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The origins and genetic interactions of KRAS
mutations are allele- and tissue-specific
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Mutational activation of KRAS promotes the initiation and progression of cancers, especially

in the colorectum, pancreas, lung, and blood plasma, with varying prevalence of specific

activating missense mutations. Although epidemiological studies connect specific alleles to

clinical outcomes, the mechanisms underlying the distinct clinical characteristics of mutant

KRAS alleles are unclear. Here, we analyze 13,492 samples from these four tumor types to

examine allele- and tissue-specific genetic properties associated with oncogenic KRAS

mutations. The prevalence of known mutagenic mechanisms partially explains the observed

spectrum of KRAS activating mutations. However, there are substantial differences between

the observed and predicted frequencies for many alleles, suggesting that biological selection

underlies the tissue-specific frequencies of mutant alleles. Consistent with experimental

studies that have identified distinct signaling properties associated with each mutant form of

KRAS, our genetic analysis reveals that each KRAS allele is associated with a distinct tissue-

specific comutation network. Moreover, we identify tissue-specific genetic dependencies

associated with specific mutant KRAS alleles. Overall, this analysis demonstrates that the

genetic interactions of oncogenic KRASmutations are allele- and tissue-specific, underscoring

the complexity that drives their clinical consequences.
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Located at a critical signaling junction between extracellular
growth receptors and pro-growth pathways, KRAS is one of
the most commonly mutated genes in cancer1,2. However, it

is frequently mutated in only a handful of cancers, with the
highest frequencies in colorectal adenocarcinoma (COAD), lung
adenocarcinoma (LUAD), multiple myeloma (MM), and pan-
creatic adenocarcinoma (PAAD). Importantly, the activating
alleles found in KRAS vary substantially across cancers, indicating
possible differences in signaling behavior of the mutant proteins
that exploit the environment of the specific cellular context3,4.

When mutated at one of its four hotspot codons—12, 13, 61, or
146—activated KRAS protein hyperactivates many downstream
effector pathways, such as the MAPK and PI3K-AKT signaling
pathways1. Previous studies have documented substantial differ-
ences in the biochemical and signaling properties of the common
KRAS variants (reviewed by Miller et al.5 and Li et al.6). KRAS
normally operates as a molecular switch, activating downstream
pathways when GTP-bound, but inactive when GDP-bound fol-
lowing the hydrolysis of the γ-phosphate. This reaction is cata-
lyzed by GTPase-activating proteins (GAPs), while the exchange
of the GDP for a new GTP is facilitated by guanine nucleotide
exchange factors (GEFs)7. Activating KRAS mutations result in
elevated engagement of downstream pathways by increasing the
steady-state levels of GTP-bound KRAS. Specifically, mutations
to codons 12, 13, and 61 reduce the rate of intrinsic and/or
GAP-mediated hydrolysis, and mutations at 13 and 61, but not
12, also enhance the rate of nucleotide exchange8,9. Alternatively,
146 mutations do not alter the rate of GTP hydrolysis, but
cause hyperactivation through an increased rate of GDP
exchange4,10–12. Additional biochemical, structural, and signaling
distinctions have been identified between different mutant alleles,
including between those at the same amino acid position4,8,13–20.

Likely as a consequence of their distinct properties, associations
have been uncovered between the specific KRAS mutation status
and therapeutic responses and clinical outcomes of cancer
patients3,6. For instance, a retrospective meta-analysis suggested
that COAD tumors with a KRAS G13D allele were sensitive to
anti-EGFR therapies, a treatment generally discouraged for
KRAS-mutant tumors21. It has recently been proposed, via
computational and experimental means, that differential inter-
action kinetics between KRAS G13D and the Ras GAP NF-1
explain this effect22–24. Another example is that the KRAS G12D
allele is associated with worse overall survival in advanced PAAD,
when compared to patients with WT KRAS, KRAS G12R, or
KRAS G12V25. Thus far, the hypothesis has been that the dif-
ferent biological properties of the mutant KRAS alleles are the
cause of these clinical distinctions. However, it is also possible
that allele-specific genetic interactions drive the varying clinical
outcomes.

Understanding the heterogeneous properties of the KRAS
alleles is essential to effectively treating KRAS-driven cancers.
Here, we study the origins of KRAS mutations to assess the extent
to which tissue-specific mutational processes determined the
allelic distribution. We then construct comutation networks for
each KRAS allele to identify different properties of the alleles.
Finally, we analyze allele-specific genetic dependencies to explore
potential therapeutic targets. Our analysis demonstrates that an
allele-specific and tissue-specific analysis is necessary to fully
understand the nature of the most potent oncogenes.

Results
KRAS alleles are non-uniformly distributed across cancers.
This study utilized publicly available sequencing data from
COAD, LUAD, MM, and PAAD. There were whole-exome or
genome data available for 1536 COAD (including 256

hypermutated samples), 891 LUAD, 1,201 MM, and 1395 PAAD
samples. In addition, there were targeted-sequencing data
available for 3329 COAD (including 464 hypermutated samples),
4160 LUAD, 61 MM, and 919 PAAD samples. More information
on the data is available in “Methods” and Supplementary Data 1
and 2.

Across all the alleles, KRAS was most frequently mutated in
PAAD (86%), followed by COAD (41%), LUAD (35%), and MM
(22%; Fig. 1a). At the allele level, most mutations by single-
nucleotide substitutions occurred at one of four “hotspot” codons:
12, 13, 61, and 146 (Fig. 1b and Supplementary Data 3). Glycine
12 and 13 can be transformed to six different amino acids (A, C,
D, R, S, and V) through single-nucleotide changes in the first two
guanine residues. Glutamine 61 can be mutated to six other
amino acids (E, H, K, L, P, and R) and a stop codon via a single-
nucleotide mutation. Alanine 146 can become one of six other
amino acids (E, G, P, S, T, and V) from mutations to a single
nucleotide.

Of these hotspots, codon 12 mutations accounted for 72.2% of
all mutations in the dataset, followed by codon 13 (9.8%), 61
(14.8%), and 146 (3.2%). Adjusting for the yearly incidence of
each cancer, the distribution of mutations was 76.8, 11.4, 8.1, and
3.7% at codons 12, 13, 61, and 146, across the four cancers.
Importantly, there was substantial variability of the alleles found
at these hotspots across the four KRAS-driven cancers (Fig. 1b).
For example, MM was the only cancer where a non-G12 allele,
Q61H, was the most frequent. At codon 12, LUAD had an
enrichment for G12C mutations. COAD had a unique enrich-
ment of G13D and A146T alleles, while PAAD was distinct in its
high frequency of G12R mutations.

The KRAS alleles have different mutagenic origins. One
potential explanation for the distinct allelic frequencies across
cancer types is that tissue-specific mutational processes determine
the frequency distribution. To explore this hypothesis, we eluci-
dated the active mutational processes in the tumor samples using
mutational signatures26 (Supplementary Data 4 and 5; the sig-
nature numbers refer to those in the catalog published by Alex-
androv et al.27). Briefly, all single-nucleotide mutations can be
represented by the combination of the six possible base sub-
stitutions (C > T, C > A, C > G, T > A, T > C, and T > G) and all
possible 3′ and 5′ flanking bases. This composes a mutational
spectrum with 96 different trinucleotide contexts. We computed
the spectrum of mutational signatures in the whole-exome and
whole-genome sequencing (WGS) data using nonnegative matrix
factorization and measured in each sample using nonnegative
least squares regression (see “Methods” and Supplementary
Fig. 1a, b).

