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Conserved transcriptomic profile between mouse
and human colitis allows unsupervised patient
stratification
Paulo Czarnewski1, Sara M. Parigi1, Chiara Sorini 1, Oscar E. Diaz 1, Srustidhar Das1, Nicola Gagliani1,2,3 &

Eduardo J. Villablanca 1,3

Clinical manifestations and response to therapies in ulcerative colitis (UC) are hetero-

geneous, yet patient classification criteria for tailored therapies are currently lacking. Here,

we present an unsupervised molecular classification of UC patients, concordant with

response to therapy in independent retrospective cohorts. We show that classical clustering

of UC patient tissue transcriptomic data sets does not identify clinically relevant profiles,

likely due to associated covariates. To overcome this, we compare cross-sectional human

data sets with a newly generated longitudinal transcriptome profile of murine DSS-induced

colitis. We show that the majority of colitis risk-associated gene expression peaks during the

inflammatory rather than the recovery phase. Moreover, we achieve UC patient clustering

into two distinct transcriptomic profiles, differing in neutrophil-related gene activation.

Notably, 87% of patients in UC1 cluster are unresponsive to two most widely used biological

therapies. These results demonstrate that cross-species comparison enables stratification of

patients undistinguishable by other molecular approaches.
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U lcerative colitis (UC) is a type of inflammatory bowel
disease (IBD) that is mostly restricted to the colon and is
characterized by changes in the mucosal architecture,

epithelial function, increase in immune cell infiltration, and an
elevated concentration of inflammatory cytokines. Symptoms
include diarrhea, abdominal pain, rectal bleeding, lack of appetite,
and fatigue, all of which significantly affect the patient’s quality of
life. UC is a heterogeneous disease, presenting diverse macro-
scopic features, symptoms, grades of inflammation, and colonic
affected areas1,2.

Although there is no definitive cure for UC, there are biological
therapies available, which target the inflammatory response
during UC by means of inhibiting proinflammatory cytokines or
by blocking immune cell migration3. Among these, the most
frequently used biological therapies in UC patients block
tumor necrosis factor (TNF) with anti-TNF antibodies (such as
infliximab, IFX)4 or leukocyte migration (such as vedolizumab,
VDZ)5,6. However, about 354,6 and 50%5,6 of patients poorly
achieve clinical response to IFX and VDZ, respectively. Patients
that do not respond develop adverse effects, most notably
increased risk of infections, thus requiring continuous medical
monitoring and ultimate surgical intervention7,8.

In an attempt to identify genes/pathways as a potential novel
therapeutic target, genome-wide association studies (GWAS)
have identified more than 200 polymorphisms associated with a
higher susceptibility to IBD9,10. However, the function and
temporal expression of IBD-risk genes during experimental colitis
are yet to be elucidated9,10.

Furthermore, while there is an obvious clinical heterogeneity
among UC patients, as seen, for example, by the location affected
(i.e., distal colitis, left-sided and pancolitis, and responder and
nonresponder) and the extent of the severity, initial treatment for
these patient profiles is identical and modified only if the patients
have not responded6,8. Biomarkers that could distinguish the
different entities of the UC spectrum are currently lacking and
they are required in order to achieve the highly needed stratifi-
cation of UC patients into molecularly functional transcriptomic
profiles8,11. Moreover, an unbiased stratification of UC subtypes
has not been reported at the molecular and functional levels, to
the best of our knowlege. Here, using transcriptomic data from a
well-characterized experimental model of colitis, we identify
conserved genes between mouse and UC patients. As a result, we
offer insights into IBD-risk gene kinetics and to molecularly
stratify UC patients in an unsupervised manner.

Results
Human UC is highly variable at the transcriptome level. In
order to stratify UC patients into molecular profiles, we combined
four publicly available human UC cohort data sets (n= 102
patients), in which transcriptomic microarrays of the total colonic
biopsies were performed12–15 (Table 1 and Supplementary Fig. 1).
We ranked genes using the top 100 most variable genes and
further tested whether transcriptomic profiles exist (Fig. 1a).
Analysis by visual assessment of cluster tendency (VAT)16 indi-
cated that biopsies presented high inter-sample dissimilarities
(Fig. 1b), suggesting a poor overall tendency to form consistent
clusters. Dimensionality reduction analysis by t-SNE using the
top highly variable genes also indicates the formation of a single
group with no apparent subdivisions (Fig. 1c). Then, we further
statistically tested whether multi-cluster substructures were pre-
sent in the data set, since most clustering algorithms define
transcriptomic profiles even on random noise17–19. However,
bootstrapping analysis using the Hartigan’s Dip test19,20 pre-
sented a low cluster substructure trend (p > 0.9), regardless of the
gene-ranking metrics used (Fig. 1d). Independently of the

clustering tendency results, we forced patient subdivision using
hierarchical clustering and tested for cluster stability using
bootstrapping17,18,21. In line with previous results, formed clus-
ters were highly unstable using the list of highly variable genes
(AU ≈ 0%) (Fig. 1e). These results indicate that without prior
knowledge of patient subdivision, standard gene-ranking strate-
gies do not allow clustering of UC patients into con-
sistent molecularly distinct profiles.

