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ABSTRACT To assess phenotypic bacterial antimicrobial resistance (AMR) in differ-
ent strata (e.g., host populations, environmental areas, manure, or sewage effluents)
for epidemiological purposes, isolates of target bacteria can be obtained from a stra-
tum using various sample types. Also, different sample processing methods can be
applied. The MIC of each target antimicrobial drug for each isolate is measured. Sta-
tistical equivalence testing of the MIC data for the isolates allows evaluation of
whether different sample types or sample processing methods yield equivalent esti-
mates of the bacterial antimicrobial susceptibility in the stratum. We demonstrate
this approach on the antimicrobial susceptibility estimates for (i) nontyphoidal Sal-
monella spp. from ground or trimmed meat versus cecal content samples of cattle in
processing plants in 2013-2014 and (ii) nontyphoidal Salmonella spp. from urine, fe-
cal, and blood human samples in 2015 (U.S. National Antimicrobial Resistance Moni-
toring System data). We found that the sample types for cattle yielded nonequiva-
lent susceptibility estimates for several antimicrobial drug classes and thus may
gauge distinct subpopulations of salmonellae. The quinolone and fluoroquinolone
susceptibility estimates for nontyphoidal salmonellae from human blood are non-
equivalent to those from urine or feces, conjecturally due to the fluoroquinolone
(ciprofloxacin) use to treat infections caused by nontyphoidal salmonellae. We also
demonstrate statistical equivalence testing for comparing sample processing meth-
ods for fecal samples (culturing one versus multiple aliquots per sample) to assess
AMR in fecal Escherichia coli. These methods yield equivalent results, except for tet-
racyclines. Importantly, statistical equivalence testing provides the MIC difference at
which the data from two sample types or sample processing methods differ statisti-
cally. Data users (e.g., microbiologists and epidemiologists) may then interpret prac-
tical relevance of the difference.

IMPORTANCE Bacterial antimicrobial resistance (AMR) needs to be assessed in dif-
ferent populations or strata for the purposes of surveillance and determination of
the efficacy of interventions to halt AMR dissemination. To assess phenotypic antimi-
crobial susceptibility, isolates of target bacteria can be obtained from a stratum us-
ing different sample types or employing different sample processing methods in the
laboratory. The MIC of each target antimicrobial drug for each of the isolates is mea-
sured, yielding the MIC distribution across the isolates from each sample type or
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sample processing method. We describe statistical equivalence testing for the MIC
data for evaluating whether two sample types or sample processing methods yield
equivalent estimates of the bacterial phenotypic antimicrobial susceptibility in the
stratum. This includes estimating the MIC difference at which the data from the two
approaches differ statistically. Data users (e.g., microbiologists, epidemiologists, and
public health professionals) can then interpret whether that present difference is
practically relevant.

KEYWORDS Escherichia coli, NARMS, Salmonella, assessment of antimicrobial
resistance, bacterial antimicrobial resistance, cattle, fecal sampling, sample
processing, sample types, statistical equivalence

Informative assessment of bacterial antimicrobial resistance (AMR) within and among
strata is the basic block in any investigation of AMR epidemiology or control

approaches (1, 2). Such assessments are critical for identifying influential factors and
mitigation strategies for AMR (1, 2). Examples of strata are animal or human popula-
tions, food products, environmental areas, manure effluents from food animal farms,
and human sewage effluents. To assess AMR of a target bacterial species in a stratum,
isolates of the bacteria are obtained from the sampling units (e.g., animal hosts or
environmental area segments) in the stratum. Each isolate’s phenotypic susceptibility
to each target antimicrobial drug is measured as the drug’s MIC inhibiting visible
overnight growth of the isolate culture (3). The data for all the obtained isolates provide
the distribution of the tested antimicrobial’s MIC as an estimate for the target bacteria
in the stratum. Descriptive statistics (e.g., elemental features of the data such as means,
percentiles, or ranges) have been used extensively for the MIC distributions due to the
ease of interpretation (the statistics used had been reviewed in detail by Wagner et al.
[4]). Such distributions, however, could be subjected to statistical analyses to identify
patterns and dynamics of the bacterial antimicrobial susceptibility in the stratum,
compare sampling approaches or microbiological sample processing methods for the
susceptibility assessments, or contrast the susceptibilities between strata. Analyzing the
MIC distributions bears numerous challenges because the distributions tend to have
complex shapes (e.g., do not follow the probability distributions commonly assumed
for parametric statistical tests) and are inherently censored (i.e., all the isolates with MIC
less than or equal to the smallest drug concentration tested are in one category in the
beginning of the distribution, and all the isolates with MIC greater than the largest drug
concentration tested are in one category in the end of the distribution) (4–7). Thus far,
the analytical approaches have included comparing the histograms of relative
frequency of the isolates with the specific MICs of the antimicrobial (7) and the
cumulative frequency of the isolates over the increasing MICs of the antimicrobial (8, 9)
in a stratum over time and between strata. The cumulative frequency distributions have
been also used for comparing the antimicrobial susceptibility estimates between the
isolate sets from different sampling approaches in a stratum (10). Survival analysis has
been adapted to compare the probabilities of isolates with the specific MICs of the
antimicrobial (the time to event is replaced by the concentration achieving bacterial
growth inhibition, MIC) in a stratum over time and between strata defined by experi-
mental factors (6, 11). Linear regression on the log2(MIC) has been used to compare the
susceptibility to the antimicrobial in a stratum over time and between strata in the
probabilistic framework (12) and to compare the MIC measurements obtained for
the same strain set by different microbiological laboratories in the Bayesian framework
(5). It has been suggested that a power analysis should be included for the statistical
tests of tendencies in the MIC/log2(MIC) distributions to support interpretation of the
results (12).