As expected, the distributions of the levels of each mutational
signature were highly variable across tumor types. The most
common in COAD, MM, and PAAD, were the “clock-like” single
base substitution (SBS) signatsures SBS1 and SBS5 (Fig. 1c and
Supplementary Fig. 1c), which are believed to accumulate with
age28. LUAD was uniquely enriched for a mutational signature of
exogenous cause, tobacco smoke carcinogens (SBS4). Within each
cancer type, the relative abundance of the mutational signatures
was generally consistent across tumor samples, regardless of the
KRAS allele (Fig. 1c). One exception was for cancers with
microsatellite instability (MSI), in which defective DNA mis-
match repair and other related signatures dominated (Supple-
mentary Fig. 1a, b). Some instances of differential mutational
signature composition between tumor samples with different
KRAS alleles were identified, though they tended to be differences
in magnitude of the signatures, not their presence or absence
(Supplementary Fig. 2). Thus, for each cancer, the allelic
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frequency of KRAS was not caused primarily by distinct
compositions of mutational processes in individual tumors.

Each mutational process has a different propensity to induce
each KRAS allele. To discern if specific mutagenic processes were
more likely to have caused particular KRAS alleles, the
trinucleotide context of the KRAS mutation and the relative
activity of the mutational signature in that tumor were used to
calculate the probability that the allele in an individual tumor was
caused by any detectable mutational process (Fig. 1d). In general,
such probabilities reflected the underlying distribution of
signatures, as seen in the similarities between Fig. 1c, d,
suggesting that, while the mutational processes were capable of
causing the observed KRAS mutations, they did not strictly
determine which mutation was acquired.

In many cases, specific mutational signatures were much more
likely to have caused the observed mutation than expected based
on their background frequencies. For example, in COAD and
PAAD, SBS18 (navy blue bars), likely caused by damage from
reactive oxygen species29,30, was strongly associated with G12C
mutations (Fig. 1d and Supplementary Fig. 3a, d). This
corroborated the previous finding that KRAS G12C mutations
are more frequent in patients with MUTYH-associated
polyposis29, an autosomal recessive disease form of COAD

caused by biallelic loss-of-function mutations to the gene
encoding the DNA glycosylase, MUTYH, responsible for clearing
8-oxoguanine:A mismatches that can cause the G12C mutation.
In LUAD, the KRAS G12A/C/V mutations were primarily
attributable to mutations caused by tobacco smoke, whereas
KRAS G12D mutations were most likely attributable to clock-like
mutations (Fig. 1d and Supplementary Fig. 3b). In MM, SBS9,
associated with mutations introduced by polymerase η repair of
activation-induced deaminase (AID) activity26,31,32, was strongly
linked with Q61H (Fig. 1c, d and Supplementary Figs. 2c and 3c),
the most common KRAS mutation in that cancer. SBS8, of
unknown etiology, had a substantial probability of causing several
of the KRAS alleles, particularly G12V, across all four cancers
(Fig. 1d, and Supplementary Figs. 2 and 3). SBS17, also of
uncertain etiology though linked to oxidative stress in other
cancers33, was likely the primary cause for Q61H mutations in
PAAD (Fig. 1d and Supplementary Fig. 3d).

The frequency of most KRAS alleles cannot be solely attributed
to the prevalence of detected mutagens. The extent to which
mutational signatures represent the mechanism driving KRAS
allelic diversity was further analyzed by calculating the predicted
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Fig. 1 The contribution of mutational processes to KRAS mutagenesis. a The frequency of KRAS mutations in each cancer. b The distribution of KRAS
allele frequencies at the four hotspots, codons 12 (left), 13 (middle-left), 61 (middle-right), and 146 (right) in each cancer. The size of the circle reflects the
percent of KRAS mutations that are the indicated allele in each cancer. Each cancer is assigned a different color. The number of tumor samples whose
sequencing data was collected for this study is indicated along the y-axis. c The average composition of mutational signatures in tumor samples grouped by
KRAS allele. Each color represents a different mutational signature. Mutational signatures of know etiology are annotated. d The average probability of each
mutational signature to have caused the KRAS mutation in a tumor sample. This value accounts for the level of each mutational signature in the tumor
sample, and the ability of the mutational signature to cause the indicated KRAS allele. In c and d, only KRAS alleles found in at least 15 tumor samples of the
cancer type are included. Source data are provided in the Source data file.
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frequency of each allele based on the frequency of mutations in
the same trinucleotide context throughout the exome or genome
(Fig. 2a and Supplementary Data 6). The null hypothesis tested
was that, assuming the cancer would acquire a KRAS mutation
and one of the common alleles (found in >3% of the tumor
samples for a given cancer) was sufficient, the frequency of the
KRAS alleles would be determined by the mutational processes
alone. The average predicted frequencies across the samples of
each cancer were compared against the observed allele fre-
quencies (Fig. 2a and Supplementary Data 6).

In COAD, G13D was predicted to be the most frequent allele
(27%) but was observed less frequently (20%). The frequencies of
G12S and A146T mutations were also overestimated, whereas
G12D/V mutations were considerably underestimated. All are
statistically significant and denoted by triangles in Fig. 2a (χ-
squared test, FDR-adjusted p < 0.05). In LUAD, the frequencies of
the G12A/D/V alleles were accurately predicted, but the
frequency of the most common allele, G12C, was substantially
underestimated. The high frequency of this allele has been
attributed to its association with SBS4 caused by tobacco smoke
(Fig. 1c, d), but our observation suggests that there is additional
biological pressure promoting this mutation in LUAD. The
frequencies of the KRAS alleles were best predicted in MM, with
an exception for the most frequent allele, Q61H, which was
dramatically underestimated with a predicted frequency of 15.0%,
but an actual frequency of 35.7% of KRAS mutations. In PAAD,
all of the alleles were observed at a significantly different
frequency than predicted by mutational signatures. In particular,
the G12R mutation is expected to occur in 5.2% of PAAD tumors,
which is far below the actual frequency of 16.7%. Overall, the

Pearson correlations between the observed and predicted KRAS
allele frequencies for each cancer ranged from 0.4 to 0.6 (or
0.7–0.9 when restricted to just G12 alleles). Although the
relatively high correlations, the significant discrepancy between
observed and predicted frequencies suggests that the allelic
distributions of KRAS were not solely determined by the
prevalence of their respective causative single-nucleotide
substitutions.

We also conducted a similar analysis considering those alleles
that were left out in the previous analysis due to their low
observed frequency in a given tumor type, but are frequent in
another tumor type (Supplementary Fig. 4 and Supplementary
Data 7). The alleles never or rarely found in a cancer were
predicted to occur at frequencies ranging from 1.5% (for Q61L in
PAAD) to 10.5% (for Q61K in LUAD), indicating that these
alleles are not rare because their causative mutations do not
occur, but instead because of weak oncogenic fitness in the tissue.
For instance, KRAS A146T was predicted to be 8.9% of KRAS
mutations in PAAD, but is exceedingly rare in this cancer,
consistent with the previous demonstration that forced expres-
sion of KRAS A146T in mouse pancreas does not induce
pancreatic intraepithelial neoplasia4.

