related mortality (1), LC risk is influenced by various
environmental and genetic factors (4–6). Previous studies have
demonstrated that LOX is highly expressed in the fibrous lamina
propria in the small intestine, stomach, and liver, as well as other
tissues that contain elastic fibers and fibrillar collagen (16). LOX,
LOXL, LOXL2, LOXL3 and LOXL4 were to be in intracellular
locations, perinuclear regions and intranuclear locations, and are
secreted to exert their functions, such as extracellular enzyme for
initiating covalent cross-link formation in collagen fibrils (15, 19,
32–35). After secretion, LOX family members oxidase crosslink
collagen and elastin (19, 36). LOXs were found to be involved in
various physiological or pathological pathways, both in
extracellular modulation and intracellular signaling (32).
Studies have found LOX family members to be involved in
carcinogenesis and tumor metastasis by formation of mature
extracellular matrix at the secondary site, FAK activation, and
promotion of angiogenesis (19–22). Overexpressed LOX was
FIGURE 4 | Nomogram for liver cancer based on overexpressed LOX and LOXL3. The nomogram was developed in the cohort, with pathologic stage, histologic
grade, AFP (ng/ml), Child-Pugh grade, albumin (g/dl), adjacent hepatic tissue inflammation, vascular invasion, Ishak Fibrosis score, prothrombin time, age, gender,
weight. (C-index: 0.738, 95% CI, 0.697-0.778).
March 2022 | Volume 12 | Article 843880
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found to promote angiogenesis (23, 25), and expression level of
LOXL2 was higher in HCC than in non-tumor tissue (26).
LOXL4 was found to increase the risk of invasion and
metastasis of LC via various mechanisms such as angiogenesis
and through its involvement in creating an immunosuppressive
microenvironment (25, 27, 28). However, studies on the roles of
LOLX1 and LOXL3 in liver cancer are limited (25). As the role of
LOX family members in LC remains inconclusive, this
bioinformatic study was conducted to analyze the expression,
Frontiers in Oncology | www.frontiersin.org 6
mutation, prognostic value, and functional enrichment of LOX
family in LC.

We found that all five members of LOX family are higher
expressed in LC tissues than in the normal tissues and their
overexpression are positively correlated with each other, which is
consistent with previous findings that the expression of LOX,
LOXL2, and LOXL4 are upregulated in HCC (25). A previous
study found a 30-fold increase of LOXL1 level in a liver fibrosis
model (24). However, the role of LOXL3 in LC was not yet clear
A B

D

C

FIGURE 5 | Gene mutation and expression analysis of LOX family members in patients with liver cancer: (A) Genetic alterations of LOX family members in different
histopathologic types of liver cancer; (B) Summary of genetic alterations in different expressed LOX family members in liver cancer; (C) Correction between different
LOX family members in in liver cancer (cBioPortal); (D) Correction between different LOX family members in in liver cancer (TIMER).
March 2022 | Volume 12 | Article 843880
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(25), and our results provided evidence that not only LOX1 but
also LOXL3 is highly expressed in LC. As shown by the
cBioPortal analysis, 5.16% of LC patients were found to have
genetic mutation of LOX family members, and the mutation rate
of LOXL2 was the highest. Further analysis of ROC curve showed
that the AUC of LOXL2 was above 0.9 with a PPV of 0.994,
indicating its potential role in diagnosis. These findings are
consistent with those reported by Wong et al, in which the
AUC of LOXL2 to distinguish non-HCC and HCC patients was
0.896 (26). Therefore, LOXL2 is a good candidate for a diagnostic
marker in LC, especially HCC.