Different sampling approaches can be used to assess AMR in a target bacterial
species in a stratum. For example, different sample types can be collected, from which
the bacteria are then isolated. In other situations, once the samples have been
collected, those can be subjected to different sample processing methods for bacterial
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isolation. For example, an aliquot of the sample can be plated on a bacteriological agar
and a different number of the bacterial colonies tested for susceptibility to antimicro-
bials, or multiple aliquots of the sample can be plated and the bacterial colonies from
each aliquot tested. The same analytical need arises in both of these scenarios:
sampling a stratum by different sample types and applying different sample processing
methods to the samples of one type. The need is to determine whether the sampling
or the sample processing approaches yield similar estimates of phenotypic antimicro-
bial susceptibility in the target bacteria in the stratum. This question can be formulated
as to whether the approaches yield equivalent estimates of the antimicrobial’s MIC
distribution for the bacteria in the stratum. This can be addressed by statistical
equivalence testing (13, 14). This technique also provides a flexibility for the data users
to interpret whether the existing differences between the bacterial susceptibility
estimates for the stratum between the sampling or sample processing approaches are
practically relevant (as shown below). The objective of this study was to demonstrate
the utility of the statistical equivalence testing as a method to compare the bacterial
antimicrobial susceptibility estimates for a stratum between sampling approaches (e.g.,
different sample types or sampling schemes) or sample processing methods.

RESULTS
Interpretation of statistical equivalence testing for MIC data from different

sampling or sample processing approaches. The most commonly used measure-
ment of susceptibility of a bacterial isolate to an antimicrobial is the drug’s MIC. When
the MIC is measured using the broth microdilution assay based on serial 2-fold dilutions
of the drug, the measurement is transformed to log2(MIC) for statistical analyses (12,
15). The measurements for all the target bacterial species’ isolates obtained via a given
sampling or sample processing approach from the target stratum yield the antimicro-
bial’s MIC distribution for the species in the stratum. Such distributions from two
sampling or sample processing approaches can be compared, and the minimum
difference between the average log2(MIC) estimates from the two approaches at which
the estimates are still statistically equivalent can be determined. We designate that
difference Δmin. This threshold difference value can be found by performing the
statistical equivalence testing on the log2(MIC) data from the two approaches starting
from a large value of the difference Δ �� 1 � Δmin and then reducing it until finding
Δ¡Δmin below which the hypothesis of a statistically significant difference between the
average log2(MIC) cannot be rejected. This leads to the estimate of Δmin obtained from
the confidence interval (CI) of the difference between the average log2(MIC) estimates
from the two sampling or sample processing approaches (see Materials and Methods
for details). The estimate of Δmin can be interpreted by data users as illustrated in Fig.
1. If a practically relevant difference Δ1 is outside Δmin, i.e., Δ1 � Δmin, the two
approaches yield statistically equivalent data. In contrast, if a practically relevant
difference Δ2 is inside Δmin, i.e., Δ2 � Δmin, the two approaches yield statistically
nonequivalent data. Thus, data users could apply their perspectives of which difference
between the average log2(MIC) estimates from the two sampling or sample processing
approaches is practically relevant and compare that to the existing statistically signif-
icant difference, Δmin. Summarizing the results as illustrated in Fig. 2 to 4 enables
evaluating the differences in the average log2(MIC) estimates between the two sam-
pling or sample processing approaches for individual antimicrobials tested (within and
between the drug classes).

Here we provide a suggestion on how Δmin could be interpreted systematically.
When bioequivalence of two drug preparations is investigated based on a biological
drug response variable for which logarithmic transformations are appropriate, the
preparations are considered equivalent if the difference Δ in the variable values is such
that 2Δ is �1.25 (16). This corresponds to �0.32 on the log2(MIC) scale. If none of the
two sampling or sample processing approaches compared is a reference for the
bacterial antimicrobial susceptibility assessment, data users can consider the absolute
value of the difference between the average log2(MIC) estimates. They could interpret
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that the two approaches yield nonequivalent estimates of the average log2(MIC) if Δmin

is �0.32. Such values of Δmin suggest that the estimates differ beyond the biological
variation expected if the two approaches were gathering the isolates from the same
subpopulation of the target bacteria in the sampled stratum. Note that the statistical
determination of Δmin accounts for variability in the data from the two approaches (see
Materials and Methods for details).

Case study 1: ground- or trimmed-meat versus cecal content samples from
cattle in processing plants for assessing antimicrobial susceptibility of nontyphoi-
dal Salmonella enterica subsp. enterica in cattle. Monitoring of AMR in the U.S. food
chain is conducted by the National Antimicrobial Resistance Monitoring System
(NARMS) (17). In cattle processing plants, both samples of ground or trimmed meat
and of cecal contents of cattle carcasses were collected in 2013-2014 (17, 18).
Nontyphoidal Salmonella enterica subsp. enterica isolates of diverse serovars were
obtained from both these sample types (17, 18). Phenotypic susceptibility of the
isolates to antimicrobials representing major antimicrobial drug classes was tested
(Table 1) (17, 18) (the data can be found here: https://www.fda.gov/AnimalVeterinary/
SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoring
System/ucm416741.htm). As the first case study, we investigated statistical equivalence
of the average log2(MIC) estimates of each tested antimicrobial (Table 1) for S. enterica
yielded by the ground- or trimmed-meat samples (n � 310 for 2013 and n � 344 for
2014) versus cecal content samples (n � 435 for 2013 and n � 318 for 2014). In both
2013 and 2014, the equivalence testing was used to determine for each antimicrobial
Δmin, i.e., the difference between the average log2(MIC) from the two sampling ap-
proaches at which the approaches still yielded statistically equivalent data. The distri-
butions of the log2(MIC) for all the tested antimicrobials in each 2013 and 2014 did not
follow a normal distribution (Wilk-Shapiro test, P value � 0.05 for each of the two
distributions from the sampling approaches). Because of this, the robust t test was used
for the equivalence testing (see Materials and Methods for details). The values of Δmin

tended to be larger for phenicols, sulfonamides, and tetracyclines in both 2013 and
2014 (Fig. 2A and B). Relatively large Δmin values were also estimated for �-lactams,
both aminopenicillins and cephems, in 2013 (Fig. 2A). The statistical nonequivalence of
the log2(MIC) data for these drug classes highlighted that the cecal content sampling
gauged S. enterica subpopulations that differ in their phenotypic AMR from S. enterica
subpopulations gauged via the ground- or trimmed-meat sampling in the cattle
processing plants. This interpretation was based on considering the data for each
antimicrobial from the two sampling approaches nonequivalent if Δmin was �0.32.