Another approach to examine the impact of mutagenic
processes on allele specificity was to compare the probability of
obtaining a certain KRAS mutation between tumor samples with
the specific mutation, a different KRAS mutation, or WT KRAS
(Fig. 2b). In most cases, tumors samples with a specific KRAS
allele did not, on average, have a higher probability of obtaining
that mutation than other tumors of the same cancer type.
However, this was not true for KRAS G12V in COAD and KRAS
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Fig. 2 The predicted frequencies of cancer-specific KRAS alleles. a The predicted versus observed frequency of KRAS alleles for the common alleles of
each cancer. Triangles indicate rejection of the null hypothesis that the observed and predicted frequencies are the same (χ-squared test, p values were
adjusted using the Benjamini–Hochberg FDR correction method, hereon referred to as FDR-adjusted p values; FDR-adjusted p value < 0.05); circles indicate
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intervals of the mean. For each allele, differences in the probabilities between tumor samples with the allele and those with another allele, and between
tumor samples with the allele and those with WT KRAS were tested via a Wilcoxon rank-sum test (FDR-adjusted p values < 0.05 are indicated). Source
data are provided in the Source data file.
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G12C in LUAD (Wilcoxon rank-sum test, FDR-adjusted p value
< 0.05). Interestingly, the KRAS G12V mutation in COAD is
likely to be caused by mutational signature SBS8 (Fig. 1d, and
Supplementary Figs. 2a and 3a). The cause of this signature is
currently unknown, though this result indicates that it plays an
important role in KRAS G12V mutagenesis. The increased
probability of a KRAS G12C mutation in tumor samples that
did obtain the allele compared to KRAS WT LUAD tumor
samples is likely due to the strong association between this
mutation and signature SBS4 induced by carcinogens in tobacco
smoke. However, no difference was detected between tumor
samples with KRAS G12C and a different KRAS mutation,
indicating that this mutagenic force is not specifically favoring the
G12C allele. Overall, these results suggest that the probability of
acquiring a particular KRAS allele was not significantly greater in
tumor samples that did obtain the KRAS mutation.

Taken together, these results indicate that while the active
mutational processes in a tissue contributed to which KRAS
mutation was gained, they were not deterministic. Rather, how
the unique biological properties of an allele interact with the
preexisting signaling context of the tissue, often modified by
additional mutational events, is likely a crucial factor in
determining its frequency in cancer. This explanation for the
distribution of KRAS alleles warranted further investigation into
their genetic interactions.

The KRAS alleles have distinct comutation networks. We rea-
soned that if biological selection is driving KRAS allele selection
in cancer, then distinct functions of each mutant form of KRAS
would be reflected in cooperating genetic events. An increased
frequency of comutation with another gene suggests a cooperative
effect, whereas a reduced frequency of comutation (compared to
random) suggests that the second event is functionally redundant
or that it introduces an inhibitory effect. The extreme of the latter
effect is commonly known as “mutual exclusivity.” For instance,
in COAD, APC comutation enhances the effects of oncogenic
KRAS-induced hyperactivation of the Wnt signaling pathway,
essential for the growth of cancer stem cells in the intestinal
crypts34. Alternatively, in LUAD, the mutational activation of
EGFR was demonstrated to be cytotoxic in the presence of a
KRAS mutant, and, thus, the two are rarely found in the same
tumor35,36.

The comutation interactions between each KRAS allele and
every other mutated gene were investigated using a one-sided
Fisher’s exact test of association to identify increased rates of
comutation and a test for mutual exclusivity proposed by
Leiserson et al.37 to identify reduced rates of comutation
(Supplementary Data 8). To reduce the number of false positive
interactions, multiple filters were applied to restrict which genes
were tested, including only testing for increased or reduced
comutation interactions with genes mutated in at least 1% or 2%
of tumor samples of a cancer type, respectively (see “Methods”).
The result of the comutation analysis on COAD tumors was a
weakly connected network of the KRAS alleles with only a few
genes linking the alleles together (Fig. 3a). These linking genes
tended to be well-studied cancer genes, such as BRAF (primarily
V600E mutations), APC (mostly nonsense truncating mutations),
and TP53 (primarily mutations in the sequence encoding the
DNA-binding domain of the protein). Contrary to a common
assumption, while KRAS and TP53 were frequently found
mutated in the same tumor, there was a detectable reduction in
comutation between TP53 with KRAS G12D and G13D compared
to the rest of the alleles (Fig. 3b).

Consistent with the idea that each allele is functionally distinct,
a substantial number of genes comutated with just one KRAS

allele. To gain functional insight into the network, genes known
to physically interact with KRAS16, signal upstream or down-
stream of KRAS38, or are known oncogenes or tumor suppressor
genes39 were extracted (Fig. 3b). Several KRAS alleles had reduced
comutation with NRAS and BRAF, and increased comutation
with APC and PIK3CA, interactions that have been previously
documented34,40–49. Similar to KRAS, PIK3CA mutations tend to
occur in several hotspots, each likely having slightly different
effects on hyperactivation of the protein. However, specifically
testing for comutation between KRAS alleles, and the most
common PIK3CA mutations did not reveal any strong prefer-
ences for particular activating PIK3CA mutations.

Some novel interactions included increased comutation of
PORCN with KRAS A146T, MTOR with G12C, and SMAD4 with
G12V. KRAS G12V had an increased rate of comutation with
TCF7L2, which encodes TCF4, a regulator of Wnt signaling often
dysregulated in COAD49–51, specifically the R488C mutation.
Further, several of the alleles showed enrichment for cellular
functions in their comutation networks (Fig. 3c). One of the
strongest effects was an enrichment in the G12D comutation
network of interactors with YWHAZ, a 14–3–3 scaffolding
protein implicated in modulating many interactions, including
the activity of Rho GEF 7 on RAC1 in phagocytosis and cell
adhesion52. Also, genes involved in the Hippo and Wnt signaling,
key pathways in COAD, were enriched in the comutation
networks of KRAS G12V. The comutation network of the G13D
allele was enriched for genes implicated in apoptosis and
senescence. Additional genes of interest that had comutation
interactions with KRAS G12D are shown in Fig. 3d, e. These
include increased comutation with AMER1, a negative regulator
of Wnt signaling53,54.

The KRAS allele-specific comutation network uncovered in
LUAD was far larger than that of COAD (Supplementary Fig. 5a).
This was likely caused by the higher mutation frequency in this
cancer, increasing the statistical power to detect both increased
and reduced comutation interactions. As in the network derived
from COAD, many of these genes were involved in integral KRAS
signaling pathways, including an increased comutation interac-
tion between KRAS G12A and MAP2K3, a reduced comutation
interaction between KRAS G12D and ERBB4, and a very strong
increased rate of comutation between KRAS G12C and STK11
(Supplementary Fig. 5b). There were several intriguing cellular
processes enriched in the LUAD networks for each allele (Fig. 3c).
For example, KRAS G12C had comutation interactions with
many genes encoding proteins that interact with Myc (“PPI of
MYC (TF)”), and the G12D comutation network was enriched for
interactions with focal adhesion genes.