Time-series analysis during colon inflammation and repair.
One cause of such inter-patient variability can be attributed to the
sampling procedure, which contributes largely to the total data
variance and masks real biological differences22,23. To overcome
the total data variance, we sought to identify the genes that
contribute to inflammation in an independent and unsupervised
manner. To this end, we focused the analysis on a list of evolu-
tionarily conserved genes that best discriminate the nuances of
inflammation in a well-characterized colitis mouse model24.

To identify these evolutionarily conserved genes, we first
elucidated through an unbiased manner which genes and
pathways are differentially regulated during mouse colonic
inflammation, followed by a tissue regeneration phase. In
particular, we took advantage of the widely used dextran sodium
sulfate (DSS)-induced model of colitis. This model is one of the
few characterized by a phase of damage, followed by a phase of
regeneration. Therefore, this model gave the possibility to identify
also sets of genes essential in the regeneration phase, a key step
toward the resolution of the inflammation. In short, mice were
exposed to DSS in the drinking water for 7 days, and then allowed
to recover for the following 7 days. During this period, we
collected colonic tissue samples every second day to then be
analyzed by RNA sequencing (RNA-seq), histology, and flow
cytometry (Fig. 2a and Supplementary Fig. 2). First, we confirmed
that 7 days of DSS exposure resulted in continuous body weight
loss and acute disease severity, until day 10 to then initiate the
recovery phase (Supplementary Fig. 2a–b). Histological analysis
confirmed epithelial damage, such as desquamation of the
epithelial layer on day 6 (Supplementary Fig. 2c), while labeling
proliferating cells within crypts (Ki67 staining) indicated a
disrupted crypt architecture by day 6 and restoration by day 14
(Supplementary Fig. 2c). Loss of the epithelial cells (CD45negEp-
CAM+) by day 7–10 and restoration by day 14 was further
confirmed by flow cytometry (Supplementary Fig. 2d). To test
whether the epithelial barrier integrity was restored by day 14, we
gavaged FITC dextran and measured its concentration in the
serum. We detected higher FITC-dextran concentrations on day
7, which indicate barrier disruption, whereas basal levels were
detected by day 14, indicating restoration of the barrier integrity

Table 1 Publicly available human data sets used in this paper

Data set ID Total Responders Nonresponders Ref.

Infliximab:
GSE12251 23 11 12 13

GSE73661 23 15 8 15

GSE23597 32 7 25 14

GSE16879 24 16 8 12

Sum 102 49 53
Vedolizumab:

GSE73661 37 23 14 15

Pediatric UC:
GSE109142 206 105 101 33

Data sets used for the classification of ulcerative colitis molecular profiles. Only the number of
patients used for analysis are shown (inflamed mucosa before receiving any therapy)
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(Supplementary Fig. 2e). Thus, on the basis of this characteriza-
tion, we will refer to d6–d10 and d12–d14 as acute phase and
recovery phase, respectively.

Next, we performed a RNA-seq analysis from colonic samples
throughout the experiment and computed differentially expressed
genes (DEGs), taking the complete kinetics of expression into
consideration for p-value estimation using EdgeR25 (see the
“Methods” section). A detailed list of all genes found differentially
expressed is available for further exploration (Supplementary
Data set 1). Principal component analysis (PCA) on DEGs
revealed that samples displayed a sequential temporal path in
PCA space, starting on day 0, passing through day 7 (acute), and
ultimately reaching day 14 (recovery) (Fig. 2b). Of note, samples
from day 14 did not reach the same gene expression profile
compared with day 0, suggesting that complete molecular
restoration was not reached by day 14. We observed that over
70% of the variance among the differentially expressed transcripts
is retained in the first five principal components (PCs)
(Supplementary Fig. 3a), and that each principal component
corresponds to a unique expression kinetics through the time
course of DSS colitis (Supplementary Fig. 3b). For instance, the
variance explained by PC1 peaked at the acute phase and
returned to almost normal levels on day 14 (recovery), capturing
most of the variance related to inflammatory genes that peaked
from days 7 to 10, such as Ly6g, Reg3b, Reg3g, S100a8, S100a9,
Mmp3, Mmp8, and Mmp10 (Supplementary Fig. 3b and c). On
the other hand, the variance explained by PC2 peaked on day 4
during DSS administration, to return close to normal by day 7,
thus capturing most of the variance related to genes expressed
during initiation of inflammation, such as Mcpt1, Mcpt2, Mmp3,
Mmp10, Il11, Scnn1g, and Best2 (Supplementary Fig. 3b and c).
These results indicate that several of the genes modulated
between days 4 and 10 are related to inflammation and together
contribute the most to the variance in the data set.

By using hierarchical clustering on the spline-smoothed gene
expression of DEGs, we were able to classify the gene
expression into nine modules (Fig. 2c). For further exploration,
expression values for all genes in each module are available
(Supplementary Data set 1). Three gene modules (m2, m7, and
m8) were downregulated during the acute and recovery phases
of DSS-induced inflammation, with the lowest peak on days 6,
10, and 12, respectively. GO and KEGG enrichment analysis
suggest that these modules represent genes mainly involved in
epithelial cell functions, such as PPAR signaling (Acsl1, Fabp1),
small-molecule metabolism (Sult1a1, Sult1b1), and fat digestion
and absorption (Paqr8, Clps, and Pla2g3) (Fig. 2c and
Supplementary Fig. 4a).