Case study 2: antimicrobial susceptibility of nontyphoidal S. enterica subsp.
enterica from urine versus fecal versus blood samples of humans. Monitoring of

FIG 1 Schematic representation of testing statistical equivalence of the bacterial antimicrobial susceptibility estimates from two sampling
or sample processing approaches used in a stratum. If a practically relevant difference between the average log2(MIC) estimates from the
two approaches is equal to or larger than Δmin (e.g., Δ1), the hypothesis of statistical nonequivalence of the estimates will be rejected,
signaling equivalence of the MIC data from the two approaches. If a practically relevant difference is smaller than Δmin (e.g., Δ2), the
hypothesis of statistical nonequivalence of the estimates will be accepted. The maximum possible difference between the log2(MIC) values
from the two approaches is Δmax ��max � maxMIC1�Y1

MIC2�Y2

�|log2�MIC1� � log2�MIC2�|� for the isolate sets Y1 and Y2).
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AMR in enteric pathogens of humans in the United States is also a part of the NARMS
activities (17). Nontyphoidal Salmonella enterica subsp. enterica isolates of diverse
serovars were obtained from urine, fecal, and blood samples of humans in the United
States in 2015 (the analyzed data set is limited to those states that have permitted the
U.S. Centers for Disease Control and Prevention to share the data with the public; the
data set can be found at https://wwwn.cdc.gov/narmsnow/). Phenotypic susceptibility
of the isolates to antimicrobials representing major antimicrobial drug classes was
tested (Table 2). As the second case study, we applied the statistical equivalence testing
to compare the estimates of antimicrobial susceptibility of nontyphoidal S. enterica
isolates from urine (n � 144), fecal (n � 1,495), and blood (n � 181) samples of humans
in the United States in 2015. The distributions of the log2(MIC) for all the tested
antimicrobials for the S. enterica isolates from each urine, fecal, or blood samples did
not follow a normal distribution (Wilk-Shapiro test, P value � 0.05 for each distribution).
Thus, the robust t test was used for the equivalence testing. The results demonstrated
that susceptibilities of the S. enterica isolates from human urine versus from blood to
cephems (which are �-lactams), macrolides, phenicols, and quinolones were statistically
nonequivalent (Fig. 3A). Further, susceptibilities of the S. enterica isolates from human
feces versus from blood to aminoglycosides, cephems, quinolones, and tetracyclines
were nonequivalent (Fig. 3B). Susceptibilities of the S. enterica isolates from human

FIG 2 Testing statistical equivalence of the estimates of phenotypic antimicrobial susceptibility of nontyphoidal Salmonella enterica subsp.
enterica isolates from the ground- or trimmed-meat samples (n � 310 for 2013 and n � 344 for 2014) versus cecal content samples (n �
435 for 2013 and n � 318 for 2014) from cattle in the processing plants in the United States in 2013 (A) and 2014 (B). The data were
collected by the NARMS. Aminoglycosides: GEN, gentamicin; STR, streptomycin. �-Lactam aminopenicillins: AMC, amoxicillin-clavulanic
acid; AMP, ampicillin. �-Lactam cephems: AXO, ceftriaxone; FOX, cefoxitin; TIO, ceftiofur. Macrolides: AZI, azithromycin. Phenicols: CHL,
chloramphenicol. Quinolones: CIP, ciprofloxacin; NAL, nalidixic acid. Sulfonamides: COT, trimethoprim sulfamethoxazole; FIS, sulfisoxazole.
Tetracyclines: TET, tetracycline.
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urine versus from feces differed to a lesser extent but still were nonequivalent for
aminoglycosides, quinolones, and tetracyclines (Fig. 3C). These interpretations for each
antimicrobial in a pairwise comparison of the isolate sources were based on considering
the data nonequivalent if Δmin was �0.32. The largest differences were found for the
fluoroquinolone ciprofloxacin and the older quinolone nalidixic acid (Fig. 3A and B), to
which the isolates from human blood had lower susceptibilities (higher ciprofloxacin
and nalidixic acid MICs) than the isolates from either urine or feces. The difference
between the average log2(MIC) of ciprofloxacin for the isolates from blood versus urine
was 1.08 (95% CI: 0.74, 1.42), and for the isolates from blood versus feces it was 1.20

FIG 3 Testing statistical equivalence of the estimates of phenotypic antimicrobial susceptibility of nontyphoidal Salmonella enterica subsp.
enterica isolates from urine (n � 144), fecal (n � 1,495), and blood (n � 181) samples of humans in the United States in 2015. (A) Urine
versus blood isolates; (B) fecal versus blood isolates; (C) urine versus fecal isolates. The data were collected by the NARMS. Aminogly-
cosides: GEN, gentamicin; STR, streptomycin. �-Lactam aminopenicillins: AMC, amoxicillin-clavulanic acid; AMP, ampicillin. �-Lactam
cephems: FOX, cefoxitin; TIO, ceftiofur. Macrolides: AZI, azithromycin. Phenicols: CHL, chloramphenicol. Quinolones: CIP, ciprofloxacin;
NAL, nalidixic acid. Sulfonamides: FIS, sulfisoxazole. Tetracycline: TET, tetracycline.
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(95% CI: 0.86, 1.54). The difference between the average log2(MIC) of nalidixic acid for
the isolates from blood versus urine was 0.71 (95% CI: 0.46, 0.95), and for the isolates
from blood versus feces it was 0.80 (95% CI: 0.57, 0.96).