Based on the analyses through various tools, high expression
of LOX and LOXL3 was found to predict worse prognosis. This
proves the previous hypothesis of upregulation of the LOX level
as a predictive sign for HCC, proposed by Lin et al. (25). LOX
gene, located at chromosome 5q23.1, is consist of a variable N-
Frontiers in Oncology | www.frontiersin.org 7
terminal domain and a highly conserved C-terminal domain
(25). LOX itself is an extracellular, matrix-embedded protein that
plays an essential role in the cross-linking of the collagen fibrils
and the deposition of insoluble collagen fibers (37, 38). Previous
studies indicated that LOX overexpression induced the
Epithelial-Mesenchymal Transition (EMT) (39). In addition,
Yang et al. proved that the overexpression of LOX activated
the angiogenesis partially through increasing the VEGF and
enhancing the tube formation ability of endothelial cells in
tumor initiating cells (TICs)-enriched HCC, and LOX inhibitor
b-aminopropionitrile (BAPN) reverses the angiogenesis (40).
Zhu et al. also found that the proliferative, migratory. and
invasive abilities of HCC cells were attenuated, and the
expression of vascular endothelial growth factor (VEGF) was
decreased by the silencing of LOX, through the p38 mitogen-
activated protein kinase (MAPK) signaling pathway (30). LOX3,
located at chromosome 2p13.1, plays an important role in
remodeling the cross-linking of the structural extracellular
matrix (ECM) of fibrotic organs such as the liver (25, 41). It
was also shown that higher expression of LOXL3 was regulated
by TGF-b in gastric cancer (42). However, studies on the
biological function of LOXL3 in HCC are still limited (25, 39,
43). Previous literature on the prognostic role of LOXL3 in LC
patients was also minimal. Therefore, meta-analysis on LOXL3
was not conducted. Nevertheless, the result of this analysis added
new evidence that LOXL3 could be potentially used a prognostic
biomarker in addition to LOX. A nomogram based on LOX,
LOXL3, and other predictors were developed which can help
predict the mortality risk for an individual LC patient. Moreover,
given their negative impacts on the survival in LC patients, LOX
and LOXL3 may also serve as potential therapeutic targets.
Although the ULCAN and TIMER did not verify the worse
prognosis associated with LOXL4, our result based on TCGA
data indicated the potential clinical significance of LOXL4 for
worse outcome. As part of the LOX family, LOXL4 gene is
located at chromosome 10q24.2 (25). The in vitro study
suggested that TGF-b might induce LOXL4 upregulation in
several different HCC cell lines, and LOXL4 mediated cell-
matrix adhesion and cell migration in HCC via upregulation of
FIGURE 6 | Network of association between LOX and LOXL3 and different
drugs in liver neoplasm via Coremine Medical.
A B

FIGURE 7 | Protein-protein interaction (PPI) network analysis of LOX family members in patients with liver cancer. (A) PPI network of LOX family members and their
interactors visualized by STRING; (B) PPI network of LOX family members and their interactors visualized by GeneMANIA.
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Src and FAK phosphorylation (43). Although LOXL4 is an
important extracellular protein, the HCC cell migration was
promoted more by the intracellular LOXL4 (43). In contrast,
other study revealed that 5-azacytidine (5-aza-CR)-mediated
overexpression of LOXL4 reactivated wild-type p53 and
promoted cancer cell death, thus suppressing the development
of HCC cancers, which might indicate an improved clinical
outcomes of HCC patients (28, 44). These complicated and
even contradicting mechanism of LOXL4 in HCC might
partially explained the inconsistent findings of its role in HCC
prognosis from TCGA, TIMER and ULCAN database.

Further exploration of potential drugs associated with LOX
and LOXL3 in LC by using Coremine Medical found 30 drugs.
The drug that demonstrated the strongest interaction was
aminopropionitrile. b-aminopropionitrile (BAPN), obtained
from a natural source, was the first compound found to have
inhibitory effect on LOX (45). A previous study suggested the
potential therapeutic value of BAPN for liver metastasis in gastric
cancer (46). Another animal study demonstrated antifibrotic
effect of BPAN through reducing collagen fiber bundles and
LOX level, which indicates its potential role in attenuating the
development of liver fibrosis (47). It was also found that that
BAPN acts by reversing the angiogenesis that was activated by
the overexpression of LOX (40). Although quinone and copper
A B