On the other hand, six modules (m9, m3, m1, m4, m6, and
m5) were upregulated over the early, acute, and recovery phases
of DSS-induced inflammation, peaking on days 2, 6, 7, 10, 12,
and 14, respectively. Among those, processes such as cytokine
signaling (Il11, Il12b, Il6, and Il1b), leukocyte migration (Sell,
Ccr1, Ccr2, Cxcl2, and Cxcr3), neutrophil degranulation (Ly6g,
Itgam, Itgax, and Cd300a), matrix remodeling (Mmp3, Mmp7,
and Mmp10), response to lipopolysaccharide (Saa3, Nox2), as
well as several inflammatory signaling pathways (Stat3, Jak3,
Nfkbia, Smad4, and Birc3) were enriched, suggesting the
interplay of several immune cells and pathways as a cause/
trigger of inflammation, especially during the acute phase
(Fig. 2c and Supplementary Fig. 4b). Moreover, modules m9
and m5 presented two degrees of bimodal expression pattern,
peaking at days 2–4 (early phase), with a slight downregulation
between days 7 and 10 and a second peak on days 12–14
(recovery phase). Genes in those modules were associated
mainly with cell cycle (Ttk, Cdc7, Cdc20, Cdc25c, Ccna2, Ccnb1,
and Ccnb2) and cholesterol biosynthetic pathways (Acat2, Sqle,

Mvd, and Hmgcs1), respectively (Fig. 2c and Supplementary
Fig. 4b). Many other genes and GO/KEGG pathways not shown
here are fully accessible for exploration of individual genes and
their clusters (Supplementary Data sets 1, 2 and 3). Taken
together, time-series transcriptomic characterization of mouse
colonic inflammation identifies distinct gene expression
kinetics associated with epithelial and immune cell-related
pathways during the course of colitis.

Inflammatory pathways conserved between mice and humans.
Having characterized genes and pathways that are associated with
intestinal inflammation and tissue repair during experimental
colitis, we investigated whether such pathways are conserved in
humans. To this end, we compared the list of DEGs from the
mouse experimental colitis with the recently published list of
DEGs found in newly diagnosed treatment-naive ulcerative colitis
patients26. This is a cohort containing human RNA-seq data,
where they report DEGs between UC patients versus healthy
controls. We found that among the 4045 mouse DEGs, 650 genes
were also found among the list of DEG obtained comparing UC
patients versus healthy controls (Fig. 2d and Supplementary Data
set 4). Out of the 650 genes shared between mouse and humans,
53.9% were identified in the inflammatory modules m1 (28.2%),
m3 (14.2%), and m4 (11.5%) (Fig. 2d). This suggests that acute
inflammatory genes in m1, m3, and m4 are conserved between
DSS-induced colitis and UC. GO and KEGG enrichment analysis
revealed that those 650 genes were enriched for inflammatory
pathways related to neutrophil degranulation and chemotaxis, as
well as cytokine and inflammatory signaling pathways (Fig. 2e
and Supplementary Data set 5). These results showed that most of
the genes/pathways conserved between experimental mouse
colitis and human UC are associated with inflammatory
responses.

Temporal classification of IBD-risk genes. To understand the
temporal expression of the genes associated with the identified
IBD polymorphisms (candidate IBD-risk genes)9, we checked the
expression of genes associated with UC or CD identified by
single-variant fine-mapping resolution10 into the list of DEGs
from the mouse data set. Out of the 233 reported candidate IBD-
risk genes, 40 genes presented very low or undetectable counts in
the mouse data set (i.e., IL23R, SULT1A2, ERAP2, and MUC19),
118 were detected but did not have their expression altered
through the development of inflammation (i.e., TNFRSF14,
ATG16L1, GPR35, and TNFSF8), and 75 were found among the
DEGs in our mouse data set (Supplementary Fig. 5a and Sup-
plementary Data set 6). Among these, many IBD-risk genes with
already-known functions during mouse colitis were found (e.g.,
IFNG, GPR65, ITGAL, CCL7, STAT3, FUT1, CD40, SULT1A1,
MUC1, CARD9, IL12B, IRF1, and CD5), being specifically present
in gene modules related to inflammation m1, m3, and m4.
Moreover, 26 genes of the 75 IBD-risk genes found in our data set
are shared between UC and CD (i.e., CARD9, SULT1A1, STAT3,
GPR65, and IL12B), while 10 and 39 were restricted to UC or CD,
respectively (Supplementary Fig. 5b and Supplementary Data
set 7). In order to provide temporal information regarding the
expression of IBD-risk genes during inflammation and repair, we
utilized the mouse transcriptional landscape to map at which time
point homolog IBD-risk genes were up- or downregulated. Out of
the 75 genes shared between mouse DEGs and IBD- risk genes, 45
(60%) were mapped to modules m1, m3 and m4, which represent
the acute phase of inflammation (Supplementary Fig. 5c and
Supplementary Data set 7). Among them, we found Card9, Ifng,
Il12b, Stat3, Stat4, and Cd40, which have been reported to exert
functions during the acute phase of intestinal inflammation27–32.
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By contrast, Fut1, Sult1a1, Hes5, and Tnfsf15 were mapped to
modules m8, m7, and m2, which are downregulated during acute
inflammation, while Rasip, Ntn5, and Rtel1 matched with module
6, which is associated with genes that are upregulated during the
recovery phase after acute inflammation (Supplementary Fig. 5c).
These data thus provided temporal information on when IBD-
risk genes are differentially expressed during damage and tissue
repair, providing useful insights into their potential roles during
inflammation and recovery.