Conducting this analysis in MM was hampered by the fact that
this cancer is known to be frequently multiclonal55,56. As such,
some detectable comutation events were mutations acquired by
distinct populations in a single patient, potentially obfuscating
true comutation interactions. Due to this caveat, limiting the
analysis to genes known to be recurrently mutated in MM
reduced the chance of highlighting a false positive55. From this
limited scope, it was discovered that NRAS had reduced
comutation with KRAS G12D, Q61L, and Q61R, but one of the
highest rates of comutation (18.5%) with KRAS Q61H, the most
common KRAS mutation in MM (Supplementary Fig. 6).
Interestingly, this was just below the rate of NRAS mutation in
KRAS WT tumors (23.6%), suggesting that the signaling of the
Q61H allele is fundamentally different from the other KRAS
mutations in MM, especially G12D. Of these comutation events,
the NRAS mutations were mostly at codon 61, common for
NRAS-driven cancers, such as skin cutaneous melanoma57,58, and
there was no detectable pattern of comutation between particular
KRAS and NRAS alleles.
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The KRAS allele comutation network found in the PAAD
tumor samples demonstrated that many genes had detectable
comutation interactions with multiple alleles, primarily of
reduced comutation (Supplementary Fig. 7a). There were
numerous genes that had opposing comutation interactions with
different alleles. Of these, four interact with or signal through
KRAS16,38 or are known oncogenes or tumor suppressors39:
TP53, RNF43, MAP2K4, and RBM10 (Supplementary Fig. 7b, c).
Notably, while TP53 tended to comutate with KRAS G12V, it was
at a significantly lower rate than expected by random chance,
given the overall mutation rate of TP53 and the mutational
burden of the tumors. TP53 was primarily mutated at known
hotspots R175, R248, R273, and R282 (refs. 59–61), or had
nonsense or frameshift mutations. Most of the mutations to
RNF43 and RBM10 were nonsense or frameshift mutations.
MAP2K4 primarily had missense mutations at known mutational
hotspots61.

There were many notable cellular functions and processes
enriched in the comutation networks of the KRAS alleles (Fig. 3c),
including the protein–protein interaction networks (PPIN) of
SMAD1-3 and TGF-β signaling. While these SMAD gene sets
were related, the underlying comutation interactions that drove
the enrichment were different for each KRAS allele (Fig. 3f). For
instance, the comutation events of ACVR1B with KRAS were
primarily with Q61H, whereas those with FLNA were mostly with
G12R. These subtle differences suggest that specific and nuanced
alterations of SMAD signaling best complement a given KRAS
allele in PAAD.

It is important to note that many of the comutation
interactions identified from this allele-specific analysis were not
identified from a gene-level analysis that disregards the KRAS
allele information (Supplementary Data 9). For instance, the
number of genetic interactions with reduced comutation in
the non-allele-specific analysis was 105 for colon, whereas the
number in the allele-specific analysis was 63. Among these, only
35 were in common (Supplementary Fig. 8a). The overlap for
increased comutation and other tumor types are similarly small
(Supplementary Fig. 8), underscoring the importance of
the allele-specific analysis.

KRAS allele-specific genetic dependencies reveal potential
synthetic lethal vulnerabilities. The perturbations necessary to
drive cancer expose vulnerabilities that are not present in the
normal cell-of-origin. For example, the MSI that often leads to
cancer simultaneously makes the inhibition of Werner syndrome
ATP-dependent helicase (WRN) lethal to the tumor cells62,63. As
the KRAS alleles have measurably different signaling behaviors

and genetic interactions, they likely have specific genetic vul-
nerabilities. To this end, we used data from a genome-wide,
CRISPR/Cas9 knockout screen of cancer cell lines64,65 to identify
genes with KRAS allele-specific genetic dependencies. The ana-
lysis was restricted to KRAS alleles for which there were at least
three different cell lines with the mutation, limiting the following
investigation to only COAD and PAAD cell lines. Allele-specific
enrichments for signaling pathways and cellular processes were
identified using gene set enrichment analysis (GSEA)66, and
individual genes demonstrating differential genetic dependency
by KRAS allele were identified using ANOVA (p value < 0.01) and
t tests (FDR-adjusted p value < 0.05).

For COAD, there was a sufficient number of cell lines with WT
KRAS or G12D, G12V, and G13D mutations for this analysis.
Measuring for gene set enrichment revealed strong patterns in
differential dependency of various cellular processes (Fig. 4a). For
example, genes involved in ERBB4 signaling tended to have a
weaker lethal effect when knocked out in cell lines with KRAS
G12V mutations than in KRAS G12D, G13D, or WT cell lines
(Fig. 4b). Similarly, the KRAS G13D cell lines were less affected
when genes involved in oxidative phosphorylation were targeted
(Fig. 4c). To discover individual genes with allele-specific
interactions, each gene was tested for differential genetic
dependency with the cell lines grouped by their KRAS allele.
The resulting 62 genes were hierarchically clustered into four
groups by their dependency scores (Fig. 4d and Supplementary
Data 10). Genes in cluster 2 tended to have stronger genetic
dependency in cell lines with KRAS G12V, while those in cluster 3
demonstrated weaker dependency in G12D cell lines. Four
notable genes with allele-specific associations are displayed in
Fig. 4e. First, knocking out LIN7C, a gene that maintains the
asymmetric distribution of membrane proteins in polarized
epithelial cells67, had a more severe reduction on growth in
KRAS G13D cell lines compared to the others (Fig. 4e). Also, a
regulator of apoptosis previously linked to dysregulated expres-
sion in cancer68, TFPT, demonstrated significantly greater
dependency in G12D cell lines. Interestingly, STARD9, a gene
encoding a kinesin required for mitotic spindle assembly69, had
moderate growth defects when knocked out in all cell lines except
those with a KRAS G12D mutation. Lastly, the kinetochore-
associated protein (KNTC1), a regulator of the mitotic
checkpoint70,71, which demonstrated moderate to strong lethal
effects when knocked out in almost every cell line except for those
with a KRAS G12V allele (Fig. 4e).

For the genetic dependency analysis of PAAD, the KRAS alleles
with a sufficient number of cell lines were G12D, G12R, and
G12V (there were not enough WT KRAS cell lines to include in
the analysis). GSEA revealed substantial differences in the