DC

FIGURE 8 | Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of LOX family members and their interactors.
GO enrichment analysis of target genes based on (A) biological process, (B) cellular component, and (C) molecular function. (D) KEGG pathway enrichment analysis of
target genes.
Frontiers in Oncology | www.frontiersin.org 8
FIGURE 9 | Correlations between differentially expressed LOX family
members and immune cell infiltration in liver cancer (TIMER).
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were found to be potential interacting drugs, they are more likely
to be identified because their own function and roles in the LOX
proteins. Quinone is part of the redox cofactor of LOXs, which is
a functional group in the catalytic domain of LOX proteins (48).
LOX family members also contain a conserved copper-binding
site in the C-terminal half of the protein (49). Copper binding to
key histidine residues facilitates the formation of quinone-
contained redox factor which in turn leads to the oxidase
activity (48, 49). Therefore, quinone and copper can be
potential research targets in the future to explore any potential
practical use or potential use as therapeutic target. In addition,
other drugs found through the exploration, such as cetuximab,
Frontiers in Oncology | www.frontiersin.org 9
bleomycin, cisplatin, paclitaxel, were known to have anti-cancer
effects in various types of cancer, including LC, and anti-fibrosis
effects in other diseases such as pulmonary fibrosis (50–59).
Their exact roles and effects in LC may need to be clarified in
future studies.

Exploration of the PPI network of LOX family and their top
interactors found that these genes are primarily related to
extracellular structures and functions. GO enrichment and
KEGG pathway analysis of these genes also found they are
mostly involved extracellular functions and structures. This is
not surprising as it is well known that members of LOX family
contribute to structural integrity and increased tensile strength
TABLE 2 | The Cox proportional hazard model of LOX family members and six tumor-infiltrating immune cells in liver cancer (TIMER), and Number of genes that are
positively and negative correlated with LOX family members.

coef HR 95%CI_l 95%CI_u p.value sig Number of positively correlated genes Number of positively correlated genes

B_cell -7.875 0 0 0.484 0.031 *
CD8_Tcell -5.339 0.005 0 0.714 0.036 *
CD4_Tcell -4.127 0.016 0 11.792 0.220
Macrophage 5.800 330.240 1.925 56641.590 0.027 *
Neutrophil -0.054 0.947 0 54322.082 0.992
Dendritic 5.245 189.571 5.129 7006.334 0.004 **
LOX 0.087 1.091 0.919 1.296 0.321 13085 6837
LOXL1 -0.159 0.853 0.716 1.015 0.073 12853 7069
LOXL2 0.019 1.020 0.742 1.401 0.905 13393 6529
LOXL3 -0.022 0.979 0.446 2.148 0.957 13866 6056
LOXL4 0.073 1.076 0.959 1.207 0.213 11983 7939
M

*p < 0.05, **p < 0.01.
95%CI_l: Lower limit of 95% Confidential Interval; 95%CI_u: Upper limit of 95% Confidential Interval.
A B

FIGURE 10 | Associations of the LOX and LOXL3 expression level with immunomodulators in LC from TISIDB database. (A) Immunomodulators that are highly
correlated with LOX; (B) Immunomodulators that are highly correlated with LOXL3.
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by their catalytic activity, and exert roles in remodeling the cross-
linking of the structural extracellular matrix (ECM) of fibrotic
organs such as the liver (25). In addition, LOX family members
are involved in scavenger receptor activity, oxidoreductase
activity, and copper ion binding. Multiple scavenger receptor
cysteine-rich (SRCR) domains exist n LOXL2 and LOXL3 (60,
61). As LOX family are copper-dependent amine oxidases (25),
it is not unexpected that oxidoreductase activity and copper ion
binding are involved. Further analysis via LinkedOmics database
also identified a significant amount of co-expressed genes
associated with each LOXL family members, and found that
these co-expressed genes are also largely involved in extracellular
and functions and structures, or participate in human tissues that
contain elastic fibers, fibrillar collagen, and organs with a great
amount of fibrous lamina propria.