Conserved genes distinguish two UC transcriptomic profiles.
Having identified genes that contribute to inflammatory pathways
that are conserved between mice and humans, we next used those
genes to assess whether UC patients can be subdivided into dis-
tinct transcriptomic profiles (Table 1, Fig. 3a). To this end, we
selected the top 100 leading genes in PC1 and PC2 from the
mouse colitis data set and identified the respective human
homologs (Fig. 3a). We found that 57 genes were shared between
mice and humans. Of these, only 17 genes were found among the
100 most variable genes of the human data set (Supplementary
Fig. 6), which might explain why patient classification using
highly variable genes was not possible.

Therefore, we performed an unsupervised analysis of the
human data set, using 57 homolog genes (Fig. 3a). Of note, VAT
analysis using these 57 homolog genes indicated the distinction
into two major patient transcriptomic profiles (Fig. 3b), which
also resulted in reduced Hartigan’s unimodality test (p < 0.001,
Fig. 3c). This indicates that by using mouse most variable genes as
opposed to the sole top human variable ones, it is possible to

obtain a higher clustering tendency of the UC patient data. To
test whether using the mouse homologs also impacted on cluster
stability, we performed a bootstrapping analysis. This
time, clustering using the top mouse homolog genes resulted in
clusters with a higher stability (AU ≈ 80%) (Fig. 3d), compared
with using the top human highly variable genes (AU ≈ 0%)
(Fig. 1e). Hierarchical agglomerative clustering using the mouse
homolog genes thus defined two UC transcriptomic profiles,
namely UC1 and UC2, comprising 60 and 42 patients,
respectively (Fig. 3e). The UC1 transcriptomic profile is defined
as patients presenting the higher average expression of the
inflammatory genes compared with UC2 (Fig. 3f). We also
observed that neither UC1 nor UC2 profiles were discriminated
by the overall macroscopic tissue disease severity (Fig. 3g),
suggesting that although these two UC profiles are indistinguish-
able based on the histological Mayo score, they are transcrip-
tionally distinct.

Key genes allow the distintion between UC1 and UC2 profiles.
In order to characterize UC1 and UC2 beyond conserved genes,
we performed differential expression analysis using all genes
present in the human data set. We were able to identify 205
highly differentially expressed genes, among which 187 were
upregulated in UC1 and 18 were upregulated in UC2 (Fig. 4a).
Detailed tables with information on all DEGs comparing UC1
and UC2 are available for exploration (Supplementary Data set 8
and Supplementary Fig. 7a). Among those, cytokines (TNF, IL11),
enzymes (NOX1, MMP3, and CYP26B1), calcium-binding pro-
teins (S100A8, S100A9), chemokines (TREM1, CXCL8), and other
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proteins related to the inflammatory response (NR3C2, BCL2A1,
PARM1, and TNFSF13B) were clearly able to discriminate UC1
from UC2 (Fig. 4b and Supplementary Fig. 7). Enrichment ana-
lysis for cell types, GO, and KEGG pathways revealed that genes
highly expressed in UC1 (187) were associated with terms related
to neutrophil, neutrophil degranulation, and cytokine–cytokine
receptor interaction, respectively (Supplementary Fig. 7b). Venn
diagram of the top enriched terms revealed that many over-
lapping genes are shared among these pathways (Fig. 4c), sug-
gesting that UC1 patients present a distinct transcriptional
signature enriched in neutrophil activity and cytokine signaling
compared with UC2 patients.

We trained a logistic regression classifier, using each of the
DEGs between UC1 and UC2 to identify key genes that could be
further used in the clinics for distinction of UC1 and UC2. Genes
were tested and scored individually, using the area under the
curve (AUC) as a combined measure of sensitivity and specificity
(Fig. 4d). We observed that genes such as TREM1 (AUC= 99%),
CYP26B1 (AUC= 97%), and CXCL8 (AUC= 97%) were
among the top markers to distinguish UC1 from UC2.
Other genes such as WNT5, BCL2A1, C5AR1, MMP1, MMP3,
and IL11 also presented AUC scores above 90% and
also represented good candidates for UC1 and UC2 distinction
in clinical practice.

UC1 and UC2 respond differently to biological therapies.
While we stratified UC patients into two molecularly distinct
profiles, it was unclear whether UC1 and UC2 show different
treatment responses to biological therapies. To address this, we
used the patient-specific treatment response obtained 4–8 weeks
after the biopsy was taken and treatment with IFX started
(Table 1). Interestingly, we observed that on average, 70% of the
patients belonging to the UC2 transcriptomic profile responded
to infliximab therapy (Fig. 5a), in contrast to <10% of the patients
classified as UC1, regardless of the data set analyzed (Fig. 5a).

To extend the applicability of our findings, we made use of
another set of UC patients receiving vedolizumab and repeated
the same procedure as before (Table 1). Transcriptomic data from
UC patients were analyzed using the most relevant genes
identified in our mouse colitis model and then clustered as
described above to reveal UC1 and UC2. Between them, UC1
presented a higher expression of the conserved inflammatory
genes (Fig. 5b). We observed that about 60% of the patients
belonging to the UC2 transcriptomic profile responded to VDZ,
in comparison with about 13% of the patients belonging to the
UC1 transcriptomic profile (Fig. 5c). Taken together, the data
indicate that patients belonging to the UC2 transcriptomic
profile, which presents a higher percentage of response, respond
to either IFX or VDZ treatment. Importantly, our approach
actually allows a more accurate identification of those patients
with UC1, in which 87% of the patients are refractory to both IFX
and VDZ.