Case study 3: processing a fecal sample for assessing antimicrobial suscepti-
bility of fecal Escherichia coli using multiple bacterial isolates from one aliquot
versus one isolate from each of multiple aliquots of the sample. Assessment of
AMR in a target culturable bacterial species in a fecal sample customary involves using
a single aliquot from the sample (19, 20). The aliquot is diluted (the dilution is chosen
based on the expected bacterial density) and the dilution(s) is plated on a bacterio-
logical agar (19, 20). One or more of the bacterial colonies with typical morphology for
the species on the agar are selected, each of the colonies is replated for isolation, and

FIG 4 Testing statistical equivalence of the estimates of phenotypic antimicrobial susceptibility of E. coli in cattle fecal pads (n � 32). The
sample processing approaches compared were testing susceptibility of 4 E. coli isolates obtained from one aliquot of the pad versus
testing susceptibility of 4 E. coli isolates each obtained from a different aliquot of the pad, with the aliquots collected from locations spread
along the longest axis of the pad. Aminoglycosides: TOB, tobramycin. �-Lactam aminopenicillins: AMP, ampicillin; AS2, ampicillin-
sulbactam (2:1 ratio). �-Lactam cephems: FAZ, cefazolin; TIO, ceftiofur. Macrolides: TIL, tilmicosin; TUL, tulathromycin. Phenicols: FFN,
florfenicol. Tetracyclines: CTET, chlortetracycline; MIN, minocycline; OXY, oxytetracycline; TET, tetracycline.

TABLE 1 Antimicrobial drug susceptibilities tested for nontyphoidal Salmonella enterica subsp. enterica isolates from ground- or trimmed-
meat samples and from cecal content samples collected from cattle in processing plants in the United States in 2013 and 2014a

Antimicrobial
drug class Subclass

Combinatory
formulation Drug

Aminoglycosides -Micins No Gentamicin
-Mycins No Kanamycin (tested in 2013 only)

No Streptomycin

�-Lactams Aminopenicillins with �-lactamase
inhibitors

Yes Amoxicillin with clavulanic acid

Aminopenicillins No Ampicillin
Cephems No Ceftriaxone

No Cefoxitine
No Ceftiofur

Macrolides Azalides No Azithromycin
Phenicols NA No Chloramphenicol
Quinolones Fluoroquinolones No Ciprofloxacin

Quinolones No Nalidixic acid

Sulfonamides NA Yes Sulfamethoxazole with trimethoprim
No Sulfisoxazole

Tetracyclines Tetracyclines No Tetracycline
aThe data were collected by the U.S. National Antimicrobial Resistance Monitoring System. Note that due to a low variability in the data for kanamycin in 2013 and
ceftriaxone in 2014, the equivalence testing could not be performed. NA, not applicable.
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the isolate’s phenotypic susceptibility to antimicrobials is tested (19, 20). However, the
population of commensal bacteria such as Escherichia coli in feces of an animal or
human could consist of genetically diverse subpopulations (21–25). We have chosen to
investigate for cattle fecal pads if testing susceptibility of E. coli obtained from a single
aliquot of the pad (conventional approach) versus from multiple aliquots taken over the
longest axis of the pad yield equivalent estimates of phenotypic antimicrobial suscep-
tibility of fecal E. coli. Fresh fecal pads (n � 32) were collected from beef and dairy cattle
at research facilities at Kansas State University during May to June 2016. The animals
that were sampled had not received antimicrobial drugs in the preceding week, but 1
to 3 weeks prior they had received either antimicrobials or feed supplemented with
copper (Cu) or zinc (Zn) (which can coselect AMR in the animal fecal bacteria [11,
26–29]). This animal selection was done to ensure that the cattle fecal E. coli would have
detectable but not uniformly high levels of phenotypic AMR, to facilitate statistical
analyses of the data. Four aliquots were taken equidistantly along the longest axis of
each pad. One of the four aliquots was randomly selected, and four E. coli isolates were
obtained from that aliquot. From each of the other three aliquots from the pad, one E.

TABLE 2 Antimicrobial drug susceptibilities tested for nontyphoidal Salmonella enterica subsp. enterica isolates from urine, fecal, and
blood samples of humans in the United States in 2015a

Antimicrobial drug class Subclass
Combinatory
formulation Drug

Drugs for which variability in the log2(MIC)
data from urine, fecal, and blood
samples was sufficient to perform the
statistical equivalence testing

Aminoglycosides -Micins No Gentamicin
-Mycins No Streptomycin

�-Lactams Penicillins, including amino-, carboxy-, and
ureido-, with �-lactamase inhibitors

Yes Amoxicillin with clavulanic acid

Penicillins, including amino-, carboxy-, and
ureido-

No Ampicillin

Cephems No Cefoxitin
No Ceftiofur

Macrolides Azalides No Azithromycin
Phenicols NA No Chloramphenicol
Quinolones Fluoroquinolones No Ciprofloxacin

Quinolones No Nalidixic acid
Sulfonamides NA No Sulfisoxazole
Tetracyclines Tetracyclines No Tetracycline

Drugs for which variability in the log2(MIC)
data from urine, fecal, and blood
samples was insufficient to perform the
statistical equivalence testing

�-Lactams Cephems No Ceftriaxone
Sulfonamides NA Yes Sulfamethoxazole with

trimethoprim

Drugs for which statistical equivalence testing
could not be performed because of a
low no. of each urine and blood samples
(n � 10) tested with the antimicrobials

�-Lactams Penicillins, including amino-, carboxy-, and
ureido-, with �-lactamase inhibitors

Yes Piperacillin with tazobactam
constant

Carbapenems No Imipenem
Cephems with �-lactamase inhibitors Yes Cefotaxime with clavulanic acid