The growth and metastasis of tumor cells depend on a
complex tumor microenvironment (TME) (62). TME
comprises of cells of hematopoietic origin, such as lymphocytes
and myeloid cells, cells of mesenchymal origin, including
mesenchymal stem cells, endothelial cells, adipocytes,
fibroblasts, and myofibroblasts, and the ECM (63). ECM is a
complex network providing structural support, biochemical
reagents and biomechanical signals for the growth of cancer
cells, and it consists of multiple components, including collagen,
integrin, laminin, fibronectin, glycosaminoglycans, matrix
metalloproteinases (MMP) and secreted cysteine-rich acidic
proteins (64). Further analysis on the relationship of LOX
family members and tumor-infiltrating immune cells in LC
found positive correlations between the infiltration of B cell,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs
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and all LOX family members. Moreover, the infiltration of B
cells, CD8+ T cells, macrophages, and DCs were associated with
worse outcomes. Immune cell infiltration in HCC under different
conditions, such as bile acid-mediated immune cell infiltration
(65) and TP53 mutations (66), have been investigated in the past.
However, evidence on the associations between LOX family
members and tumor-infiltrating immune cells in LC is limited.
In addition, immunomodulatory drugs are under development
for various conditions and have been approved in recent years
for certain tumors such as multiple myeloma (67, 68). Therefore,
we explored and identified a list of immunoihibitors,
immunostimulators, and MHC molecules that are positively
correlated with LOX and LOXL3, the two LOX family
members with poor prognosis. These immunomodulators
could be potential immunotherapeutic targets. The immune
environment is thought to be critical in tumor progression and
may even play a crucial role in different treatments for cancers,
including chemotherapy, radiotherapy, and especially
immunotherapy (69–71). Our findings suggest that there is a
s ign ificant ro le o f the LOX f ami ly in the tumor
microenvironment. Therefore, comprehensive studies on the
association of tumor-infiltrating immune cells, as well as
immunomodulators, and LOX family in LC are needed.

It is well known that tumor heterogeneity relies on the TME,
including both the cancer cells themselves and different types of
immune cells and the surrounding stroma. TME closely
correlates with the response to immunotherapy and the
prognosis in multiple cancers (72). TME tends to be involved
in the immunosuppression and drug resistance, resulting in less
satisfactory responses to immunotherapy. In addition, immune
A

B

C

FIGURE 11 | The co‐expression genes with LOX family members in LC from the LinkedOmics database. (A) The whole significantly associated genes with LOX
family member distinguished by Pearson test in LC cohort. (B) Top 50 genes positively related to LOX family member in LC showed by heat maps. (C) Top 50 genes
negatively related to LOX family member in LC showed by heat maps. Red represents positively linked genes and blue represents negatively linked genes.
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checkpoint blockade (ICB) relies on restoring the function of T
cell to eliminate tumors (70). Moreover, as part of the adaptive
immune resistance, tumor cells could upregulate the immune
checkpoint gene expression to suppress T cell activity that
eventually leads to immune escape (73). Thus, our findings of
positive association between CD8+ T cells and CD4+ T cells, as
well as other immune cells, and LOX family members suggest
that ICB and other immunotherapy could have a promising
Frontiers in Oncology | www.frontiersin.org 11
potential in LC treatment as high expression of LOX family
members in tumor tissues facilitates immune cells infiltration,
which could induce the immune response exerting the antitumor
efficiency. It would particularly helpful to investigate compounds
target on immunoinhibitors and immunostimulaters identified
in our study. As demonstrated in our study immunoinhibitors,
CSF1R, HAVCR2, and LGALS9, were found to be associated
with LOXL3, while TGFB1, TGFBR1, and VTCN1 correlated
A