Next, we tested the robustness of our cross-species unbiased
approach to classify UC1 and UC2 patients, using a data set in
which a distinct IBD onset (pedriatric) and methodology to obtain
gene expression profiles (RNA-seq) was used33. Hence, using
RNA-seq data from 206 pediatric UC patients (GSE109142)33

(Table 1), we were able to identify two major transcriptomic
profiles, in which the enrichment of inflammatory genes
distinguished the UC1 from the UC2 transcriptomic profile
(Fig. 5d). Differentially expressed genes between UC1 and UC2
identified using microarray data (e.g., TREM1) were also
observed in analysis from RNA-seq data (Fig. 5e). Moreover,
we observed that 107 of the DEGs were shared between
microarray and RNA-seq data sets (Supplementary Fig. 8a and
Supplementary Data set 9), among which the key genes used to
differentiate UC1 from UC2 were found (see Fig. 4). We further
compared the p-values and the expression trends of those 107
DEGs found in both data sets. We observed that those genes are
highly significant, regardless of the data set used (Supplementary
Fig. 8b), and that 100% of them have the exact same expression
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Fig. 4 UC1 transcriptomic profile is enriched for the inflammatory signature. a Heatmap of DEGs between UC1 and UC2 patients, including all genes in the
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trend, i.e., meaning that genes found upregulated in the
microarray data set were also found upregulated in the RNA-
seq data set, and vice versa (Supplementary Fig. 8c). Thus,
molecular stratification into UC1 and UC2 can be achieved,
regardless of the methodology used to obtain gene expression
profiles. Similarly to the adult onset, we did not observe any
differences in sex distribution, age, histological score, or
calprotectin levels between UC1 and UC2 from the pediatric
onset (Supplementary Fig. 9a). However, pediatric UC1–UC2
classification was found to be associated to the overall Mayo and
Pucai scorings (Supplementary Fig. 9b), suggesting that these
general disease scoring methods could already be used as tools to
help discern UC1 and UC2 profiles in pediatric IBD. Thus, our
results indicate that the UC1 and UC2 identification is conserved
between adults and pediatric UC, with many key marker genes,
regardless of patient age and methodology used for RNA
profiling. Finally, in line with previous results on adult UC
patients, 60% of patients classified as UC2 clinically responded to
IFX, while <37% of patients classified as UC1 (Fig. 5f) responded
to IFX. Taken together, these results suggest that transcriptional
profiles toward UC1 or UC2 are associated with a response to
IFX, both in adult and pediatric ulcerative colitis.

Discussion
A systematic study demonstrated that biopsy sampling was the
major source of inter-patient variability22. Therefore, such tech-
nical variations can mask real biological differences, even though
UC is known to present a high level of variability in macroscopic
and endoscopic scoring among patients1,2,8. To solve this, we
limited the analysis to the relevant genes for inflammation,
including the phases of tissue repair and regeneration. By using

the key DEGs obtained by a mouse model of colitis, we were able
to “ignore” genes that were highly variable between patients (e.g.,
as a result of technical variation), and focus only on those that
contribute to inflammation. This allowed us to temporally assign
IBD-risk genes and molecularly subclassify UC patients into two
profiles: one of these characterized by genes involved in neu-
trophil recruitment, activation, and degranulation, and by low
response to biologicals.

Different experimental models to study mucosal immune
processes associated with the pathogenesis of UC are
available34,35. Among them, the DSS-induced colitis model is
broadly used, due to its simplicity and applicability with different
therapeutic drugs36. Early studies characterized the temporal
changes by qPCR for a handful of inflammatory markers37, but
how noninflammatory (i.e., repair-related) genes fluctuate over
time during tissue repair was unknown. Others had previously
performed a kinetic microarray analysis only during the acute
inflammation phase of DSS (from days 0 to 6)38, but whether
those genes continue to be expressed during tissue repair
remained unclear. Moreover, although the DSS-induced colitis
model has been extensively used for the study of UC, an open
reference for gene expression during intestinal inflammation and
tissue repair was still missing. Here, we used a time-series tran-
scriptional characterization of colitis, which allowed us to identify
which of the genes contribute to most of the nuances of
inflammation over time. In addition, this paper provides an open
data source that can be further investigated by others with dif-
ferent questions. As an example, we provided a temporal
assignment of IBD-risk genes that might offer insight into their
potential functions. Finally, our data show that the DSS mouse
model is a relevant model for studying certain aspects of
human UC.
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Previous studies identified the molecular differences between
responder and non-responder IBD patients13. These studies were
purposely biased by an a priori knowledge of the responder and
non-responder IBD samples. In contrast, we successfully classi-
fied the patients using a completely unsupervised approach, and
therefore, we have potentially identified genes that go beyond the
responsiveness to the therapy, by describing the molecular sig-
nature of the identified profiles. We were able to do this by using
the key DEGs found in the mouse model of colitis, by “debiasing”
the human analysis, by “ignoring” genes that were highly variable
between patients, and by focusing only on those genes that
contribute to inflammation. Consequently, we identified two
transcriptomic profiles of ulcerative colitis (UC1 and UC2) based
on both adult and pediatric patients.