Ceftazidime with clavulanic acid
Cephems No Cefepime

No Cefotaxime
No Cefquinome
No Ceftazidime

Monobactams No Aztreonam
aThe data were collected by the U.S. National Antimicrobial Resistance Monitoring System.
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coli isolate was obtained. All the isolates were tested for phenotypic susceptibility to
antimicrobials, which were chosen to represent most of the existing antimicrobial drug
classes (Table 3). As the third case study, we investigated for each of these antimicro-
bials the statistical equivalence of the average log2(MIC) estimates for fecal E. coli
yielded by testing four bacterial isolates from a single aliquot of the fecal pad versus
testing one bacterial isolate from each of four aliquots taken from locations spread over
the longest axis of the fecal pad. The results demonstrated detectable differences
between the two sample processing methods in the estimates of fecal E. coli suscep-

TABLE 3 Antimicrobial drug susceptibilities tested for Escherichia coli isolates from cattle fecal pads

Antimicrobial drug class Subclass
Combinatory
formulation Drug

Drugs for which variability in the log2(MIC)
data from the two sample processing
approaches was sufficient to perform
the statistical equivalence testing

Aminoglycosides -Mycins No Tobramycin
�-Lactams Penicillins, including amino-, carboxy-, and

ureido-
No Ampicillin

Penicillins, including amino-, carboxy-, and
ureido-, with �-lactamase inhibitors

Yes Ampicillin with sulbactam, 2:1 ratio

Cephems No Cefazolin
No Ceftiofur

Macrolides Macrolides No Tilmicosin
Triamilides No Tulathromycin

Phenicols NA No Florfenicol
Tetracyclines Tetracyclines No Chlortetracycline

No Minocycline
No Oxytetracycline
No Tetracycline

Drugs for which variability in the log2(MIC)
data from the two sample processing
approaches was insufficient to
perform the statistical equivalence
testing

Aminoglycosides -Micins No Amikacin
No Gentamicin

-Mycins No Neomycin
No Spectinomycin

�-Lactams Penicillins, including amino-, carboxy-, and
ureido-

No Penicillin
No Piperacillin

Penicillins, including amino-, carboxy-, and
ureido-, with �-lactamase inhibitors

Yes Piperacillin with tazobactam constant
Yes Ticarcillin with clavulanic acid

Carbapenems No Doripenem
No Ertapenem
No Imipenem
No Meropenem

Monobactams No Aztreonam
Cephems No Cefepime

No Ceftazidime
No Ceftriaxone

Macrolides Macrolides No Tylosin
Nitrofurans NA No Nitrofurantoin
Pleuromutilins NA No Pleuromutilin

No Tiamulin
Lincosamides NA No Clindamycin
Quinolones Quinolones No Nalidixic acid

Fluoroquinolones No Ciprofloxacin
No Danofloxacin
No Enrofloxacin
No Levofloxacin

Sulfonamides NA No Sulfadimethoxine
Yes Sulfamethoxazole with trimethoprim

Tetracyclines Glycylcyclines No Tigecycline
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tibility to aminopenicillins (which are �-lactams), aminoglycosides, macrolides, and
tetracyclines (Fig. 4). Only for tetracyclines did the two methods yield statistically
nonequivalent estimates of fecal E. coli susceptibility. The interpretation for each tested
antimicrobial was based on considering the data nonequivalent if Δmin was �0.32. The
observed variability in the log2(MIC) for antimicrobials of newer classes (Table 3) was
insufficient for the testing; the E. coli isolates were predominantly susceptible to these
antimicrobials.

DISCUSSION

The three case studies provided above illustrate the utility of statistical equivalence
testing (13, 14) for establishing equivalence of data yielded by two sampling or
sample-processing approaches for assessing phenotypic antimicrobial susceptibility in
a target bacterial species in a stratum. Advantages of the proposed method include the
estimation difference in the average log2(MIC) estimates, Δmin, below which the data
from the two approaches are statistically significantly different. This provides data users
with flexibility to investigate where practically relevant differences fall relative to the
existing differences in the data, as illustrated in Fig. 1. Note that in the proposed
method, we determine Δmin between the average log2(MIC) estimates from the two
sampling or sample processing approaches using a sequential algorithm that retests
the statistical nonequivalence hypothesis over a range of the average log2(MIC) differ-
ence values based on the data from the two approaches. For this, we use statistical tests
that accommodate censored data with unequal variances and different shapes of the
log2(MIC) distributions from the two approaches. This is because the data on an
antimicrobial’s MIC for a set of bacterial isolates from a stratum are inherently censored
(all the isolates with MICs less than or equal to the smallest drug concentration tested
are in one category in the beginning and all the isolates with MICs greater than the
largest drug concentration tested are in one category in the end of the MIC distribu-
tion). The resulting log2(MIC) distributions for commonly tested antimicrobial drugs
have various shapes that often do not fit to a normal distribution (7). In the proposed
method for the equivalence testing, Welch’s t test (30) relaxes the assumption of equal
variances in the two compared log2(MIC) distributions and the robust t test (31) further
improves handling of overdispersion (e.g., presence of long tails in the distributions).
We keep the results obtained using both of these tests in Fig. 2 to 4 for illustrative
purposes. In further applications, the robust t test could be recommended for the
log2(MIC) distributions that do not follow a normal distribution and demonstrate
overdispersion.

In the first case study, we evaluated whether sampling the cecal contents and
sampling of ground or trimmed meat in the U.S. cattle processing plants yield equiv-
alent data on antimicrobial susceptibility of nontyphoidal S. enterica subsp. enterica in
the processed cattle. The data were collected by the NARMS in 2013-2014 to monitor
AMR in the U.S. cattle production chain, and therefore we interpret the results at the
same population level. The results showed that S. enterica subpopulations in the cecal
content samples may be statistically nonequivalent in their phenotypic antimicrobial
susceptibility to S. enterica subpopulations in the ground- or trimmed-meat samples
(Fig. 2). Thus, the two sampling approaches yield nonequivalent data for monitoring
phenotypic antimicrobial susceptibility in S. enterica in cattle in the processing plants.
Possible explanations include decontamination and cross-contamination of cattle car-
casses and products within the plant, as well as mixing of different carcass parts for the
ground meat (32–34). These processes can reduce the role of the cattle intestinal
contents as a source of S. enterica in the meat or ground-meat products.