B

D

E

C

FIGURE 12 | GO annotations and KEGG pathways of LOX family and their associated genes in LC cohort: (A) results of LOX; (B) results of LOXL1; (C) results of
LOXL2; (D) results of LOXL3; (E) results of LOXL4.
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with LOX. CSF-1R plays critical roles in regulating tumor-
associated macrophages in TME, and targeted inhibition of the
CSF-1/CSF-1R signal axis has broad application prospects in
immunotherapy of malignant tumors (74). Pexidartinib is an
orally administered small-molecule tyrosine kinase inhibitor that
selectively inhibits CSF1R, and is currently being assessed for
other types of cancer (75). Another kinase inhibitor,
Derazantinib, also found to have activity against CSF1R and is
under investigation for cholangiocarcinoma (76). Their potential
use in LC also deserves further exploration. HAVCR2, also
Frontiers in Oncology | www.frontiersin.org 12
known as TIM-3 and CD366, enhances T cell inhibition and
apoptosis and immune-suppressive activity of Tregs (77).
Antibodies against HAVCR2 disrupt the binding of the ligands
to HAVCR2 are under investigation as a potential combination
partner of anti-PD-1/L1 therapy (78). Previous study also found
that HAVCR2 receptor limits T-cell responses by interacting
with LGALS9 (79). A recent study also demonstrated that
chemoradiation could induce increased expression of PD-L1
and LGALS9 in gastric cancer (80), however, whether similar
result can be found in LC needs further study. TGF-B1 is a potent
inhibitor of T cell growth, partly by inhibiting IL-2 expression
and secretion by T cells themselves (81), and interestingly, it can
also affect anti-tumor T cell responses by downregulating MHC
molecules on the surface of tumor cells. Despite its critical roles,
the development of TGFB1-targeting therapies has not been
progressed well, probably due to concern of severe toxicities that
could arise from blocking tumor suppression exerted by TGF-b1
at early stages of tumorigenesis as TGFB1 exerts potent cytostatic
and pro-apoptotic activities in pre-malignant cells (82, 83). In
addition, blocking TGFB1 activities on normal cells outside of
the TME may also lead to toxicities (82). Nevertheless, certain
antibodies are still under investigation. For example, studies on
Fresolizumab, a fully human monoclonal IgG4 antibody that
neutralizes mature TGFB1, were conducted for malignant pleural
mesothelioma, melanoma and renal cell carcinoma (82).
Galunisertib, another TGFBR1inhibitor, was found to have
16% of objective responses in glioblastoma patients with no
serious treatment-related toxicities (82, 84). Another clinical trial
for pancreatic cancer patients showed that combination of
chemotherapy (gemcitabine) and galunisertib was associated
with increased survival compared to chemotherapy alone (85),
and it is now also tested for combination with anti-PD-1
antibodies (82). In addition, a new TGFBR1 kinase inhibitor
called vactosertib, currently tested in early-stage clinical trial for
several cancer types (83). VTCN1, also known as B7S1, is also a
negative regulator of tumor immunity by various mechanisms
such as dampening the anti-tumor Th1 responses (86). Recently,
an early-stage clinical study of FPA150, an antibody targeted on
B7S1 and other the anti-B7x family members, was started for
patients with advanced solid tumors to assess preliminary
efficacy of FPA150 alone or in combination anti-PD, as well its
safety, tolerability, pharmacokinetics, and pharmacodynamics
(87). In addition to immunoinhibitors, the immunostimulators
CD86, TNSF13B, and CXCR4, were found to be associated with
LOXL3, while TNFRSF9, CXCR4, and TNFSF15 correlated with
LOX. CD86, also known as B7-2, is an immune checkpoint
molecule of B7 family and binds to CD28 and Cytotoxic T-
Lymphocyte Antigen 4 (CTLA-4). Interaction of CD86 with
CTLA-4 inactivates T lymphocytes, causing the escape of tumor
cells from the immune system. Therefore, immunotherapy using
CTLA-4 antibodies might promote T cell activation to help
eliminating tumor cells (88). Ipilimumab, an CTLA-4
antibody, is currently approved by Food and Drug
Administration (FDA) for HCC treatment in combination with
nivolumab. In addition, Tremelimumab, fully human
immunoglobulin G2 monoclonal antibody directed against
A

