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Abstract

Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their
response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called
macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a
statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously,
to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of
Akaike’s information criterion using h-likelihood to select the best fitting model.

Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as
genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm
model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for
residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical
generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion
using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to
investigate bias and precision of estimated genetic parameters.

Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated
variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates
across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental
sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and
0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters.
Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of
100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy
cattle showed that genetic variance for micro- and macro-environmental sensitivities existed.

Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic
control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with
100 offspring.
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Background
The term “genotype by environment (G × E) interaction”
refers to the fact that the best genotype in one environ-
ment may not be the best genotype in another environ-
ment [1] and that genotypes differ in their response to
environmental factors, which means that genetic variance
for environmental sensitivity or phenotypic plasticity exists
[2]. Some environmental factors (e.g., temperature, soil,
diet, etc.) are identifiable and can be categorised (e.g., tem-
perate or tropical climate) or quantified (e.g., temperature)
and thus are referred to as macro-environmental factors.
Other environmental factors are unknown and referred to
as micro-environmental factors [1]. Therefore, genetic
variance in macro-environmental sensitivity is the gen-
etic variance due to known environmental factors and
can be expressed as the genetic variance in the slope of
a reaction norm when environments can be quantified
on a continuous scale. If environments are categorized,
then phenotypes in different environments are consid-
ered as separate traits and the genetic covariances be-
tween environments are a measure of genetic variation
in macro-environmental sensitivity. Genetic variance in
micro-environmental sensitivity is the genetic variance
due to unknown environmental factors and can be
expressed as differences in environmental variance,
sometimes called genetic heterogeneity of environmen-
tal variance [3].
Numerous studies in the last 70 years have studied G × E

interactions or genetics of macro-environmental sensitivity
in animal and plant breeding as well as in evolutionary
biology [4-6]. Different modeling approaches have been
used [4]. In recent years, reaction norm models have been
applied in animal breeding to better understand the envir-
onmental factors that determine G × E interactions [7-9].
In evolutionary genetics, many experiments on Drosophila
and other laboratory species have been carried out to
understand the genetics of macro-environmental sensitiv-
ity or phenotypic plasticity [6,10,11]. Other examples of
studies on wild life populations include analyses of great
tit [12] and butterfly [13] populations that showed the ex-
istence of genetic variation in phenotypic plasticity to
temperature change.
The genetics of micro-environmental sensitivity or

environmental variance have been studied less exten-
sively than the genetics of macro-environmental sensi-
tivity. In evolutionary genetics, several studies have
focused on canalization, i.e. selection for reduced vari-
ance [14-16]. Recently, there has been renewed interest
on this topic due to the development of methods to esti-
mate genetic variance in environmental variance, e.g.
Bayesian methods [17,18] and double hierarchical gen-
eralized linear models (DHGLM) in a REML setting
[19]. Hill and Mulder [20] reviewed 14 studies on this
subject and concluded that there is empirical evidence
for the existence of genetic variance in environmental
variance.
Although there is substantial evidence for genetic vari-

ance in macro- and micro-environmental sensitivities, very
few studies have studied them together or studied their
genetic relationship. Jinks and Pooni [21] postulated the
concepts of macro- and micro-environmental sensitivity
and studied both in Nicotiana rustica but did not investi-
gate the relationships between these two types of envi-
ronmental sensitivity. However, Perkins and Jinks [22]
reported that both types of environmental sensitivity were
weakly genetically correlated for most traits in Nicotiana
rustica. In a study on Populus, Wu [23] showed that
micro-environmental sensitivity was less heritable than
macro-environmental sensitivity and that they were
weakly genetically correlated. In another paper, also on
Populus, Wu and O'Malley [24] detected different sets of
genes for macro- and micro-environmental sensitivities.
In a mapping study of QTL for macro- and micro-
environmental sensitivities in barley, Kraakman et al. [25]
identified only a few QTL for micro-environmental sen-
sitivity, but did not detect any QTL for macro-
environmental sensitivity. Yampolsky and Scheiner [26]
observed a weak genetic correlation between develop-
mental noise, similar to micro-environmental sensitiv-
ity, and macro-environmental sensitivity in Daphnia
Magna. In Drosophila melanogaster, both positive and
negative genetic correlations between macro- and
micro-environmental sensitivities have been reported
[27,28]. In farm animals, the genetic correlation be-
tween macro- and micro-environmental sensitivities has
not been investigated. In addition, to date, no suitable
method was available to estimate such correlations in
outbred populations and the requirements in terms of
number of families and family sizes of the designs ne-
cessary to estimate genetic parameters of macro- and
micro-environmental sensitivities were unknown.
The objectives of this study were to extend the double

hierarchical generalized linear model (DHGLM) of
Rönnegård et al. [19] with a reaction norm model to
estimate genetic variance for macro- and micro-
environmental sensitivities and to investigate bias and
precision of estimated variance components in designs
resembling dairy cattle populations. In addition, we evalu-
ated Akaike’s information criterion (AIC) using approxi-
mated h-likelihood to select the best fitting model and
studied situations in which true genetic and best fitting
statistical models differed. Finally, we applied the model to
lactation milk yield in dairy cattle.

Methods
In this section, we describe the assumed quantitative gen-
etic model underlying genetic variance for macro- and
micro-environmental sensitivities, the statistical model to
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estimate genetic variance in macro- and micro-
environmental sensitivities, and the AIC based on an
approximation of the h-likelihood that can be used to
select the best fitting model. Finally, we present the
simulation used to test the statistical model and de-
scribe the evaluated scenarios as well as an application
to milk yield in dairy cattle.