In the second case study, we evaluated statistical equivalence of the antimicrobial
susceptibility estimates for nontyphoidal S. enterica isolates from urine, fecal, and blood
samples of humans in the U.S. in 2015. The data were collected by the NARMS to
monitor AMR in human enteric pathogens in the United States, and thus again we
interpret the results at the same population level. The results demonstrated that
susceptibilities of the S. enterica isolates from human blood are nonequivalent to those
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from urine or feces for several major antimicrobial drug classes, such as aminoglyco-
sides, cephems (�-lactams), macrolides, phenicols, quinolones, and tetracyclines (Fig.
3A and B). Lesser differences were observed between the isolates from urine versus
feces (Fig. 3C). The differences of largest magnitude were found for quinolones, with
the isolates from human blood being less susceptible than those from urine or feces to
the fluoroquinolone ciprofloxacin and the older quinolone nalidixic acid (see Results for
more details). This could be due to the common use of fluoroquinolones, e.g., cipro-
floxacin, as one of the first-line treatment choices for treating serious infections by
nontyphoidal salmonellae in human adults (35–38). Another common treatment choice
is cephalosporins (�-lactams), e.g., ceftriaxone (the other choices include combinatory
formulations containing �-lactams and �-lactamase inhibitors, aminoglycosides, and, as
the last resort, polymyxins and carbapenems [�-lactams]) (35, 38). Considering the data
for 2015, susceptibilities to individual cephems of the S. enterica isolates from human
blood were less different from (although statistically nonequivalent to) those of the
isolates from urine or feces, compared to the differences observed for quinolones (Fig.
3A and B). Notably, across the human nontyphoidal Salmonella isolates, the frequency
of those with reduced ciprofloxacin susceptibility has been continuously rising and the
frequency of those with reduced ceftriaxone susceptibility has overall increased in the
United States since 1996 (38, 39).

In the third case study, we evaluated whether testing four bacterial isolates from a
single aliquot of the cattle fecal pad versus testing one bacterial isolate from each of
four aliquots taken from locations spread over the longest axis of the pad yield
equivalent data on phenotypic antimicrobial susceptibility of fecal E. coli at the popu-
lation level (n � 32 pads were tested). The results showed that the two sample
processing methods yield statistically nonequivalent estimates of E. coli susceptibility to
tetracyclines, with smaller but detectable differences for aminopenicillins (�-lactams),
aminoglycosides, and macrolides (Fig. 4). These antimicrobial drug classes have been
used in food animals in the United States for the longest periods (40). Tetracyclines,
penicillins, and aminoglycosides were introduced in the 1940s and macrolides in the
1970s (40). Consequently, multiple genes encoding various degrees of susceptibility to
these drug classes have been observed in fecal E. coli and S. enterica isolates from farm
animals (41–45). The tetracycline resistance gene pool is especially diverse, with several
tens of tet genes described to date for different animal and human hosts (41, 46).
Testing E. coli throughout the fecal pad may capture more of the present diversity in
the susceptibility to tetracyclines than testing E. coli at a single location in the pad. Also,
the statistical power of the equivalence testing depends not only on the sample size
but also on variability in the log2(MIC) data. Strongly bimodal (less variable) log2(MIC)
distributions for newer antimicrobial drug classes, due to the high frequencies of the
highly susceptible bacterial isolates, impede the testing (see Tables 1 to 3 for examples).

Diagnostic microbiologists consider one 2-fold dilution of the antimicrobial drug to
be an acceptable variation in the MIC measurement for an individual bacterial isolate
in the broth microdilution assay (47). If such variation occurs randomly among the
isolates in the two sampling or sample processing approaches, it is accounted for in the
variance component of a statistical test of the data (for example, see Materials and
Methods). Such random variation does not bias comparisons of the data between the
approaches. However, if the variation is nonrandom and has a systematic source, it
could bias the comparisons. Consider an extreme case of the MIC being skewed by one
2-fold drug dilution for every isolate obtained from one sampling or sample processing
approach but not from the other approach, e.g., if the samples from one approach were
examined in one laboratory and the samples from the other approach in another
laboratory. The data user believes that the antimicrobial’s MIC measurements in one
laboratory are consistently one 2-fold dilution higher or lower than the MIC measure-
ments in the second laboratory. In this case, there would be a difference Δ � 1 for the
antimicrobial between the average log2(MIC) estimates from the two laboratories. A
statistically significant difference beyond that would be manifested as Δmin � 1.

We have included a suggestion for interpreting Δmin � 0.32 as evidence of statistical
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nonequivalence of the log2(MIC) data for the antimicrobial for the bacterial species in
the stratum between the two sampling or sample-processing approaches. This inter-
pretation illustrated in Fig. 2 to 4 is an adaptation of a method for establishing
bioequivalence of two drug preparations based on values of a biological drug response
variable (16). Other standardized interpretations may be proposed in the future for
decision-making on whether the two sampling or sample processing approaches are
interchangeable or yield equivalent data on phenotypic antimicrobial susceptibility of
the target bacteria (i.e., assess susceptibility in the same bacterial subpopulation) in the
stratum.

MATERIALS AND METHODS
Statistical equivalence testing. (i) Rationale for testing the statistical equivalence hypothesis.