Fig. 3 The comutation networks of oncogenic KRAS alleles. a The comutation network of the KRAS alleles in COAD with each edge representing a
significant comutation interaction between an allele and another gene (p value < 0.01). The color of the edge indicates whether the interaction was an
increase (blue) or decrease (green) in the frequency of comutation. Genes with multiple interactions are represented by a gray dot to disambiguate them
from where edges intersect. b A subset of the network shown in a of genes that encode proteins known to physically interact with KRAS, are in one of its
canonical upstream or downstream pathways, or are validated oncogenes or tumor suppressors. The width of the edge indicates the strength of the
association. c Cellular functions enriched in the comutation networks of the KRAS alleles in COAD (left), LUAD (center), and PAAD (right). The size of the
dot indicates the number of genes in both the function and the comutation network, and the transparency indicates the FDR-adjusted p value of the
enrichment. d, e A visualization of the increased (d) or decreased (e) comutation of select genes with KRAS G12D in COAD. Rows of the central plot
represent genes. Each column of the central plot is a different tumor sample. A filled space denotes a mutation of the gene in the sample, the color
describing the type of variant. The bar plots above and to the right indicate the marginal values of the central plot. f A comparison of the comutation
frequencies in PAAD of the genes producing proteins in the PPIN of SMAD1-3. Each column is a gene with a comutation interaction with a KRAS allele and
in at least one of the gene sets. The black tiles on top indicate that the gene was in the PPIN of the indicated SMAD protein. The bar plot shows the
distribution of the comutation events of each gene across tumor samples with the various KRAS mutations. n= 4145 COAD, 5051 LUAD, 1262 MM, and
2314 PAAD biologically independent tumor samples for the increased comutation analysis, and n= 1536 COAD, 891 LUAD, 1395 PAAD biologically
independent tumor samples for the reduced comutation analysis. Source data are provided in the Source data file.
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dependencies of critical cellular pathways (Supplementary Fig. 9a).
For instance, the G12D cell lines demonstrated a reduced
dependency on the genes at the G2 and M DNA damage
checkpoint (Supplementary Fig. 9b). Moreover, the G12R cell
lines were less dependent on PI3K signaling downstream of
FGFR1, driven through a reduced dependency on FRS2
(fibroblast growth factor receptor substrate 2) and GRB2, which
encodes a protein linking EGFR to the GEF SOS1 (Supplementary
Fig. 9c). Similarly, the cell lines with KRAS G12V mutations were
less sensitive to the knockout of genes implicated in cellular
senescence (Supplementary Fig. 9d). This enrichment was driven
by a significantly reduced dependence upon JUN, which encodes

the transcription factor c-JUN, and a beneficial impact on growth
(a positive dependency score) from knocking outMAPK8 (JNK-1),
which regulates c-JUN via phosphorylation (Supplementary
Fig. 10). In these cell lines, 130 individual genes demonstrated
KRAS allele-specific genetic dependency (Supplementary Fig. 10a
and Supplementary Data 11). Several noteworthy interactions
include a regulator of cell cycle progression, KHDRBS1 (ref. 72),
the oxygen sensor, EGLN2 (ref. 73), and a stabilizer of p53,
BRI3BP74 (Supplementary Fig. 10b). Overall, the KRAS alleles
were associated with substantially different genetic dependencies
on specific cellular processes, signaling pathways, and individual
genes.

Complex I biogenesis
Respiratory electron transport

Oxidative phosphorylation
TP53 regulates metabolic genes

Nonsense Mediated Decay
ECM interactions

Downstream signaling of activated FGFR1
Dual incision in TC-NER

Trefoil factor (TFF) pathway

Regulation of expression of SLITS and
ROBOS

Mismatch repair
TGF-β receptor signaling in EMT

Mitotic spindle checkpoint
ERBB4 pathway
BARD1 pathway

Fanconi anemia pathway

Resolution of D-loop structures through
SDSA

G12D G12V G13D

-2
-1
0
1
2

N
ES

-lo
g 1
0(
ad
j.
p-
va
lu
e)

1

2

3

4

a

ERBB4 pathwayb

SHC1
PIK3CA
YAP1

MAPK3
STAT5B
GRB2
BTC

ERBB2

← greater dep. - ranked by dep. score - less dep. →

Oxidative phosphorylationc

NDUFA8
NDUFB8
NDUFS3
COX6A1
ATP5MG
ATP5ME
NDUFA5
ATP5MC2
ATP5F1B

← greater dep. - ranked by dep. score - less dep. →

G12D G12V G13D WTKRAS allele

AC
H
-000202

AC
H
-001461

AC
H
-000009

AC
H
-001454

AC
H
-001458

AC
H
-000926

AC
H
-000683

AC
H
-001061

AC
H
-000963

AC
H
-000959

AC
H
-000969

AC
H
-000986

AC
H
-000007

AC
H
-000286

AC
H
-001345

AC
H
-000350

AC
H
-000957

AC
H
-000403

AC
H
-000381

AC
H
-000950

AC
H
-000820

AC
H
-000467

AC
H
-000651

LIN7C
SLC45A2
SPCS3
SERPING1
TFPT
VEGFC
PRDM13
RPN2
COQ2
LDHD
PDE2A
PAX6
SMIM15
ADGRB1
NDUFAF3
DCHS1
PRELID2
GLRX5
PRLR
KRTAP5-5
MTRF1L
CDK2AP1
DZIP1

CA7
MOCS3
KCNN3
ORC4
ADCK2
CLSTN2

ANKRD18A
SLC7A11
C1orf210
CCDC110
LRPAP1
INTS14
MAN1C1
NKD1
CFAP69
CNTD1
PIGK
THSD7A
STARD9
TSTD1

SLIRP
MTMR11
PYCARD
IFNLR1
PA2G4
KNTC1
CLK3
FAF2
MLC1
SRSF5
TMUB1
MDH1
CD52
FKBP15
DVL3
NLRP3
PKDCC
MPPED2
TMEM209

allele

cluster

d

p=0.039
-0.4

-0.2

0.0

G12DG12VG13D WT

de
pe
nd
en
cy
sc
or
e

LIN7C
e

p=0.011

-0.50

-0.25

0.00

0.25

G12DG12VG13D WT

de
pe
nd
en
cy
sc
or
e

TFPT

p=0.017

-0.2

-0.1

0.0

0.1

G12DG12VG13D WT

de
pe
nd
en
cy
sc
or
e

STARD9

p=0.010

-1.00

-0.75

-0.50

-0.25

0.00

G12DG12VG13D WT
de
pe
nd
en
cy
sc
or
e

KNTC1

-2 -1.3 -0.7 0 0.7 1.3 2

scaled dep. score

WT G12D G13DG12V

1

2

3

4

Fig. 4 Allele-specific genetic dependencies in COAD cell lines. a Gene sets with significant enrichment for increased (lower dependency score; purple) or
reduced (higher dependency score; orange) genetic dependency in COAD cell lines. The size of the dot relates the FDR-adjusted p value of the association
and the color indicates the strength of the enrichment (“normalized enrichment score”). b, c Heatmaps ranking the cell lines by dependency (“dep.”) score
of the genes at the leading edge of enrichment for two gene sets. Each row represents a gene and each cell represents a cell line colored by its KRAS allele.
The cell lines are arranged in ranking order by their dependency score for the gene. Thus, each column indicates a rank. The line plots above the heatmaps
indicate the representation (density) of each KRAS allele at each rank across the genes. d Hierarchically clustered heatmaps of the genes that
demonstrated differential genetic dependency amongst cell lines of different KRAS alleles. Each column is a cell line labeled by its DepMap identifier and
each row is a gene. e Examples of genes that demonstrated differential genetic dependency amongst cell lines of different KRAS alleles (t tests; FDR-
adjusted p values). For the box plots, the box demarcations represent the 25th, 50th, and 75th percentiles, and the whiskers extend from the box to the
largest and smallest data points at most 1.5 times the interquartile range away from the median. n= 23 biologically independent COAD cell lines. Source
data are provided in the Source data file.
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An integrated analysis of allele-specific comutation and genetic
dependencies. As emphasized by the weakly connected comuta-
tion networks, the KRAS alleles are not acting in the same genetic
environments, and, therefore, their allele-specific genetic depen-
dencies might be mediated by a comutating partner. To address
this hypothesis, we constructed linear models for the dependency
score of each gene with allele-specific dependency that included a
coefficient for the previously linked KRAS allele and a coefficient
for the mutation of each gene in its comutation network. These
models were then fit with elastic net regression to isolate the most
informative predictors, adjusting for the RNA expression of the
targeted gene75.