Quantitative genetic model
Here, we assume that genetic variance for macro-
environmental sensitivity is expressed as the genetic
variation in the slope of a linear reaction norm. Genetic
variance in micro-environmental sensitivity implies that
genotypes respond differently to one or several unknown
environmental factors and thus, we assume that it is
expressed as genetic variance in environmental variance
according to an exponential model [29]. Thus, the quan-
titative genetic model underlying genetic variance in
macro- and micro-environmental sensitivities can be for-
mulated as:

P ¼ μ þ Aint þ Aslx
þ exp 0:5 ln σ2E

� � þ 0:5Av
� �

ε ð1Þ

where P is the phenotype, μ is the population mean for
the phenotype, x is the environmental parameter (con-
tinuous or discrete) that cause genotypes to respond dif-
ferently, Aint, Asl and Av are the additive genetic or
breeding values for the intercept, for the slope of the re-
action norm (= macro-environmental sensitivity), and
for the environmental variance (= micro-environmental
sensitivity), respectively, σ2E is the environmental vari-
ance of the exponential model and ε is a scaled environ-
mental deviation with variance one. Note that the

average environmental variance is σ2E
—– ¼ σ2

Eexp 0:5σ2Av

� �
[3]. The additive genetic values Aint, Asl and Av have
variance

G ¼
σ2Aint

σAint ;Asl σAint ;Av

σ2
Asl

σAsl ;Av

σ2Av

24 35

Statistical model
The basis of the statistical model is the DHLGM as
presented by Rönnegård et al. [19]. The original DHGLM
algorithm in Rönnegård et al. [19] iterates between a linear
mixed model for the phenotypic observations: yi = Pi =
phenotypic observation of animal i; and a Gamma GLM

for the residual variance φi, where φi ¼ E ê2i
1−hi

� �
; ê2i is

the squared estimated residual of yi and hi is the diagonal
element of the hat-matrix of y corresponding to yi [30].
Felleki et al. [31] extended the model of [19] by allowing
estimation of the genetic covariance (σa;av ) between the
genetic effect in the mean model and the genetic effect in
the variance model (Equation (2)) in the absence of a lin-
ear reaction norm model and reported on computational
details and a theoretical assessment of this algorithm. In

brief, equivalent to using a Gamma GLM, linearizing ê2i
1−hi

around its current fitted value results in vector ψ and
yields the following bivariate linear model:

y
ψ

� �
¼ X 0

0 Xv

� �
b
bv

� �
þ Z 0

0 Zv

� �
a
av

� �
þ e

ev

� �
ð2Þ

where X(Xv) is the incidence matrix for fixed effects for y (ψ),
b (bv) is the vector with solutions for fixed effects for y(ψ),
Z(Zv) is the incidence matrix for relating observations of
y(ψ) to the additive genetic values a (av) for phenotype

(environmental variance)
a
av

� �eN 0;
σ2a σa;av
σa;av σ2av

� �
⊗A

� 	
,

where A is the additive genetic or numerator relationship

matrix and σ2a σ2av

� �
is the genetic variance of a(av). The

residuals of y (e) and ψ (ev) are assumed to be independent

normally distributed
e
ev

� �eN 0
0
;

W−1σ2∈ 0
0 W−1

v σ2∈v

� �� 	
,

W ¼ diag ψ̂ð Þ−1 and Wv ¼ diag 1−h
2

� �
, σ�

2 and σ�v
2 are scaling

variances, which are expected to be equal to 1, because W
and Wv already contain the reciprocals of the residual vari-
ances per observation. Estimating σ�

2 and σ�v
2 allows more

flexibility. An iterative estimation procedure is required to
obtain estimates for all parameters because of the depend-
ence of the model for y on the results of the model for ψ
and vice versa. The vector ψ and the diagonals of W and
Wv are updated at each iteration until convergence. The
model in Equation (2) can be considered as combining the
DHGLM method [19] with the iterative method of Mulder
et al. [32].
In order to consider macro- and micro-environmental

sensitivity simultaneously, the model for phenotype y in
Equation (2) was extended with a linear reaction norm
model to estimate genetic variance in macro-environmental
sensitivity, whereas the residual variance model using ψ
estimates the genetic variance in micro-environmental
sensitivity or environmental variance. Instead of using an
animal model, we used a sire model because implementa-
tion of the animal model DHGLM resulted in severely
biased estimates of variance components with single ob-
servations per animal. As an indication of poor model fit,
implementation of the animal model DHGLM gave a
lower adjusted profile h-likelihood (see next section
“Model selection”) than an animal model without hetero-
geneity of residual variance. Sire models are commonly
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used in combination with reaction norm models [7,8,33].
In the reaction norm model, we assumed that the environ-
mental parameter x (see Equation (1)) is known without
error and does not need to be estimated from the data.
The resulting combined macro–micro environmental sen-
sitivity sire model can be formulated as:

y
ψs

� �
¼ X 0

0 Xv

� �
b
bv

� �
þ Zs Zx 0

0 0 Zsv

� �
�

sint
ssl
sv

" #
þ es

esv

� �
ð3Þ

where ψs is a vector with linearized values of
transformed squared residuals (see calculation in
Appendix), Zs and Zsv are respectively the incidence
matrices for the sire effects for the intercept of the reac-
tion norm and for the environmental variance, Zx is the
matrix with the environmental parameter x as a covari-
ate for the sire effects for the slope of the reaction
norm, and sint, ssl and sv are the vectors with the esti-
mated sire effects for intercept, slope, and environmen-
tal variance. The sire effects sint, ssl, and sv are assumed
trivariate normally distributed N 0; 14G⊗A

� �
, assuming

that sire (co)variances are a quarter of the additive
genetic variance. The residuals of y (es) and ψs(esv)
are assumed to be independent normally distributed,
because cov(e, e2) = 0, when e is normally distributed

(
es
esv

� �eN 0
0
;

W−1
s σ2

∈ s
0

0 W−1
sv σ

2
∈ sv

� �� 	
), where σ2∈ s

and σ2∈ sv

are scaling variances for the residual variances in a sire
model. Computations of ψs and of the diagonals of Ws

and Wsv are different due to the use of a sire model
compared to an animal model and are explained in the
Appendix. The algorithm was implemented by iterat-
ing over several runs of ASReml [34]. In each ASReml
run, REML-estimates of the variance components were
obtained for the current values of ψs, Ws and Wsv. The
vector ψs and the diagonals of Ws and Wsv were
updated after each ASReml run. On simulated data, 10
ASReml runs were sufficient to obtain converged par-
ameter estimates. ASReml was run with an option to
check whether the variance-covariance matrices were
positive definite and were forced to be positive definite
[34] if they were not.