B

C

FIGURE 13 | Forest plot of the prognosis of LOX, LOXL2 and LOXL4 for LC
patients: (A) Forest plot of overexpressed LOX; (B) Forest plot of
overexpressed LOXL2; (C) Forest plot of overexpressed LOXL4.
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CTLA-4, is also under investigation for HCC treatment (89).
TNSF14B, also known as B cell-activating factor of the TNF
family (BAFF), together with its receptor, BAFFR, are important
in early B-cell homeostasis and regulatory T-cell function (90).
BAFF inhibitors have been tested for certain diseases. For
instance, belimumab, a fully human monoclonal antibody
against BAFF, has been shown to have a modest effect for
active systemic lupus erythematosus (SLE), and another BAFF
inhibitor Blisibimod is also under investigation for SLE (90, 91).
Tabalumab is another BAFF inhibitor, and has been evaluated as
a combined therapy with bortezomib for multiple myeloma (90).
However, the roles of BAFF inhibitors in HCC still yet to be
explored. TNFRSF9, also known as CD137, a surface
glycoprotein belonging to a member of the tumor necrosis
factor receptor superfamily (TNFRSF). It is expressed on
activated T cells that have encountered cognate antigen,
activated NK cells, and mature DCs (92). Two clinical trials
have been being initiated for two anti- TNFRSF9 monoclonal
antibodies urelumab (BMS-663513) and utomilumab (PF-
05082566) (93, 94). TNFSF15, also called TNF-like molecule
1A (TL1A), is expressed on multiple immune cells such as DCs
and B cells. It binds to DR3 receptor, leading to cell apoptosis by
activating the caspase cascade through interaction with TRADD
and FADD, and the activation of multiple cell survival signaling
pathways including NF-kB, STAT3, JNK, p38 MAPK and ERK
(95, 96). TNFSF15 can also suppress endothelial cell proliferation
and angiogenesis through the binding of DR3, and this was
verified in a mouse xenograft tumor model (97, 98). Moreover,
TNFSF15 also can be induced in T cells, macrophages,
monocytes, and DCs in response to stimulation with immune
complexes, Toll-like receptor ligands, inflammatory cytokines,
and T-cell receptor activator (99). Current studies mostly focus
on the role of TNFSF15 in inflammatory diseases such as SLE
and psoriasis (100), its potential roles in HCC yet to be further
investigated. Apart from the above immunostimulators, the
CXCR4 was associated with both LOX and LOXL3. It is
expressed on various pro- and anti-inflammatory immune
cells, especially in macrophages and T cells (101). Multiple
drugs targeted on CXCR4 have been under investigation (102).
AMD3100, also known as plerixafor (Mozobil), was the FDA-
approved CXCR4 antagonist used for peripheral blood stem cell
transplantation, but its clinical use in LC and other solid tumors
is limited due to its poor pharmacokinetics and toxic adverse
effects (102, 103). Recently, other CXCR4 antagonists have been
developed. For example, BPRCX807 has been experimentally
validated in different HCC models (103), and it deserves further
investigation. The MHCs, HLA-DOA, HLA-DPA1, and HLA-
DPB1, positively associated with LOXL3 all belongs to MHC
Class II molecules (104). MHC class II molecules were found to
be expressed by antigen-presenting cells, including antigen-
presenting cancer-associated fibroblasts (apCAFs) (105, 106).
Therefore, these positive association of the MHC Class II
molecules might be indirect evidence of apCAFs in HCC, and
drugs targeted on these apCAFs might have potential therapeutic
values and future studies are needed for further clarification.
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This bioinformatic study also acknowledges some limitations:
First, as all data were retrieved from online databases, the results
still need to be validated with other experiments and cohorts.
Second, as this study was mainly aimed at exploring the potential
diagnostic, prognostic, and therapeutic values of the LOX family
members in LC patients, the details of their mechanisms were
not comprehensively explored. Third, most of the samples on the
online databases were HCC, therefore their values on other types
of LC still need further investigation. Fourth, meta-analysis
found that LOXL4 was associated with poor OS, while results
from TIMER and UALCAN did not yield the same conclusion.
However, only two studies on the survival effect of overexpressed
LOXL4 were found, therefore, more studies are urgently needed
to validate its effect of the prognosis for LC patients.
CONCLUSIONS

This bioinformatics analysis investigated the expression levels,
diagnostic and prognostic values, genetic alterations, PPI
network, functional enrichment, tumor microenvironment
factors, and potential mechanisms of LOX family members in
LC. Our results found that all LOX family members are
overexpressed in LC tumors, and LOXL2 is good candidate as
a diagnostic marker. LOX and LOXL3 are associated with poor
prognosis and carry potential as therapeutic targets. The effect of
LOXL4 on survival remains equivocal and prompts more studies.
The infiltration of a variety of immune cells and a list of
immunomodulators were positive correlated with LOX family
members. These results highlight the need to explore the roles of
LOX family in the tumor microenvironment and their potential
as immunotherapeutic targets.
METHODS