While per definition, both UC1 and UC2 subpopulations are
considered inflamed, only UC1 patients present a higher
expression of genes associated with neutrophil degranulation and
cytokine signaling, and only 10% of these patients responded to
biological therapies. Similar to our results, others have shown that
IL-6, IL11, IL13RA, STC1, and PTGS2 were downregulated in
patients responsive to IFX13 (namely UC2 in our study). Another
recent report showed that the gene OSM is upregulated in IBD
patients compared with healthy controls and is predictive of anti-
TNF responsiveness39. However, we did not find OSM as dif-
ferentially expressed between UC1 and UC2 patients. For VDZ,
however, a signature for prediction of response to therapy was
still missing15. While UC1 and UC2 likely define two transient
inflammatory states of the colon, the causes of origin and
development of such a conserved signature remain unknown.

The identification of UC2, which is characterized by respon-
siveness to both IFX and VDZ, may have direct implications in
the clinical setting. For example, it indicates that UC2 patients
would benefit from a treatment with IFX only, since IFX therapy
has a higher response rate6 and is more cost-effective compared
with VDZ40. On the other hand, identification of non-
responsiveness to both IFX and VDZ in the UC1 patient tran-
scriptomic profile, suggests that another line of therapy should be
applied. For example, we observed that the B-cell activation factor
(TNFSF13B, protein BAFF) was to be found upregulated in UC1
patients. This suggests a potential role of B cells in UC1. More-
over, B cells are known to enhance inflammatory responses by
cytokine secretion, such as TNF and IL-641, which are also
upregulated in UC1 patients. B-cell depletion using an anti-CD20
antibody in a small cohort showed a trend in reducing inflam-
mation, although nonsignificant42. However, it remains possible
that B-cell depletion might affect only UC1 patients, but not UC2.
Similarly, we also observed that UC1 patients have a higher
expression of genes involved in the JAK/STAT signaling pathway
(PTP4A3, SOCS3) and cytokine signaling (IL6 and IL1B), sug-
gesting a potential role of other therapies for this transcriptomic
profile, such as canakinumab (anti-IL-6 mAb), siltuximab (anti-
IL-1β mAb), JMS-053 (PTP4A3 inhibitor), and others
might apply.

In summary, we have performed an unbiased characterization
of the inflammatory and tissue repair processes, using a mouse
colitis model, providing a useful resource for understanding
colonic inflammation. Many of the genes identified in mice were
also detected in human UC patients, thus allowing us to explore
the temporal expression of IBD-risk genes during the course of
inflammation and gain useful insights into their potential func-
tion. Furthermore, they allowed us to identify for the first time
two clinically relevant molecular ulcerative colitis profiles (UC1
and UC2) in an unsupervised manner in both adult and pediatric
UC patients. Thus, our methodology identified two molecularly
distinct UC profiles and serves as a proof of concept for the use of
transcriptomic data from highly controlled mice experiments to

perform unsupervised and biologically driven analysis of highly
variable human data sets.

Methods
Mice and induction of DSS colitis. Animal experiments were done following
institutional guidelines of the Stockholm Regional Ethics Committee under
approved ethical permit number N89/15. Female 8–12-week–old C57BL/6J mice
were obtained from ScanBur (Charles River, Germany) and housed in envir-
onmentally enriched ventilated cages under specific pathogen-free conditions (SPF)
at the Astrid Fagræus laboratory (AFL, Karolinska Institutet) under 12-h light cycle
and receiving water and ration ad libitum (RM1(P), Special Diet Services). For
induction of colitis, 2.5% w/v dextran sulfate sodium (DSS; Affymetrics) was
supplemented in drinking water and given to mice for 7 consecutive days, with a
change on day 3. After the treatment was ceased, mice returned to receive standard
water. Mice were monitored everyday for alterations in body weight, disease
activity index (DAI)43. Mice were anesthetized with isoflurane and killed for blood
and tissue sampling.

Mouse gene expression by mRNA sequencing. Colon samples were stored in
RNAlater (Ambion) at −80 ˚C until further use. Colonic samples were homo-
genized using a bead-beating system (Precellys) for total RNA purification, using
RNAeasy kit (Qiagen) following the manufacturers' recommendations. RNA purity
and quantity were measured by NanoDrop spectrophotometer (ThermoFisher). All
samples were screened for RNA integrity check and presented RIN values above 8
on 2100 Bioanalyzer instrument (Agilent). Samples were submitted to Novogene
for library preparation, using TruSeq Stranded mRNA Library Prep Kit (poly-A
selection) and sequencing using HiSeq-2500 platform (Illumina). Samples were
sequenced using single-end 50-bp sequencing44, aiming a coverage of 20 M reads.
Read quality was inspected using MultiQC45, trimmed with Trimmomatic46, and
further proceeded for abundance estimation using Kallisto47.