Model selection
When working with real data, the true genetic model is
not known, thus statistical inference can be used to find
the statistical model that fits the data best. The h-
likelihood concept can be applied when using DHGLM
[35], in which the adjusted profile h-likelihood (APHL) is
used to assess the significance of variance components.
Because we use an iterative reweighted least square ap-
proximation in ASReml, the APHL can be approximated
from the log REML likelihood (logL) for the bivariate
model in Equation (3) fitted in ASReml, after correcting
for the fact that the squared estimated residuals of y are
used to compute the response variable ψs (see Appendix
for derivation):

APHL ¼ −2logL−∑wsvi σ̂ 2
∈ sv

� �−1
−∑ln σ̂ 2

∈ sv

� �
=wsvi ; ð4Þ

where wsvi is the weight for the variance model for obser-
vation i, i.e. the ith diagonal of Wsv. Note that Equation (4)
can also be used for animal models by replacing elements
wsvi and σ�sv

2 with the corresponding elements of Equation
(2). To compare nested and non-nested models, we
propose to use APHL in combination with Akaike’s infor-
mation criterion (AIC):

AIC ¼ APHLþ 2t; ð5Þ

where t is the number of variance parameters.

Simulation
Monte Carlo simulation was used to evaluate the bias and
precision of the estimated genetic parameters of the model
and proposed algorithm. Populations of paternal half-sib
families were simulated, resembling a simplified popula-
tion structure in an animal breeding context with large
half-sib offspring groups per sire like in dairy cattle. Either
the number of sires (50, 100 or 200) was varied while
keeping the number of offspring per sire at 100, or the
number of offspring per sire (20, 50, 100 or 200) was var-
ied while keeping the number of sires at 100. Sires and
dams were assumed unrelated and were not selected. The
offspring had phenotypes but the dams or sires did not.
Phenotypes were generated for offspring according to the
quantitative genetic model in Equation (1). Dams were
randomly assigned to herds (herd size = 100 cows) and
their offspring (daughters in the case of dairy cattle) were
in the same herd. For each herd, the environmental covar-
iate x was sampled from N(0,1). No fixed effects other
than a general mean were simulated (μ = 0) but offspring
were randomly allocated to contemporary groups with size
10 to investigate the effect of fixed effects on the precision
of genetic parameters. Additive genetic effects were sam-
pled from N(0,G⊗A). Different values for genetic vari-
ances and genetic correlations were used for simulation.
Table 1 gives an overview of the parameter values used in
the simulation, both the default and alternative values. In
each scenario, only one parameter was varied at a time, i.e.
other parameters were kept at their default values. For
each set of parameters, 100 replicates were generated and
means and standard deviations of estimates were calcu-
lated across replicates.



Table 1 Default and alternative parameters values used
in Monte Carlo simulation

Parameter Default Alternative values

σ2Aint 0.3 0.1, 0.5

σ2Asl 0.05 0.025, 0.10

σ2Av 0.1 0.05, 0.2

Genetic correlations
(see text below Equation (1))

0 0.5

Number of offspring per sire 100 20, 50, 200

Number of sires 100 50, 200

Number of replicates 100

σ2Aint is the additive genetic variance for the intercept of the reaction norm; σ2Asl
is the additive genetic variance for the slope of the reaction norm or macro-
environmental sensitivity and σ2

Av is the additive genetic variance for micro-
environmental sensitivity or environmental variance.
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Scenarios in which true genetic and statistical models differ
First, we tested situations in which the true genetic and
statistical models contained both types of environmental
sensitivities for different sets of genetic parameters and de-
signs. In addition, we investigated the power of AIC to se-
lect the correct model given the true genetic model. Three
situations were simulated with default parameters: pres-
ence of genetic variance in (i) macro- or (ii) micro-
environmental sensitivity or in (iii) both. Four statistical
models were applied to these simulated situations: a com-
bined macro–micro environmental sensitivity model
“macro–micro”, a macro-environmental sensitivity model
“macro”, a micro-environmental sensitivity model “micro”
and a simple model “simple” with only one additive gen-
etic effect for the phenotype. The “macro–micro” model
and the “micro” model were run for 10 ASReml runs to
update the weights and the transformed squared residuals,
whereas the “macro” model and the “simple” model re-
quired only one ASReml run. AIC (Equation 5) was used
to select the best fitting model.
Finally, we tested scenarios in which the statistical

model deviated from the true genetic model used for
simulation, i.e. when model selection failed to select the
right model (Table 2). These scenarios were analyzed to
explore whether genetic parameters are biased when the
statistical model deviates from the true genetic model
and whether macro-environmental sensitivity can be
detected with a micro-environmental sensitivity model
Table 2 Scenarios with different combinations of true genetic