Analysis of LOX Family Expression Levels
The expression levels of LOX family members between LC and
normal tissue were first compared by using the Wilcoxon rank
sum test, and visualized by ‘ggplot2’ package of R software
version v3.6.3 (The R Foundation for Statistical Computing,
2020). p < 0.05 was considered statistically significant. Data
extracted from The Cancer Genome Atlas Liver Hepatocellular
Carcinoma (TCGA-LIHC) database (https://portal.gdc.cancer.
gov/), and Log2 transformed FPKM (fragments per kilobase
exon-model per million reads mapped) were used.

To further verify the expression levels of the 5 members of
LOX family between LC tissues and adjoining normal tissues, the
difference in transcriptional levels were assessed using students’
t-test through the UALCAN online tool (http://ualcan.path.uab.
edu/analysis.html), in which a statistically significant value was
defined as p-value < 0.05 (107). These findings were then verified
through Tumor Immune Estimation Resource (TIMER) (https://
cistrome.shinyapps.io/timer/), an online tool based on data of
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more than ten-thousand tumors from 32 types of cancer
(108, 109).

The optimal discriminate cut-off point between the high and
low expression groups was evaluated by the receiver operating
characteristic (ROC) curve and area under the curve (AUC)
values for overexpressed LOX family members, with data
obtained from the TCGA-LIHC database. Log2 transformed
FPKM were used for downstream analyses. ROC curve was
created by using pROC and ggplot2 packages of R software.

Analysis of Prognostic Value of LOX
Family Expression in LC
The prognostic value of LOX family expression was first explored
based on the TCGA-LIHC data with Log2 transformed FPKM.
We applied the Kaplan-Meier (KM) survival analysis with log-
rank test to compare the survival difference between high
expression group and low expression group. The KM curves,
with p-values and hazard ratio (HR) with 95% confidence
interval (CI), were generated by log-rank tests and univariate
Cox proportional hazards regression. These calculations were
performed using R software with ‘survminer’, and ‘survival’
packages. The results were verified by through the UALCAN
online tool (107) and TIMER (108, 109).

A predictive model based on TCGA-LIHC data was also
established to predict the mortality risk based on overexpressed
members of LOX family and all other potential predictors (110–
112). A nomogram using ‘rms’ and ‘survival’ R packages was
developed, based on multivariate Cox proportional hazards
analysis for predicting the 1,3,5-year overall survival. A
graphical representation of potential predicting factors was
provided by the nomogram to calculate the risk of mortality
for an individual patient. In order to assess the discriminatory
performance of the model, C-index was also calculated
(112–114).

Analysis of Genetic Mutations of LOX
Family in LC
Five datasets, including “TCGA, Firehose Legacy”, “RIKEN, Nat
Genet 2012”, “AMC, Hepatology 2014”, “INSERM, Nat Genet
2015”, and “MSK, Clin Cancer Res 2018” were applied to analyze
gene mutations of LOX family members via cBioPortal (http://
www.cbioportal.org/). cBioPortal is a comprehensive web
resource providing visualization, analysis, and download of
large-scale cancer genomics data sets (115). The correlation of
LOX family members with each other was calculated by
analyzing mRNA expressions (RNA sequencing [RNA-seq]
version (v.)2 RSEM) in the cBioPortal online tool for Liver
Hepatocellular Carcinoma (TCGA, Firehose Legacy). Pearson’s
correction was included. TIMER was also used to verify the
correlation of LOX family members using the Correlation
module (108, 109).

Exploration of Potential Drugs That Are
Interacted With LOX Family in LC
Potential drugs that interact with members of the LOX family
and demonstrated significant difference in expression and
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survival between LC and normal tissues were investigated
through text mining. Coremine Medical (http://www.coremine.
com/medical/) was used to visualize the connections among
genes and pathways (116, 117).

Analysis of Interaction of LOX Family
Members in LC
Protein-protein interaction (PPI) network analysis was
performed on differentially expressed LOX family members
and their most significantly interacted proteins via STRING
online database (https://string-db.org/) (118) and GeneMANIA
(http://www.genemania.org) (119).