Further data analysis was done in R programming language (Rstudio). Genes
with an absolute read count <5 in at least three samples were considered with low
expression and filtered out. Differences in tissue cell composition that could affect
transcriptional pools were balanced by means of removing unwanted variation,
based on negative control genes, using the RUVg function implemented in RUVseq
package48. Analysis revealed that library sizes strongly correlated with several
known intestinal housekeeping genes, such as Hprt (r= 0.87) and Gapdh (r=
0.85), but not Actb (r= 0.68). Moreover, genes such as Cd63 (0.94), Trappc (r=
0.97), and Cpped1 (0.97) and Slc25a3 (r= 0.96) correlated even more strongly to
the library sizes, indicating potentially novel housekeeping genes during colonic
inflammation. Negative controls genes were thus defined as genes with a positive
Pearson correlation above 0.9 to their respective sample library sizes. Estimated
unwanted variation vectors were then used as covariates for calculation of
differentially expressed genes (DEGs) using EdgeR package49. EdgeR is specialized
in performing time-series differential expression by means of generalized linear
model (glm) function25, where time points were parsed as independent factors in
the contrast matrix, thus allowing detection of differentially expressed genes at any
given time point. Genes were considered differentially expressed when the overall
false discovery rate (FDR) < 0.01 and at least one time point had fold change > 1.5.
DEGs identified in this manner were used for dimensionality reduction by
principal component analysis (PCA), from which genewise contribution to the
total variation can be calculated.

Identification of gene modules was done based on smoothed temporal
expression curves50. Briefly, genewise log-fold changes were smoothed using spline
curves and further grouped into modules by using inverse Pearson correlation as
the distance for hierarchical agglomerative clustering with Ward’s method (“ward.
D2”). Functional gene annotation was performed on each gene module
individually, using the Gene Ontology (GO_Biological_Process_2017) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG_2016) libraries with enrichR
package51.

UC and IBD-risk gene mapping to the murine RNA-seq data set. To identify
which of the genes are shared between mouse and human ulcerative colitis, we
compared the list of DEGs identified by the DSS data set and the list of genes
identified by Taman et al.26. Mapping of IBD-risk genes was done, using the list of
IBD-risk genes identified by fine-mapping at the single-loci resolution10. Identifi-
cation of enriched GO processes and KEGG pathways was done using enrichR51.

Classification of adult UC molecular subtypes. To investigate whether the
nuances of inflammation observed in the mouse model could also be found in
humans, we made use of four human microarray data sets from GSE1225113,
GSE7366115, GSE2359712, and GSE1687914. Combined, these data sets contain
gene expression and metadata of 447 patients, containing information such as
disease type (UC or CD), Mayo macroscopic score, the therapy given, when the
sample was collected, and the response to infliximab (IFX) or to vedolizumab
(VDZ). Across all data sets, patients were considered inflamed if presenting a Mayo
score of 2 or 3 (out of 3). Similarly, patients were considered to respond to therapy,
when the respective Mayo score reduced to 0 or 1, between 4 and 8 weeks of
treatment with IFX or between 6 and 52 weeks of treatment with VDZ. For this
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study, we included only patients with UC before receiving any therapy (either IFX
or VDZ), comprising a total transcriptional profiles of 143 patients, of which 102
received IFX and 41 for VDZ.

Probes with log2 fluorescence count lower than 6 in at least 10 samples were
excluded from the analysis. Batches between the data set were observed and
corrected using the ComBat function in SVA package52. Selection of genes for
further exploration was done by different approaches: (1) using all genes; (2) using
only the top 100 highly variable genes; (3) using the genes with top 100 high
dispersion; (4) the gene with high loading in principal component 1; and (5) the
gene with high loading in principal component 2.

We determined whether clustering patterns exist by four independent
methods: (1) by dimensionality reduction using t-SNE. Since data originated
from biopsies are known to present high variability across patients22,
dimensionality reduction and visualization was done using t-stochastic neighbor
embedding (t-SNE). Because of its nonlinear characteristics, t-SNE becomes less
sensitive to noise and outperforms PCA53 to discriminate biopsies based on
shared expression patterns, rather than their absolute expression values; (2) by
visual assessment of clustering tendency (VAT) using dissimilarity matrices16;
(3) by using the Hartigan’s dip test19,20, which tests whether the gene
distribution is different from a unimodal distribution. Values close to 1 indicate
that the data are unlikely to present cluster substructures. We performed
bootstrapping 100 times on 90% of the samples to calculate Hartigan’s dip test
p-value. The comparison between bootstrapping with human highly variable
genes and mouse PCs (see below) was done using paired Mann–Whitney test; (4)
by dividing patients into subgroups using hierarchical agglomerative clustering.
Cluster stability was determined by bootstrapping 300 times on 90% of the
samples, resulting in the approximate unbiased (AU) statistics21. Clusters with
AU closer to 100 present higher stability.

Instead of using the top variable genes as above, we alternatively used the top
genes identified in the mouse RNA-seq DSS colitis data set (see above). To this
end, the top 100 genes identified in PC1 and PC2 were selected for identification
of the respective human homologs. Together, 175 genes were found in top genes
in both PC1 and PC2 and from these, 148 genes had a homolog in humans. In
total, 57 homolog genes were found between our mouse PCs and the human
data set. Dimensionality reduction was performed with t-SNE. Assessment of
the clustering tendency was done as described above. Agglomerative clustering
on the Euclidean distance using complete linkage was used to discriminate
patient subgroups UC1 and UC2. For the matter of definition used in this study,
patients that present a higher mean expression of the 57 mouse–human
homologs were classified as UC1, while those with low expression were classified
as UC2. Differences in expression between UC1 and UC2 were calculated,
using eBayes method in limma package54. Probes with fold changes above 1.5
and FDR lower than 0.001 were considered significantly differentially
expressed. Identification of enriched GO, KEGG, and cell types was done using
enrichR51.