Some of the models indicated that the mutation of a
comutation partner could explain the allele-specific dependency
interaction. An example of this was how the dependency of
COAD cell lines on STARD9 was greater in TP53-mutant lines
than in KRAS G12D lines (Fig. 5a). Most of the TP53 mutations
were located in the DNA-binding domain, two of which were
nonsense mutations. Of the other mutations, two were at splice
sites, one was in the nuclear localization signaling domain, and
two more were either nonsense or frameshift mutations in the N-
terminal domain. All were either predicted to be deleterious76,77

or previously identified recurrent mutations61. If TP53 mutations
induce a stronger dependency on STARD9, the reduced frequency
of comutation between TP53 and KRAS G12D would cause the
opposite effect to be ascribed to the G12D allele. A similar effect
was found between KRAS G12D and SMAD4 in PAAD cell lines
for the dependency on EEF1E1, ABI1, and MYBL2 (Fig. 5b–d).
All but two of the SMAD4 mutations were frameshift or nonsense

mutations. Because of the reduced comutation interaction
between KRAS G12D and SMAD4 in PAAD, the effects of
knocking out these genes can be ascribed to an allele-specific
effect or to the SMAD4 mutation. These examples highlight how
the allele-specific comutation interactions of KRAS can influence
the interpretation of other interactions.

Discussion
This study addresses the genetic complexity of cancer through a
comprehensive genetic interaction analysis of oncogenic KRAS
alleles in COAD, LUAD, MM, and PAAD. Measuring the levels
of mutational signatures revealed that the cancer-specific dis-
tributions of KRAS mutations were influenced, but not deter-
mined, by the active mutational processes in the tumor samples.
This result suggests that the biological properties of the KRAS
alleles, within the context of the tissue-of-origin, is an important
factor in the positive selection of a KRAS mutation during the
evolution of a tumor. Indeed, we have previously demonstrated
that mutant forms of KRAS produce distinct molecular and cel-
lular phenotypes that are largely dependent upon the tissue
context4,78,79. To investigate allele-specific genetic properties, we
conducted statistical tests to identify patterns of comutating genes
and genetic dependencies for each KRAS allele in each cancer.
The former identified genes that comutated with specific KRAS
alleles at an unexpectedly high frequency, suggesting that they
were alterations that cooperated with the KRAS allele to promote
tumor growth. Alternatively, some genes comutated with a KRAS
allele less frequently than expected by chance, suggesting they
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Fig. 5 Some dependency interactions can be explained by comutation events. a The nonzero coefficients for the model of STARD9 dependency in COAD
cell lines regressed on KRAS G12D (versus all other KRAS alleles) and its comutation interactors (top), and the actual dependency scores for KRAS G12D
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Source data are provided in the Source data file.
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were functionally redundant mutations or introduced an inhibi-
tory effect on the tumor’s progression. Finally, functional inter-
actions were identified between KRAS alleles and cellular
processes and individual genes. Together, these findings support a
model in which the various oncogenic KRAS mutations are not
biologically redundant, but instead have distinct properties that
are reflected in their genetic interactions.

This analysis of KRAS genetic networks in four different tumor
types highlights the tissue-specific nature of genetic interactions.
In places, we focused on the results from the analysis of COAD,
as it demonstrated a high variability in the types of KRAS alleles,
had limited exogenous mutational pressure (in contrast to the
effects of smoking-induced mutations in LUAD), and we had a
large number of WGS and whole-exome sequencing (WES) data.
However, allele-specific genetic interactions were not consistent
between tissues, demonstrating the complex relationship between
the tissue-of-origin, KRAS function, and cooperating genetic
events. While the intrinsic biochemical properties of a KRAS
mutant are likely maintained in each cancer, their downstream
signaling properties, and ultimately their effects on tumorigenesis,
are determined by the basal configuration of the tissue-specific
signaling network78. Thus, the configuration of the tissue sig-
naling network influences the genetic interactions that arise
during cancer progression.

In addition to the importance of tissue specificity, this study
provides compelling evidence that the somatic missense muta-
tions that activate oncogenes are not always equivalent. We and
others have demonstrated the distinct effects of the KRAS alleles,
both computationally and experimentally, revealing many
instances of substantial variation between different mutations of
the same gene. This is likely a more general principle applicable to
many oncogenes, especially those with multiple mutational
hotspots.

The KRAS allele-specific comutation analysis indicates that the
various KRASmutations act within distinct genetic environments.
This likely impacts the effects of therapeutics, potentially obfus-
cating the underlying reason for disparate responses in clinical
trials. The principle of this phenomenon was demonstrated by the
analysis of the CRISPR-Cas9 screen, when the comutation events
were included as explanatory covariates: in several instances, the
allele-specific dependency originally assigned to a specific KRAS
mutation could instead be attributed to an allele-specific co-
mutant gene. Thus, we provide evidence that not only do the
biological properties of the KRAS alleles contribute to their effect
on the tumor, but so too do their unique genetic interactions.

Finally, this study has broad implications for the understanding
of oncogene biology and for cancer therapy. Whether a targeted
therapy directly inhibits the activated oncoprotein or not, it is
important to understand how allele-specific signaling properties
and genetic interactions influence therapeutic response. For
instance, BRAF activating mutations have been classified into
three groups defined by their functional effects on the protein
product80,81, which consequently determines their response to
different inhibitors82,83. Moreover, the response of HER2 mutant
cancers to HER2 inhibition varies depending on the tissue-of-
origin of the cancer84, which could be due to intrinsic signaling
differences between the tissues-of-origin or to cooperating
mutations unique to a specific cancer type. For cancer therapy to
be truly precise, it will be key to appreciate and understand the
complexity of the genetic networks in each cancer type.

Methods
Cancer sample data sources and acquisition. WGS, WES, and targeted gene
panel sequencing (“targeted-sequencing”) data were collected of COAD, LUAD,
MM, and PAAD. WES and WGS data were downloaded from cBioportal85,86,
which included relevant projects from The Cancer Genome Atlas (TCGA)49,87,88

and other smaller studies. Additional data were acquired from the International
Cancer Genome Consortium (ICGC) for pancreatic cancer and colorectal cancer89.
MM WES data were gathered from the Multiple Myeloma Research Foundation
(MMRF)-CoMMpass online repository90. Panel data for multiple cancers were
retrieved from AACR Project Genomics Evidence Neoplasia Information Exchange
(GENIE v5)91. GENIE data are an aggregation of several different panels ranging
from 30 to 600 genes. KRAS was included in all of the libraries. A detailed list of all
cancer studies can be found in Supplementary Data 1 and 2, and links to access the
data are provided in the “Data availability” section of the “Methods.”

Hypermutated sample cutoff. Some of the COAD samples had five to ten times
more mutations than the average, often due to MSI. A Gaussian mixed model was
used to find the optimal cutoff based on available WGS and WES data. The top
17% and 21% of samples were considered hypermutants in WGS and WES,
respectively. The same 17% cutoff was applied to the targeted-sequencing data.
Hypermutants were not excluded from the identification of mutational signatures
because signature 6 (marked as “MSI”) is caused by MSI.