True genetic model Macro ES

Macro ES Not addressed

Micro ES C

Macro and micro ES E

Macro ES = macro-environmental sensitivity; micro ES = micro-environmental sensit
or vice versa. These scenarios were run with the default
set of parameters as listed in Table 1 but with various
values of σ2Asl

and σ2Av
. Scenarios for which the true genetic

and statistical models were the same and included either
macro or micro-environmental sensitivity were not ana-
lyzed since these have been previously investigated, i.e. see
[36] for macro-environmental sensitivity and [19] for
micro-environmental sensitivity.
Application to milk yield in dairy cattle
The “macro–micro”, “macro”, “micro” and “simple” models
were applied to 305-day lactation milk yield of 142 565
first parity Swedish Holstein cows. Lactation yields were
calculated based on test-day data, as described in [37]
using the test-day interval method [38]. Seasons were de-
fined as three-month periods (January-March, April-June,
July-September, October-December). Herd-year-season (HYS)
classes with less than five cows were excluded. Data on a
total of 762 sires with on average 187 daughters were
available and 213 of these sires had more than 100 daugh-
ters. In the model for phenotype (y), HYS was a fixed ef-
fect and in the model for residual variance (ψs), HYS was
a random effect to allow regression to the mean with few
observations per HYS and avoid extreme HYS estimates.
The model for y included a fixed fourth order polynomial
for age at calving and a fixed ninth-order polynomial for
lactation length, while the model for ψs included a third
and a sixth order polynomial for age at calving and lacta-
tion length, respectively. The orders of polynomials were
determined using a Wald test in univariate models for y
and ψs and were kept the same for “macro–micro”,
“macro”, “micro” and “simple” models. Herd-year average
milk yield standardized to a mean of zero and a variance
of one was used as an environmental parameter for macro-
environmental sensitivity. The “macro–micro”, “macro”,
“micro” and “simple” models were all run for 50 ASReml
runs. After 50 runs, the change in variance components
was less than 0.2% of the change between consecutive runs
and therefore parameters were considered converged.
Results
Variance components and effect of fixed effects
Estimated genetic variances were close to their true values
when simulated genetic correlations were zero, although
models and statistical models

Statistical model

Micro ES Macro and micro ES

A B

Not addressed D

F G (Default in this study)

ivity.
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occasionally the average value deviated slightly from the
true value (Table 3). The average of the estimated genetic

variance in slope ¼ σ̂ 2
Asl

� �
was biased upwards in all

cases, but the bias was small (between +2 and +13%).
Surprisingly, standard deviations of σ̂ 2

Asl
relative to σ2Asl

were small (between 21 and 30% of σ2
Asl

). Note that stand-
ard deviations across replicates represent standard errors
of estimates from a single replicate, e.g. an analysis of one
data set. The average of the estimated genetic variance

in environmental variance ¼ σ̂ 2
Av

� �
had on average larger

deviations from the true value but no direction in bias
could be detected. Standard deviations of σ̂ 2

Av
relative to

σ2Av
were large (between 31 and 74%), indicating that this

parameter had a low precision. In the presence of fixed ef-
fects (i.e. contemporary group) for the mean and residual
variance, standard deviations of estimated parameters in-
creased on average by 9% and the number of replicates for
which the genetic variance-covariance structure was
forced to be positive definite also increased. Thus, the
conclusion is that estimates of genetic variances are prac-
tically unbiased but that the precision of σ̂ 2

Av
is low.
Effect of genetic correlations
In general, estimates of genetic variances remained close
to their true values when genetic correlations were varied
(<10% difference from the true value) (Table 4). When all
genetic correlations were equal to 0.5, the genetic variance
of environmental variance was slightly underestimated
(−11%). Estimates of genetic correlations were unbiased
but had very high standard deviations, especially the gen-
etic correlation between the breeding value for slope and
environmental variance (ρAsl;Av

). The number of replicates
Table 3 Means and standard deviations of estimated genetic
correlations are zero

Fixed effects1 True parameters

σ2
Aint

σ2
Asl

σ2
Av

σ2
Aint

No 0.1 0.05 0.1 0.101 (0

No 0.3 0.05 0.1 0.315 (0

No 0.5 0.05 0.1 0.507 (0

No 0.3 0.05 0.05 0.297 (0

No 0.3 0.05 0.2 0.308 (0

No 0.3 0.025 0.1 0.298 (0

No 0.3 0.1 0.1 0.296 (0

Yes 0.1 0.05 0.1 0.099 (0

Yes 0.3 0.05 0.1 0.309 (0

Yes 0.5 0.05 0.1 0.503 (0
1Models have either only a mean as fixed effect (no fixed effects) or have contemp
value for the intercept; σ2Asl = additive genetic variance of breeding value for the slo
environmental variance (= micro-environmental sensitivity); Np = number of replica
in which the variance-covariance structure was forced to
be positive definite was in general small but slightly higher
when all genetic correlations were equal to 0.5. In addition
to the results shown, we simulated an extreme negative
genetic correlation (ρAsl;Av

¼ –0:9), as well as an extreme
positive genetic correlation (ρAsl ;Av

¼ 0:9). In these sce-
narios, for 40 to 60% of the replicates, the variance-
covariance matrix was bended to be positive definite. Due
to the large proportion of replicates with bended variance-
covariance matrices, the average genetic correlation was
biased towards zero. Nevertheless, the general conclusion
is that estimates of genetic correlations are largely un-
biased but are estimated with low precision.

Effect of different designs
When varying the number of offspring per sire or the
number of sire families, means of genetic variances were
close to their true simulated values in most cases, except
when the number of offspring per sire was 20 for which
estimates for σ2Asl

and σ2Av
were biased upwards (25% and

20%, respectively) (Table 5). In this case, 51% of the rep-
licates had variance-covariance matrices that were forced
to be positive definite, indicating that this is not a suit-
able design to estimate genetic parameters for macro-
and micro-environmental sensitivities. When increasing
the number of offspring per sire, the standard deviations
of estimates of σ2

Asl
and σ2Av

decreased substantially, e.g.
from 50 to 200 offspring with 54 and 60%, respectively,
whereas the standard deviation of estimates of σ2Aint

de-
creased only slightly (−10%). When increasing the num-
ber of sire families from 50 to 200, standard deviations
of estimates of all genetic parameters decreased substan-
tially (from −52 to −58%). Based on these results, we
conclude that designs with at least 100 sires with 100
parameters across 100 replicates when genetic