GO Enrichment and KEGG Pathway
Analysis of LOX Family Members
Functions of LOX family members and their top 20 most
associated genes identified from GeneMANIA (119) were
analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) in the DAVID database (https://
david.ncifcrf.gov/summary.jsp) (120, 121). GO enrichment
analysis predicted the function based on biological processes
(BP), cellular components (CC), and molecular functions (MF),
while KEGG analysis determined the related pathways of LOX
family members and their associated interactors. The results of
GO and KEGG analyses were visualized by the Bioinformatics
online tool (http://www.bioinformatics.com.cn) (122, 123).
KEGG online web tool (http://www.genome.jp/kegg/), an
integrated database for biological interpretation of genome
sequences and other large-scale molecular datasets, was also
used to verify crucial pathways (123–126).

Immune Cell Infiltration of LOX Family
Members in LC
The infiltration of different immune cells and their clinical
impact were assessed through TIMER, an online tool for
comprehensive molecular characterization of tumor-immune
interactions (108, 109). Plots were generated using the Gene
module in TIMER, through which we analyzed the correlation
between the expression of LOX family members and immune
infiltration level in LC. Cutoff value of Cor >0.2 and p<0.05 were
used to determine a significant correlation (127, 128). To further
explore the interactions between immune system and LOX
family members that are associated with poor prognosis, the
TISIDB database (http://cis.hku.hk/TISIDB) was used. TISIDB is
a web portal for analyzing immune system and tumor
interaction, including nearly one thousand reported immune-
related anti-tumor genes, etc., and immunological data gathered
from seven public databases (129–131). Here, TISIDB was used
for exploring the immunomodulators associated with LOX
family members in LC.

Association Analysis of Each Member of
LOX Family and GSEA Analysis
The LinkedOmics (http://www.linkedomics.org/login.php) is an
online tool with multi-omics data from 32 types of cancer based
on TCGA (132). LOX family members were screened from the
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TCGA-LIHC cohort by choosing HiSeq RNA as platform and
RNAseq as data type in both search dataset and targe dataset.
The genes associated with each member of LOX family member
were explored through the LinkFinder module, and the
correlation of results was tested by the Pearson correlation
coefficient and presented respectively in volcano plot and heat
maps. Function module analysis of GO and KEGG pathways
were explored by the gene set enrichment analysis (GSEA) in the
LinkInterpreter module.

Meta-Analysis of the Prognosis
of Overexpressed LOX Family
Members in LC
A meta-analysis was performed to verify the results of OS of
overexpressed LOX family members in LC. Two authors (S. Mao
and Y. Chen) independently searched the potential articles
related to LOX family members and LC published until May
2021 via the Cochrane Library, PubMed, Web of Science and
CNKI (Chinese National Knowledge Infrastructure). To find all
eligible literature, the following search strategy was used: (LOXL1
OR LOXL2OR LOXL3OR LOXL4OR LOXOR lysyl oxidase like
1 OR lysyl oxidase like 2 OR lysyl oxidase like 3 OR lysyl oxidase
like 4 OR lysyl oxidase) AND (liver cancer OR hepatocellular
carcinoma OR LC OR HCC). Chinese phrases replaced the
English terms in the CNKI database. Before conducting this
study, we consulted the Preferred Reporting Items declared by
the Systematic Review and Meta-Analysis (PRISMA) (133).
Then, the strength of associations between LOX family
members and OS in LC was evaluated by calculating the
combined HRs with the corresponding 95% confidence interval
(CI). I2 statistics were used to assess the degree of heterogeneity
across the incorporated original studies (134). If I2> 50%, the
Frontiers in Oncology | www.frontiersin.org 15
random-effects model was used to estimate the HR to account for
heterogeneity; otherwise, the fixed-effects model was applied
(135). In addition, we performed sensitivity analysis by
switching between the random-effects model and fixed-effects
model and observing for significant differences in the results
(136, 137). The above statistical analysis was performed using
STATA 15.1. statistical software (Stata Corp., College
Station, TX).
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