Let M1 and M2 be the sampling or sample processing approaches that yield samples Y1 and Y2,
respectively, of isolates of the target bacterial species from the stratum. The samples Y1 and Y2 represent
subpopulations P1 and P2 of the species in the stratum. The isolate susceptibility to a target antimicrobial
is measured (e.g., in our three case studies the susceptibility was measured using the broth microdilution
assay and the obtained MICs were log2 transformed for the analysis). The statistics �1 and �2 represent
the central tendencies of the susceptibility of the unknown source subpopulations P1 and P2. “Conven-
tional” hypothesis testing focuses on rejecting H0 of no statistically significant difference between the
central tendencies H0: �1 � �2 � 0; Ha: �1 � �2 � 0. However, even if H0 is rejected, this provides no
proof in favor of Ha. Importantly, testing the conventional H0 delivers no information for what �1 � �2

difference signals that the central tendencies of the samples Y1 and Y2 are statistically significantly
different.

Equivalence hypothesis. The equivalence hypothesis testing can provide the sought information on
a statistically significant �1 � �2. The null and alternative hypotheses are defined as follows (13, 14):

H0 : |�1 � �2| 	 �

Ha : |�1 � �2| � �
(1)

The equivalence hypothesis testing in equation 1 indicates that the samples Y1 and Y2 obtained by
the approaches M1 and M2 have equal means up to an acceptable tolerance Δ with a predefined
confidence interval 1 � 2
 (where 
 is probability of the type I error). This null hypothesis is rejected if
the data provide evidence of the equivalence of the means. Otherwise, the null hypothesis of a
statistically significant �1 � �2 difference is accepted.

(ii) Student’s t test of the equivalence hypothesis. The samples Y1 and Y2 are obtained by the
sampling or sample processing approaches M1 and M2. The sample means Y�1 and Y�2 are employed as the
point estimators of �1 and �2, with standard errors se1 and se2. Therefore, the difference �1 � �2 can be
estimated by Y�1 � Y�2 with a standard error �se1

2�se2
2, which is equal to

��1
2

n1
�

�2
2

n2
(2)

where �1 and �2 are the estimates of standard deviations of P1 and P2, respectively, and n1 and n2 are
the respective sample sizes of Y1 and Y2. With large sample sizes and the fact that P1 and P2 are known,
the sampling distribution of Y�1 � Y�2 could be estimated through a normal distribution centered at �1 �
�2 with the standard error given by equation 2. Instead, to avoid introducing extra variability from
estimating �1 and �2 using sample variances s1 and s2, and to be able to handle the data with different
sample sizes, Student’s t test can be used. Student’s t test assumes that samples Y1 and Y2 are both drawn
from variables that follow a normal distribution and have equal variances, which can be estimated by a
pooled variance combining the sample variances s1 and s2. Applying Student’s t test for samples with
unequal variances or sample sizes can lead to unreliable conclusions with large type I and type II error
probabilities (48).

(iii) Welch’s t test of the equivalence hypothesis. Welch’s t test can handle unequal variances or
sample sizes in the data from the two sampling or sample processing approaches (30). The t statistics for
Welch’s t test of the hypothesis defined in equation 1 are

t1 �
Ȳ1 � Ȳ2 � �

� s1
2

n1
�

s2
2

n2

, t2 �
Ȳ1 � Ȳ2 � �

� s1
2

n1
�

s2
2

n2

and H0 is rejected if t1 is less than �t
,df and t2 is greater than t
,df, where df is degrees of freedom.
However, the censored nature of the MIC data results in the presence of aggregated observations in

the regions MIC � L and MIC � U, where L and U are the smallest and largest drug concentrations tested,
respectively. A long-tail in the left-hand end, MIC � L, and a long-tail in the right-hand end, MIC � U,
of the distribution are common (7). Such long-tailed shapes are common in the distributions even after
the log2(MIC) transformation (12).

(iv) Robust t test of the equivalence hypothesis. As noted above, the log2(MIC) distributions most
often do not follow a normal distribution. To improve robustness of the equivalence hypothesis testing
and handle the long tails in the log2(MIC) distributions, we built upon Welch’s t test to use the trimmed
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data and Winsorized variance. This is known as the robust t test (31). Let Y1 and Y2 be the ordered sample
data, e.g., Y1 � �y1,1, y1,2, · · · ; y1,n1�; then under H0:

tt1
�

Ȳ1,tg � Ȳ2,tg � �

� s1,wg
2

n1(n1�1)
�

s2,wg
2

n2(n2 � 1)

tt2
�

Ȳ1,tg � Ȳ2,tg � �

� s1,wg
2

n1(n1�1)
�

s2,wg
2

n2(n2 � 1)

where Y�1,tg and Y�2,tg are the trimmed (indicated by t) means and g is the number of the trimmed data
points from each of the sides of the ordered Y1 and Y2 defined as

Ȳ1,tg �
1

n � 2g
(y1,g�1 � y1,g�1 � · · · � y1,g�1)

Ȳ2,tg �
1

n � 2g
(y2,g�1 � y2,g�1 � · · · � y2,g�1)

and the Winsorized (indicated by w) sum of squares s1
2,wg and s2

2,wg are defined as

s1
2, wg �

1

n1
��g � 1�y1,g�1 � y1,g�2 � · · · �y1,n�g�1 � �g � 1�y1,n1�g�

s2
2, wg �

1

n2
��g � 1�y2,g�1 � y2,g�2 � · · · �y2,n�g�1 � �g � 1�y2,n2�g�

The trimmed t statistics tt1
and tt2

each follow a t distribution with the degrees of freedom df (49)

1

df
�

c2

h1 � 1
�

�1 � c�2

h2 � 1

where c is given by

c �

s1
2wg

h1�h1 � 1�
s1
2wg

h1�h1 � 1� �
s2
2wg

h2�h2 � 1�
Thus, H0 is rejected if tt1

 � t
,df and tt2
	t
,df.