Estimated parameters (SD) Np

σ2
Asl

σ2
Av

.020) 0.051 (0.012) 0.095 (0.035) 0

.053) 0.054 (0.015) 0.107 (0.046) 0

.066) 0.052 (0.013) 0.115 (0.061) 3

.047) 0.053 (0.012) 0.053 (0.029) 4

.049) 0.053 (0.014) 0.186 (0.065) 0

.047) 0.026 (0.008) 0.097 (0.041) 0

.052) 0.104 (0.021) 0.083 (0.045) 1

.022) 0.053 (0.014) 0.091 (0.037) 1

.044) 0.057 (0.015) 0.104 (0.051) 0

.084) 0.052 (0.014) 0.104 (0.074) 10

orary groups as fixed effects (yes); σ2Aint = additive genetic variance of breeding
pe (= macro-environmental sensitivity); σ2Av = additive genetic variance for
tes with covariance structures forced to be positive definite.



Table 4 Means and standard deviations across 100 replicates of estimated genetic parameters when genetic
correlations are not zero

True parameters Estimated parameters (SD)

ρAint ;Av
ρAint ;Asl

ρAsl ;Av
σ2
Aint

σ2
Asl

σ2
Av

ρAint ;Av
ρAint ;Asl

ρAsl ;Av
Np

0 0 0 0.315 0.054 0.107 −0.005 0.004 0.012 0

(0.053) (0.015) (0.046) (0.165) (0.155) (0.249)

0.5 0 0 0.303 0.051 0.099 0.554 −0.028 −0.007 1

(0.047) (0.012) (0.048) (0.155) (0.136) (0.203)

0 0.5 0 0.303 0.053 0.094 −0.010 0.508 −0.014 1

(0.056) (0.012) (0.045) (0.200) (0.132) (0.239)

0 0 0.5 0.293 0.052 0.092 0.014 0.021 0.558 2

(0.045) (0.013) (0.034) (0.185) (0.147) (0.208)

0.5 0.5 0.5 0.301 0.053 0.089 0.537 0.517 0.530 6

(0.051) (0.013) (0.036) (0.171) (0.138) (0.192)

ρAint ;Av = genetic correlation between additive genetic effects for intercept and environmental variance; ρAint ;Asl = genetic correlation between additive genetic
effects for intercept and slope; ρAsl ;Av = genetic correlation between additive genetic effects for slope (macro-environmental sensitivity) and environmental
variance (micro-environmental sensitivity); σ2Aint = additive genetic variance of breeding value for intercept (true value = 0.3); σ2Asl = additive genetic variance of
breeding value for slope (= macro-environmental sensitivity; true value = 0.05); σ2Av = additive genetic variance for environmental variance (= micro-environmental
sensitivity; true value = 0.10); Np = number of replicates with covariance structures forced to be positive definite.
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offspring each are required in order to estimate variance
components for macro- and micro-environmental sensi-
tivities with low standard errors.

Model selection
Using AIC to select the best fitting model, the true genetic
model was selected as the best statistical model in at least
90% of the 100 replicates when the number of offspring
Table 5 Means and standard deviations across 100
replicates of estimated genetic parameters for different
designs

Estimated parameters (SD)

NS NO σ2
Aint

σ2
Asl

σ2
Av

ρAint ;Av
ρAint ;Asl

ρAsl ;Av
Np

100 20 0.301 0.063 0.120 −0.008 −0.004 0.083 51

(0.057) (0.038) (0.113) (0.304) (0.216) (0.416)

100 50 0.309 0.056 0.099 −0.016 −0.013 0.025 8

(0.051) (0.020) (0.060) (0.279) (0.165) (0.376)

100 100 0.315 0.054 0.107 −0.005 0.004 0.012 0

(0.053) (0.015) (0.046) (0.165) (0.155) (0.249)

100 200 0.301 0.053 0.093 0.000 0.007 −0.013 0

(0.046) (0.009) (0.024) (0.135) (0.116) (0.168)

50 100 0.312 0.053 0.107 0.015 0.002 0.036 5

(0.079) (0.018) (0.064) (0.295) (0.199) (0.320)

200 100 0.301 0.053 0.099 0.009 −0.002 −0.009 0

(0.033) (0.009) (0.028) (0.142) (0.108) (0.163)

NS = number of sires; NO = number of offspring per sire; σ2
Aint = additive genetic

variance of breeding value for intercept (true value = 0.3); σ2
Asl

= additive genetic
variance of breeding value for slope (= macro-environmental sensitivity; true
value = 0.05); σ2

Av = additive genetic variance for environmental variance (=
micro-environmental sensitivity; true value = 0.10); ρAint ;Av = ρAint ;Asl = ρAsl ;Av = 0;
Np = number of replicates with covariance structures forced to be
positive definite.
per sire was 100 (Table 6). In only a few cases did the best
statistical model differ from the true genetic model. How-
ever, when the number of offspring per sire was 50, the
correct model was selected for 63% to 95% of the repli-
cates. When both macro- and micro-environmental sensi-
tivity existed and the number of offspring per sire was 50,
the macro model was selected rather than the macro–mi-
cro model in 27% of the replicates. When only micro-
environmental sensitivity existed and 50 offspring per sire,
the power to select the correct model was reduced. In
conclusion, the power to select the correct model was
high in designs with at least 100 offspring per sire.
Scenarios in which true genetic and statistical models differ
It is of interest to determine whether genetic parameters are
biased if the wrong statistical model is applied. When either
macro or micro-environmental sensitivity was simulated
(Table 7), the variance-covariance structures were forced
to be positive definite in many replicates, due to estimates
of variances at the boundary. Estimates at the boundary
were expected since the estimated genetic variance
should be close to zero when the true genetic variance
is zero. Forcing the genetic variance-covariance struc-
tures to be positive definite can bias estimates of
parameters. When true macro-environmental sensitiv-
ity existed, some micro-environmental sensitivity was
detected (σ̂ 2