Tissue gene expression filter. A conservative filter for tissue-specific gene
expression was used to remove genes not expressed in the tissues of study. Normal
tissue gene expression data were gathered from the GTEx Portal92 (03 Decem-
ber 2018) and The Human Protein Atlas (HPA, 03 December 2018)93, and tumor
expression data were collected from MMRF-CoMMpass (14 January 2019), TCGA-
COAD, TCGA-LUAD, and TCGA-PAAD49,87,88,90. A gene was considered
“expressed” in a tissue if it met at least one of the following criteria: (1) a median
expression level of at least one TPM across all samples of the tissue in GTEx, (2)
indicated as expressed at at least one TPM in the HPA dataset for the tissue, (3)
expressed with a median level of 1 batch-normalized raw counts (using RSEM) in
the corresponding tumor RNA-sequencing data.

Calculating overall distribution of hotspot mutations. The frequency of muta-
tions at the four hotspots of KRAS across COAD, LUAD, MM, and PAAD was
calculated by accounting for the different yearly incidence of each cancer type. The
incidence of cancers of the “colorectum,” “lung and bronchus,” “myeloma,” and
“pancreas” were obtained from the American Cancer Society94: 3,870,000 color-
ectum, 5,930,000 lung and bronchus, 680,000 myeloma, and 1,280,000 pancreas.
The incidences of COAD, LUAD, and PAAD were estimated by multiplying the
number of cases of their respective tissue by the proportion they constitute: 95%,
50%, and 95%, respectively94,95. The distribution of mutations to the hotspots
across all cancers was calculated by finding the frequency within each cancer type,
then combining those figures, weighting by their yearly incidence.

Identifying mutational signatures. The genome-wide mutations of a sample can
be deconvolved into mutational signatures that represent endogenous or exogenous
mutagenic processes26. Single-nucleotide variants from exomes or genomes were
divided into 96 types, according to the six mutations of a pyrimidine (C > A, C > G,
C > T and T > A, T > C, T > G) and the 16 possible combinations of 3′ and 5′
adjacent bases. The MATLAB96 implementation of NMF algorithm, SigProfiler26,
was used to discover the underlying mutational patterns that are common across
tumors. Mutational signatures were discovered separately for each tumor type, and
the optimal number of signatures was determined based on silhouette width and
Frobenius error97.

The spectrum of the signatures discovered by NMF were matched to those
documented by the Catalog Of Somatic Mutations In Cancer (COSMIC)61. For the
signatures for which none of the 30 signatures in the COSMIC catalog was found to
be compatible, we referred to more recently published studies and expanded upon
the COSMIC catalog. In particular, there were multiple subtypes of signature 7
reported previously by Hayward et al. and Alexandrov et al.27,98. Further, the
analysis revealed a signature that was predominantly C > A, but not a subtype of
signature 7. This signature 38 was previously reported to be caused by indirect UV
exposure27. Three versions of the signature associated to POLE mutations,
signature 10, were discovered (previously reported by Alexandrov et al.27). These
three POLE signatures differed in the C > A, C > T, or C > G parts of the mutational
spectrum. In LUAD, a signature with mutations of type C[C > A]N and T[C > A]N
attributable to 8-oxo-guanine27 was found. One signature that was discovered in
COAD did not have a good match with a previously published signature, although
it resembled a signature previously reported to be caused by SBSA99, and signatures
34 and 41 reported by Alexandrov et al.27. This signature was not adjusted to
resemble those previously reported because the results from different studies were
not in strong agreement. This signature, referred to as “N,” did not contribute to
KRAS mutations. Three of the signatures discovered via NMF were likely to be
artifacts100 and were removed from downstream analysis. Signatures that
contributed to <5% of the mutations were also removed from downstream analysis.
The levels of each signature in each tumor sample were calculated using
nonnegative least squares and was restricted to signatures previously associated
with the cancer type (as this reduces false assignment of signatures)100. The final
spectra for each mutational signature and mutational signature composition of
each tumor sample can be found in the Supplementary Data.
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The levels of a particular mutational signature were compared between two
groups of tumor samples separated by their observed KRAS allele using a Wilcoxon
rank-sum test. The p values were adjusted for multiple hypothesis testing using the
Bonferroni method.

Probability of KRAS mutations from mutational signatures. For each sample
harboring a KRAS allele, the probability of each mutational signature to have
caused the mutation was calculated by considering the weight of the base change
among the 96 possibilities and the relative contribution of the signature to the
mutations in the sample. Thus, the probability p of a tumor sample a to have
acquired the KRAS mutation k from signature s of all signatures S can be calculated
using Eq. 1.

pk;s;a ¼
cs;awk;s

∑S
i ci;awk;i

ð1Þ

where cs;a is the contribution of signature s in sample a, and wk;s is the weight of
mutation k in signature s. The probability is normalized to sum to 1 by dividing by
the probability of getting the observed KRAS mutation from any of the signatures.

The probability of a mutational signature to have caused a KRAS mutation was
compared between two groups of tumor samples separated by their observed KRAS
allele using a Wilcoxon rank-sum test. The p values were adjusted for multiple
hypothesis testing using the Bonferroni method.

Calculating the probabilities of KRAS alleles. The mutational signatures are
linear combinations of the 96-dimension spectrum of possible mutations (see
“Identifying mutational signatures” above). Thus, assuming the null hypothesis
that the prevalence of active mutational processes alone determines the frequency
of KRAS alleles in a cancer, and the processes are active with the same probability
throughout the genome, the probability of a tumor sample to acquire a specific
KRAS allele was calculated as the frequency of the same mutation across the entire
genome. For each cancer, the pool of possible KRAS mutations were restricted to
those found in at least 3% of the tumor samples for the results presented in Fig. 2a,
b, and those found in at least 3% of any cancer for the results presented in
Supplementary Fig. 4. The average probability of each KRAS allele is presented in
Fig. 2b with bootstrapped 95% confidence intervals around the mean using the
“boot” R package and the “percentile” method101,102. A Wilcoxon rank-sum test
was used to compare the distributions of the probabilities between tumor samples
with the indicated KRAS allele and either tumor samples with a different KRAS
mutation or KRAS WT tumor samples. The p values were adjusted for multiple
hypothesis testing using the Benjamini–Hochberg FDR method.

Predicting KRAS allele frequency. The expected frequencies of the KRAS alleles
were calculated as the mean probability of obtaining the KRAS allele across all
tumor samples of a cancer type (see “Calculating the probabilities of KRAS alleles”
above). The 95% confidence intervals around the mean were bootstrapped using
the “boot” R package and the “percentile” method101,102. The predicted frequencies
of the KRAS alleles for each cancer are available in Supplementary Data 6 and 7. A
χ-squared tested was used to test the null hypothesis that there is no difference
between the predicted and observed frequency for each KRAS allele. The p values
were adjusted for multiple hypothesis testing using the Benjamini–Hochberg
method (referred to as FDR-adjusted p values).

Comutation with KRAS alleles. A one-tailed Fisher’s exact test of independence
was used to identify increased frequency of comutation between KRAS alleles and
other mutated genes. Only genes with an overall mutation frequency of at least 1%
in the given cancer were considered. In addition, only comutation partners with at
least three comutation events or a comutation frequency with a KRAS allele of at
least 10% (i.e., 10% of the tumors with a KRAS allele also had a mutation in the
given gene) were considered. Increased comutation interactions with a p value < 0.01
were considered statistically significant.