To identify which of the genes can discern UC1 from UC2, we trained a logistic
regression classifier for each gene individually and compared it with the UC1 and
UC2 classification mentioned above. The sensibility and sensitivity of the
prediction were summarized using the area under the curve (AUC) method. Genes
with AUC values closer to 1 (100%) have a better accuracy to distinguish UC1 and
UC2 patients.

Classification of UC molecular subtypes in pediatric patients. In addition to
using mouse genes to stratify adult UC patients (see above), we applied a similar
strategy to a RNA-seq data set from pediatric UC patients33. This data set
contains the expression levels and detailed metadata information of 206 colonic
samples. After failing to respond to first-line therapy, all patients in this cohort
received infliximab and the response was evaluated after 4 weeks. Genes with
read count <5 in at least 10% of the samples were considered with low expression
and filtered out. Batches associated with sex chromosomes were detected and
corrected using ComBat52. Counts were normalized by TMM normalization
method implemented in EdgeR package49, and subsequently used for stratifi-
cation, using the genes in PC1 and PC2 identified in the mouse model of colitis
(see above). EdgeR and limma packages estimate differential expression by
different assumptions, and therefore result in slightly different results55. Thus, to
allow fair comparison between the results found between the microarray data set
and the RNA-seq, we opted to use the same differential expression strategy in
both data sets. Differences in expression between UC1 and UC2 were calculated
using eBayes method in limma package54, using log2-transformed counts per
million (instead of raw counts). Strict cutoffs were used to ensure result
robustness that also accounts for the differences in sample size and methodol-
ogies between the data sets. Genes with fold changes above 1.5 and FDR lower
than 1−10 were considered significantly differentially expressed. Comparison
between both data sets was done using Venn diagrams, and by comparing FDR
statistics and log2 fold changes in gene expression. Finally, differences in
metadata parameters between UC1 and UC2 were evaluated using chi-square or
with Mann–Whitney tests when applicable.

Lamina propria cell isolation for analysis by flow cytometry. Cell isolation from
the colonic tissue was performed as previously described56 with modifications.

Briefly, tissues were open longitudinally, cut into 1-cm pieces, and washed with
PBS. The epithelial cell fraction was obtained by incubating the tissue with Buffer-
A (PBS, 5% FCS, and 5 mM EDTA) at 37 ˚C for 20 min under agitation at 600 rpm.
The supernatant was collected and kept on ice, while the remaining tissue was
washed two times with PBS. Tissue was digested with collagenase solution con-
taining 0.15 mg/ml Liberase TL (Roche) and 0.1 mg/ml DNase I (Roche) in HBSS
and incubated at 37 ˚C for 60 min under agitation at 1200 rpm. The digested and
the epithelial cell fraction were mixed, filtered through a 100-µm cell strainer,
pelleted by centrifugation at 1750 rpm, and resuspended in Buffer-A. Cell sus-
pensions were blocked with Fc-blocking solution (1:1000, eBioscience) and stained
with the antibody mix (1:200), both at 4 ˚C for 15 min. The following antibodies
were purchased from BD Biosciences: CD45.2 (104), CD3 (500A2), CD90.2 (53-
2.1), EPCAM (G8.8), CD11b (M1/70), CD11c (N418), Ly6G (1A8), B220
(RA3–6B2), and CD64 (54-5/7.1). The following antibodies were purchased from
eBiosciences: CD103 (2E7) and Ly6C (HK1.4). Counting beads (Spherotech) and
DAPI (1:400, Sigma) were added to each sample to allow absolute cell quantifi-
cation and exclusion of dead cells. Data acquisition was done using 5-laser LSR
Fortessa flow cytometer (BD Biosciences) and analysis was carried out with FlowJo
software (TreeStar).

Histological analyses. The colonic tissue was rinsed and flushed with PBS, and
gently squeezed out to remove non-adherent bacteria, fixed in 4% formaldehyde
solution for 24 h, and embedded in paraffin. Five- micrometer sections were
stained with H&E. Ki67 (1:100, Cat# MA5-14520, Thermo Scientific) staining was
performed according to a previously published protocol57. A pathologist accessed
the tissue pathological score in a blind manner and scored the sections as pre-
viously described58.

FITC-dextran assay. Assessment of the epithelial barrier integrity by FITC
dextran was done as previously described59. Mice were gavaged with 10 mg/mL
FITC dextran (Sigma) at different time points of DSS colitis (see above), but on
the same day of killing. Four hours later, mice were killed and the blood was
collected for analysis. Sera were diluted 1:1 v/v in PBS and added to a 96-well
plate for fluorescent-based assays (Invitrogen), and were quantified on a
fluorescent plate reader using a 535/587-nm ex/em filter. FITC-dextran con-
centration was calculated by interpolation to 12-dilution FITC-dextran
standard curve.

Statistical analyses. Statistical analyses were performed using Prism Software 6.0
(GraphPad). Two-sample comparisons were compared using a two-tailed Student’s
t test. ANOVA with Dunnett’s post hoc was used for calculation of significance at
multiple time points relative to the control (day 0). Noncontinuous data were
compared using a nonparametric Mann–Whitney U test. The results were con-
sidered significant when p < 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the raw data generated in this study were deposited at the Gene Expression Omnibus
under assession number GSE131032.

Code availability
Codes used in this paper are available on Github (https://github.com/czarnewski/
uc_classification).
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