Av
> 0) with the “micro” (scenario A) and the

“macro–micro” (scenario B) models, indicating that
part of the macro-environmental sensitivity was cap-
tured as micro-environmental sensitivity, but σ̂ 2

Av
were

small (0.010-0.018). When true micro-environmental
sensitivity existed, no macro-environmental sensitivity



Table 6 The best model selected in 100 replicates according to Akaike’s information criterion and effect of the number
of offspring for different true genetic models

NO True genetic model True parameters Nb of times model selected based on AIC

σ2
Av

σ2
Asl

Macro–micro Macro Micro Simple

100 Macro–micro 0.1 0.05 99 1 0 0

Macro 0 0.05 5 95 0 0

Micro 0.1 0 3 1 94 2

Simple 0 0 1 4 5 90

50 Macro–micro 0.1 0.05 63 27 8 2

Macro 0 0.05 7 87 1 5

Micro 0.1 0 4 1 71 24

Simple 0 0 1 1 3 95

NO = number of offspring per sire, “Macro–micro” = model accounting for both macro- and micro-environmental sensitivities; “Macro” = model with only macro-
environmental sensitivity; “Micro” = model with only micro-environmental sensitivity; “Simple” = model without macro- and micro environmental sensitivities and
only a genetic effect for the phenotype; σ2

Aint = additive genetic variance of breeding value for intercept (true value = 0.3); σ2
Asl

= additive genetic variance of
breeding value for slope (= macro-environmental sensitivity), σ2

Av = additive genetic variance for environmental variance (= micro-environmental sensitivity), ρAint ;Av =
ρAint ;Asl

= ρAsl ;Av = 0.
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was detected ( σ̂ 2
Asl
≈0) with the “macro” (scenario C) and

“macro–micro” (scenario D) models, but σ̂ 2
Av

were biased
downwards (between −16% to −28%), possibly because of
the high number of genetic variance-covariance structures
that were forced to be positive definite. When both macro
and micro-environmental sensitivity existed, the “macro”
(scenario E) and “micro” (scenario F) models gave unbiased
estimates of either macro-environmental sensitivity or
micro-environmental sensitivity and the genetic variance-
covariance structure was forced to be positive definite for at
maximum three replicates. Thus, the general conclusion is
that a discrepancy between the true and statistical models
does not lead to large biases in estimated genetic parame-
ters and that contamination between estimates of the two
types of environmental sensitivity is very limited.

Application to milk yield in dairy cattle
The “macro–micro”, “macro”, “micro” and “simple”
models were applied to 305-day first lactation milk yield
data of Swedish Holsteins (mean = 8693 kg, standard devi-
ation = 1652 kg, skew = 0.18, kurtosis = 0.28). “Macro”,
“micro” and “macro–micro” models fitted significantly
better than the “simple” model. The “micro” model was
favoured by AIC (Table 8) and had the best fit. The genetic
variance for micro-environmental sensitivity was substan-
tial but lower than for most reported traits [20]: one gen-
etic standard deviation changed micro-environmental
sensitivity (= environmental variance) by 21%. The differ-
ence in AIC between the “macro–micro” and “micro”
models was small and therefore it was interesting to exam-
ine the genetic parameters of the “macro–micro” model.
The estimated genetic variance for macro-environmental
sensitivity was small in comparison to the genetic variance
in intercept. For instance, the estimate of the genetic correl-
ation between environments that were −2 and 2 standard
deviations from the overall mean was 0.92, indicating a
small level of reranking of sires across the environmental
gradient. Estimates of genetic correlations between inter-
cept and macro- and micro-environmental sensitivities
were 0.81 and 0.63, respectively, indicating that selection
for higher milk yield increases both types of environmental
sensitivity. The estimate of the genetic correlation between
macro- and micro-environmental sensitivities was 0.76, in-
dicating that they are genetically similar. Standard errors of
parameter estimates were smaller than the standard devia-
tions found for the simulations, due to the larger dataset i.e.
more sires and more offspring per sire. Thus, macro- and
micro-environmental sensitivities may exist for milk yield
in dairy cattle and are positively correlated.

Discussion
Model and design
In this study, we developed a model to estimate genetic
variances for macro- and micro-environmental sensitivities.
The model is an extension of the DHGLM as presented
by Rönnegård et al. [19]. Here, we combined a linear reac-
tion norm model to estimate genetic variance for macro-
environmental sensitivity with the DHGLM to estimate
genetic variance for micro-environmental sensitivity. The
animal model in Equation (2) was adapted to a sire model
because the animal model produced highly biased esti-
mated variance components because of the high depend-
ence of the estimated breeding values and residuals on the
variance ratio used in the mixed model equations, which
would differ for each animal. Felleki et al. [31] also
reported the presence of bias in variance components with
few repeated observations per animal but the bias de-
creased as the number of repeated observations per animal
increased. Furthermore, an animal model with heteroge-
neous residual variance (DHGLM implementation) gave



Table 7 Means and standard deviations across 100 replicates of estimated genetic parameters when true and
statistical models differ

Scenario True model True parameters Statistical model Estimated parameters (SD)

σ2
Asl

σ2
Av

σ2
Aint

σ2
Asl

σ2
Av

Np

A Macro 0.025 0 Micro 0.303 0.010 51

(0.045) (0.020)

Macro 0.05 0 Micro 0.303 0.010 48

(0.044) (0.013)

Macro 0.1 0 Micro 0.308 0.018 37

(0.050) (0.019)

B Macro 0.025 0 Macro–micro 0.296 0.027 0.012 60

(0.046) (0.009) (0.011)

Macro 0.05 0 Macro–micro 0.298 0.052 0.013 51

(0.048) (0.011) (0.013)

Macro 0.1 0 Macro–micro 0.307 0.091 0.012 54

(0.051) (0.020) (0.013)