The row-column exclusivity test was used to identify reduced frequency of
comutation between KRAS alleles and other mutated genes37. This is a
permutation-based test that finds the probability of observing the actual number of
mutually exclusive events given that the number of times the gene is mutated in all
samples is fixed and the number of mutations in each sample is fixed. Thus, the test
conditions on both the frequency of mutation of the gene and the mutational
burden of the samples. For this reason, only WGS and WES data could be used for
this analysis (using just the exonic mutations from WGS). Only genes with a
mutational frequency of at least 2% and at least ten mutually exclusive events were
considered. Reduced comutation interactions with a p value < 0.01 were considered
statistically significant.

To further reduce the number of false positive comutation interactions reported
between the KRAS alleles and genes previously reported to be involved in cancer,
those that signal through KRAS, and genes that directly interact with KRAS, these
sets of interactions were further filtered to fall below an FDR of 0.25 that is
estimated using the Benjamini–Hochberg method. Only interactions that met this
criterion are presented in Fig. 3b, and Supplementary Figs. 6b and 8b.

The Fisher’s exact test was used to detect increased comutation interactions
because, unlike the row-column exclusivity test, it could utilize the targeted-
sequencing data. However, the row-column exclusivity test outperformed the row
exclusivity test, a comparable permutation-based approximation of the Fisher’s
exact test, in the original publication by Leiserson et al.37, suggesting it would be
more sensitive for detecting reduced comutation interactions in the current study.

COAD samples identified as hypermutants were excluded from this analysis as
they were likely microsatellite instable. Thus, these samples would be expected to
have a high proportion of passenger mutations that would contribute substantial
noise to the identification KRAS allele-specific comutation interactions.

Functional enrichment. The R interface to the online Enrichr tool was used to
identify enriched gene sets in the comutation networks and allele-specific synthetic
lethal clusters103,104. The online API was last accessed on April 9, 2020. Gene sets
from the following sources provided by Enrichr were used: BioCarta (2016), GO
Biological Process (2018), KEA (2015), KEGG (2019), Panther (2016), PPI Hub
Proteins, Reactome (2016), Transcription Factor PPIs, and WikiPathways (2019).
Only enrichments with a FDR-adjusted p value < 0.2 were considered statistically
significant.

Modeling of cancer cell line genetic dependencies. Genetic dependency data
were downloaded from the online DepMap64 portal (https://depmap.org/portal/
download/) (2020Q1) and the CERES scores65 were used for all analyses. Cell lines
with multiple activating KRAS mutations or an activating mutation in BRAF,
EGFR, or NRAS were removed from the dataset. For each cancer, only cell lines
with a KRAS allele found in at least three cell lines were included in the study.

The genetic dependency score is often linked to the expression of the gene.
Thus, if the RNA expression of the gene could explain the dependency score (linear
model, p value < 0.05 and R2 ≥ 0.4), the gene was not tested for KRAS allele-
specific genetic dependency. Further, genes that tended to show differential
dependence on the basis of their mutation status (Wilcoxon rank-sum test, p <
0.05) were not included in downstream analysis. Of the remaining genes, an
ANOVA was used to measure if the mean dependency scores for the cell lines
grouped by KRAS allele were different (p value < 0.01). For these genes, Student’s t
tests were used to compare the dependency scores of each group of cell lines against
the others (Benjamini–Hochberg FDR-adjusted p value < 0.05). These genes were
declared as differentially dependent by KRAS allele. The box plots in Fig. 4 and
Supplementary Fig. 7 show the FDR-adjusted p values from the t tests.

Gene set enrichment analysis of genetic dependency. The GSEA66 tool (version
3.0) was acquired from the online GSEA portal (https://www.gsea-msigdb.org/gsea/
index.jsp). Gene sets were acquired through MSigDB (https://www.gsea-msigdb.
org/gsea/msigdb/index.jsp; downloaded on 15 October 2019). The analysis used the
Hallmark and C2 gene sets and permuted the genes 10,000 times for the statistical
test. All other settings were set to default values. Enrichments were considered
statistically significant if the adjusted p value < 0.2 and a normalized enrichment
score < −1.2 or > 1.2.

Modeling the effect of comutation events on genetic dependency. For each
gene found to have a genetic dependency interaction with a KRAS allele, an
additional linear model was built to estimate the effect of mutations to genes that
comutate with the KRAS allele. The linear model regressed on the RNA expression
level of the gene and contained binary indicator variables for if the cell line had a
mutation in the targeted gene, had the specific KRAS allele or another allele, or had
a mutation in one of the genes that comutates with the specific KRAS allele. Only
comutation genes that were mutated in at least three cell lines and WT in at least
three cell lines were included as covariates. To avoid including perfectly correlated
variables in the model, comutating genes that were perfectly correlated (i.e., they
were mutated in exactly the same cell lines) were merged into a single predictor.
After these adjustments, the models had 45, 29, and 16 coefficients for genes with
dependency interactions with KRAS G12D, G12V, and G13D in COAD cell lines,
respectively. For PAAD cell lines, the models had 15, 14, and 8 coefficients for
genes with dependency interactions with G12D, G12R, and G12V, respectively.
Some models had fewer covariates because either (1) the targeted gene was not
mutated in enough of the cell lines to include the coefficient for this variable in the
model, or (2) the targeted gene was mutated in the same cell lines as one or more of
the comutating genes, resulting in the merging of these variables. Due to the
imbalance between the number of covariates and data points (i.e., cell lines), the
models were fit with elastic net regularization75,105 constraining the mixing para-
meter α 2 ½0:75; 1�, thus favoring the L1 penalty.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Code availability
All code is available at https://github.com/Kevin-Haigis-Lab/kras-allele-genetic-
interactions (https://doi.org/10.5281/zenodo.4541794). See the README for the
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organization of the code and how to run the analyses. Python v3.7 (ref. 106) and R v4.0
(ref. 107) were used for most of the analyses.

Data availability
All data that support the findings of this study are publicly available from the cited sources.
The compiled data can be downloaded from FigShare (https://doi.org/10.6084/m9.
figshare.14115569). The WGS, WES, and RNA expression data of COAD, LUAD, and
PAAD tumor samples are available on cBioPortal (http://www.cbioportal.org). The WGS,
WES, and RNA expression data of MM tumor samples are available on the Multiple
Myeloma Research Foundation’s Research Gateway (https://research.themmrf.org).
Additional WGS and WES of PAAD tumor samples generated by the ICGC were
downloaded from ICGC data portal (https://dcc.icgc.org). The panel sequencing data of
tumor samples are available through the dedicated GENIE instance of cBioPortal (https://
www.cbioportal.org/genie/). All users must register and agree the AACR’s terms of use
before accessing the data. The Cancer Gene Census data were downloaded from the
COSMIC website (https://cancer.sanger.ac.uk/census). The genetic dependency data
(2020Q1) and cell line WGS and RNA expression data (generated by the CCLE) were
downloaded from the DepMap web portal (https://depmap.org/portal/). Normal gene
expression data were downloaded from the GTEx web portal (https://www.gtexportal.org).
Normal protein expression data were downloaded from the Human Protein Atlas web
portal (https://www.proteinatlas.org). The remaining data are available within the Article,
Supplementary Information, or Source data, or are available from the authors upon
request.
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