(v) Power analysis of the statistical equivalence testing. The power of testing statistical equiva-
lence of the average log2(MIC) estimates for each antimicrobial drug from the two sampling or sample
processing approaches for the target bacterial species in the stratum can be computed (using De
Morgan’s law [50]) as follows:

Power � 1 � P��tt1
� t
,df|Ha� � P�tt2

� t
,df|Ha� (3)

To compute the right-hand side of equation 3, we use the noncentral t distribution at tt1
and its

cumulative distribution �df�0|tt1
� and a similar distribution of tt2

:

Power � 1 � �df�t
,df|�tt1� � �df�t
,df|�tt2�
The test can be considered to have an acceptable power if the power is �0.80, following published

guidelines (51, 52).
Determining �min from 95% confidence interval of the difference of the means. The threshold

difference Δmin is the minimum Δ in equation 1 at which the two sampling or sample processing
approaches still yield statistically nonequivalent estimates of susceptibility to the antimicrobial drug of
the bacterial species in the sampled stratum. This threshold value for each antimicrobial and statistical
test (Welch’s t test or robust t test) was found from the data via a sequential algorithm repeating the test
over a range of the difference values, starting from a large value [e.g., a 4-log difference between the
average log2(MIC) estimates] and then shrinking Δ by a small step (0.01 log2) and retesting the H0 of a
statistically significant difference between the average log2(MIC) estimates from the two approaches,
until reaching the Δmin value below which the H0 could no longer be rejected.

Microbiological procedures. (i) Case studies 1 and 2. Microbiological procedures used by the
NARMS are described in the program’s Manual of Laboratory Methods (53). Phenotypic susceptibility of
the S. enterica isolates to antimicrobials is determined in the broth microdilution assay using the
Sensititre system (TREK Diagnostic Systems Inc., Cleveland, OH), in accordance with the manufacturer
recommendations and the Clinical and Laboratory Standards Institute (CLSI) guidelines (47, 53). The
assays for the S. enterica isolates from cattle processing plants in 2013-2014 were performed using the
Sensititre plate format CMV3AGNF as of those years, which included antimicrobials listed in Table 1.
The assays for the nontyphoidal S. enterica isolates from humans in 2015 were performed using the
Sensititre CMV3AGNF plate format as of that year and an additional plate format containing broad-
spectrum �-lactams; the tested antimicrobials are listed in Table 2.

(ii) Case study 3: sampling. Fresh fecal pads (n � 32) were collected (the entire pad was lifted from
the ground without mixing, placed into a sterile plastic bag, and transported while being kept horizontal)
from different beef and dairy cattle at research facilities at Kansas State University during May to June
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2016. The animals that were sampled had not received antimicrobial drugs in the preceding week but
1 to 3 weeks prior had received either antimicrobials (macrolides or tetracyclines to treat limited bovine
respiratory disease or as a part of a research study) or feed supplemented with copper or zinc (these feed
additives can coselect AMR in the animal fecal bacteria [11, 26–29]). This animal selection was done to
ensure that the cattle fecal E. coli would have detectable but not uniformly high levels of AMR, to
facilitate statistical analyses of the data. A collected fecal pad weighed 1.2 kg on average (5th and 95th
percentiles: 0.4, 2.0). The average (5th, 95th percentile) pad dimensions were a length of 24 (18, 31) cm,
a width of 18 (12, 25) cm, and a height of 3 (5, 9) cm.

(iii) Sample processing. On each fecal pad, four locations along the longest axis of the pad—its
length—were marked using a sterile plastic loop. The locations were spread along the pad length
(depending on the length) equidistantly �3 to 5 cm (�1.5 to 2 in.) apart. Feces at the four locations were
opened to the depth of �1 cm using sterile tools (to avoid the possibility of culturing E. coli that may
have accidentally contaminated the pad exterior). One fecal aliquot of �1 g was aseptically collected
from the bottom of the opening at each of the four locations. The locations were counted left to right.
A random number was generated from a Uniform (1,4). When the aliquot from the location with the
number corresponding to the generated random number was plated on a MacConkey agar plate, four
E. coli colonies were obtained from the plate for isolation. When each of the aliquots from the other three
locations on the pad was plated on a MacConkey agar plate, one E. coli isolate was obtained from the
plate for isolation.

(iv) Microbiological procedures. Each fecal aliquot of �1 g was diluted in 10 ml of buffered
peptone water (PBS) and vortexed gently until fully mixed. Of the supernatant, 100 �l was diluted 1:10
in sterile PBS and 100 �l was diluted 1:100 in sterile PBS. Of each of the dilutions, 100 �l was plated on
a MacConkey agar plate and incubated at 37.5°C for 24 h. For the randomly selected aliquot on the pad,
from the MacConkey plate with well-separated colonies, 4 typical coliform colonies chosen from different
parts of the plate (convenience randomization) were each streaked on a tryptic soy broth supplemented
with 5% sheep blood agar plate (BAP) and incubated at 37.5°C for 24 h. For each of the other three
aliquots from the pad, from the MacConkey plate with well-separated colonies, one typical coliform
colony (chosen via convenience randomization) was streaked on a BAP plate and incubated at 37.5°C for
24 h. Presumptive E. coli colonies from each BAP plate were subjected to the indole test, and the
indole-producing ones were identified as E. coli. When needed, additional coliform colonies from the
MacConkey plate were replated for isolation and subjected to the indole test to obtain the sought
number of E. coli isolates from the fecal aliquot (i.e., one or four isolates). Phenotypic susceptibility to
antimicrobials of each E. coli isolate was determined in the broth microdilution assay following the
Sensititre plate manufacturer instructions and in accordance with the CLSI recommendations (47, 53).
The Sensititre plate formats GN4F and BOPO6F as of 2016 were used. The strain E. coli ATCC 25922 was
used for the quality control of the assays, along with the positive- and negative-control wells. The assay
results on the plates were read on the Sensititre ARIS automated reading instrument (TREK Diagnostic
Systems Inc., Cleveland, OH).

Software. The NARMS 2013 to 2015 data (publicly available) and the data for the fecal pads were
gathered in Microsoft Office Excel (Microsoft, Inc., Redmond, WA). The data were imported into R 3.4, in
which the statistical analyses were performed. All the figures were made in Python 3 (Python Software
Foundation).
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