C Micro 0 0.05 Macro 0.296 0.002 0

(0.041) (0.003)

Micro 0 0.1 Macro 0.292 0.003 0

(0.039) (0.004)

Micro 0 0.2 Macro 0.289 0.002 0

(0.043) (0.003)

D Micro 0 0.05 Macro–micro 0.303 0.003 0.053 71

(0.050) (0.003) (0.024)

Micro 0 0.1 Macro–micro 0.300 0.003 0.084 60

(0.047) (0.003) (0.034)

Micro 0 0.2 Macro–micro 0.304 0.002 0.143 66

(0.049) (0.003) (0.058)

E Macro–micro 0.05 0.05 Macro 0.297 0.055 0

(0.047) (0.014)

Macro–micro 0.05 0.1 Macro 0.298 0.053 0

(0.052) (0.012)

Macro–micro 0.05 0.2 Macro 0.292 0.053 0

(0.049) (0.011)

Macro–micro 0.025 0.1 Macro 0.306 0.026 0

(0.050) (0.008)

Macro–micro 0.1 0.1 Macro 0.298 0.106 0

(0.045) (0.022)

F Macro–micro 0.05 0.05 Micro 0.299 0.050 3

(0.051) (0.031)

Macro–micro 0.05 0.1 Micro 0.297 0.095 1

(0.047) (0.042)

Macro–micro 0.05 0.2 Micro 0.304 0.191 0

(0.045) (0.070)

Macro–micro 0.025 0.1 Micro 0.299 0.105 0

(0.049) (0.043)

Macro–micro 0.1 0.1 Micro 0.298 0.103 1

(0.045) (0.045)

See Table 2 for schematic overview of scenarios; “Macro–micro” = model accounting for both macro- and micro-environmental sensitivities; “Macro” = model with
only macro-environmental sensitivity; “Micro” = model with only micro-environmental sensitivity; σ2

Aint = additive genetic variance of breeding value for intercept
(true value = 0.3); σ2Asl = additive genetic variance of breeding value for slope (= macro-environmental sensitivity); σ2Av = additive genetic variance for
environmental variance (= micro-environmental sensitivity), ρAint ;Av = ρAint ;Asl = ρAsl ;Av = 0; Np = number of replicates with covariance structures forced to be
positive definite.
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Table 8 Estimated genetic parameters for macro- and micro-environmental sensitivity of milk yield in dairy cattle

Parameter Macro–micro Macro Micro Simple

Estimate SE Estimate SE Estimate SE Estimate SE

σ2Aint 420 800 27960 420 400 28 004 416 800 27 696 416 000 27 692

σ2Asl 11 096 2288 11 116 2320

σ2Av 0.043 0.008 0.042 0.008

ρAint ;Asl 0.808 0.062 0.812 0.063

ρAint ;Av 0.627 0.073 0.608 0.0751

ρAsl ;Av 0.765 0.098

APHL 193 704 194 179 193 692 202 832

AIC 193 722 194 191 193 704 202 840

σ2Aint = additive genetic variance of breeding value for intercept; σ2Asl = additive genetic variance of breeding value for slope (= macro-environmental sensitivity);
σ2Av

= additive genetic variance in environmental variance (= micro-environmental sensitivity); ρAint ;Av = genetic correlation between breeding value for intercept
and environmental variance; ρAint ;Asl = genetic correlation between breeding values of intercept and slope of reaction norm; ρAsl ;Av = genetic correlation between
breeding values of slope and environmental variance; APHL = adjusted profile h-likelihood; AIC = Akaike’s information criterion; “Macro–micro” = model
accounting for both macro- and micro-environmental sensitivities; “Macro” = model with only macro-environmental sensitivity; “Micro” = model with only micro-
environmental sensitivity; “Simple” = model without macro- and micro environmental sensitivities and only a genetic effect for the phenotype; SE = approximate
standard error obtained with ASReml.
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a poorer adjusted profile h-likelihood than an animal
model without homogenous residual variance, which indi-
cates that the former did not produce a better fit than the
latter in a scenario that included both macro and micro-
environmental sensitivities. Therefore, we decided to use a
sire model implementation, because it is more robust than
the animal model implementation with DHGLM when
animals only have a single observation. Furthermore, sire
models are commonly used for reaction norm models,
because of their substantially lower computational bur-
den compared to animal models and genetic informa-
tion about environmental sensitivity typically comes
from paternal half-sibs that perform in different environ-
ments. As far as we know, this is the first time that a
model to estimate genetic variance in macro- and micro-
environmental sensitivities suitable for outbred animal
populations is presented.
Monte Carlo simulation was used to evaluate bias and

precision of estimated genetic parameters. Genetic param-
eters were unbiased in most situations. The precision was
not very high, especially of estimates for σ2Av

, as indicated

by the high standard deviation of estimates across repli-
cates, particularly in designs with small families. Designs
with at least 100 sire families, each with at least 100 off-
spring, are required to have sufficient precision. Presence
of fixed effects, such as contemporary group effects, would
increase the required number of sire families and the
number of offspring per sire family. These results are in
agreement with standard error and power calculations
reported by Hill [39], Mulder [40] and Hill and Mulder
[20] with respect to estimation of genetic variance for
micro-environmental sensitivity or for environmental vari-
ance. For instance, Hill and Mulder [20] derived that the
optimal family size to estimate genetic variance for envir-
onmental variance with a family design is approximately
2/γ2, where γ2 is the square of the coefficient of variation
of the within-family variance. Thus, the optimal family size
for half-sibs is 137 when σ2Av

¼ 0:10. The only study pro-

viding Monte Carlo results for the DHGLM to estimate
genetic variance for micro-environmental sensitivity is by
Rönnegård et al. [19]. They considered a design with
clones, which is more powerful and leads to lower stand-
ard deviations of estimates than those in our study.
With respect to macro-environmental sensitivity, the

magnitude of the standard deviations of the σ2
Asl

estimates
across replicates was similar to that reported by Calus et al.
[36], but larger than those reported by Lillehammer et al.
[41], which is explained by the fact that the latter authors
simulated more sire families, i.e., 1000 sire families with
100 offspring each. In general, the number of required off-
spring per family is lower for macro-environmental sensi-
tivity than for micro-environmental sensitivity, as indicated
by the lower standard deviations of estimates of genetic
variance for the former. This is in agreement with a previ-
ous study by Mulder [40], which showed that the power to
detect G x E interactions between two environments is
greater than the power to detect genetic variance for en-
vironmental variance or micro-environmental sensitivity.
In the present study, we assumed that the environmental
parameter x used for the reaction norm was known with-
out error. This will be true in some cases, e.g. when using
temperature or rainfall or other herd characteristics [42].
In other cases, an estimated herd mean is used as the en-
vironmental parameter, which is estimated from the data
[7,8,33]. Calus et al. [36] showed that genetic variance
in macro-environmental sensitivity (σ2

Asl
) was severely

underestimated when the environmental parameter was
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estimated from the data. This may have also led to the
genetic variance in macro-environmental sensitivity to be
underestimated in our application to milk yield. Su et al.
[43] reported that a Bayesian approach that estimates sim-
ultaneously the herd mean and the reaction norm parame-
ters leads to unbiased estimates of σ2Asl

.

Lillehammer et al. [41] showed that sire models gave up-
ward biased estimates of σ2Asl

when heterogeneity of re-
sidual variance was ignored, because the unexplained
genetic variance in the reaction norm parameters becomes
part of the residual variance when using a sire model. In
our study, the bias in estimates of σ2

Asl
was smaller than in

Lillehammer et al. [41]. Lillehammer et al. [41] proposed
including a dummy animal effect in the model to account
for the residual three-quarters of the genetic variance that
is not accounted for by the sire effect. This solution was
also tested in our model but gave severely biased variance
components because of the high dependency of estimated
breeding values and residuals on variance ratios that were
used in the mixed model equations, which differ by animal
when considering heterogeneity of residual variance.
The algorithm developed in this study allowed estimating

genetic correlations between the different genetic effects.
Standard deviations of estimated genetic correlations were
large, especially those of the genetic correlation between
macro- and micro-environmental sensitivities ( ρAsl ;Av

).

This large magnitude of the standard deviation of esti-
mates of the genetic correlation was expected consider-
ing that the genetic correlation between macro- and
micro-environmental sensitivities is mainly based on
paternal half-sib information and that both traits have
low heritability. Using the equation in Robertson [44]
and assuming a heritability of 0.05 for both traits, the
standard error is approximately 0.26 when the true gen-
etic correlation between the traits is zero, which is close
to the value found here, i.e. 0.25 (Table 4). To increase
the precision of estimates of the genetic correlation be-
tween macro- and micro-environmental sensitivities,
designs with a larger number of families and larger fam-
ily sizes are required. The application to milk yield data
in dairy cattle shows that it should be possible to esti-
mate genetic correlations with standard errors between
0.06 and 0.10, since in most countries datasets with at
least 100 bulls each with 100 daughters are easily
obtained. Full-sib families or clones would also reduce
standard errors of estimates of genetic correlations in
comparison to half-sibs.
Here, we showed that the adjusted profile h-likelihood

(APHL) can be approximated from REML-output and
used in combination with AIC to provide an efficient
model selection tool. In addition, we showed that biases in
genetic parameters were relatively small when statistical
and true models differed. Both results are re-assuring that
these models can discriminate between macro- and
micro-environmental sensitivities and that the true model
of environmental sensitivity can be elucidated using AIC.
We also found that the Bayesian information criterion
(BIC) was too conservative and favoured the simpler
model too often (results not shown). AIC has the advan-
tage that it can be used independent of the order of the
fitted models, whereas the likelihood ratio test requires a
hierarchical structure such as in a forward selection
scheme [45].

Improving biological understanding of environmental
sensitivity
The proposed model can contribute to better understand
the genetic architecture of environmental sensitivity, e.g.
whether macro- and micro-environmental sensitivities are
genetically related. Most studies in plants and laboratory
species indicate that macro- and micro-environmental
sensitivities are weakly correlated [22-24,26-28]. This
seems to indicate that selection on one type of environ-
mental sensitivity will hardly affect the other. The first ap-
plication of the model on milk yield data in dairy cattle,
revealed a high genetic correlation between macro- and
micro-environmental sensitivities (0.76), suggesting that
selection on one type of environmental sensitivity will also
affect the other in the same direction. Generally, little is
known about these relationships in livestock. Knowledge
about these genetic correlations could be used to optimize
selection strategies for environmental sensitivity.
In this study, we assumed a linear reaction norm model,

but reaction norms can also be non-linear [8]. The model
presented here can easily be extended to higher-order
polynomials. Furthermore, the genetic basis of micro-
environmental sensitivity may not be the same along an
environmental gradient and the model for residual vari-
ance or micro-environmental sensitivity in Equation (3)
could be extended to contain a reaction norm with a
known environmental gradient. For instance, in stressful
environments, there might be more genetic variance for
micro-environmental sensitivity than in less stressful envi-
ronments. Furthermore, G × E interactions often exist be-
tween categorical environments and are often analysed
with character state or multivariate models [2]. Character
state models do not explicitly estimate breeding values for
macro-environmental sensitivity, but these breeding values
could be back-calculated by using covariance functions
when the environmental parameter responsible for G × E
interactions is identified because reaction norm models and
character state models are interchangeable [2]. In the case
of two environments, a reaction norm model with a dummy
environmental parameter with values 0 and 1 would yield
results that are identical to a bivariate character state model.
Multivariate versions of the DHGLM or reaction norm
models with dummy environmental variables could be
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used to simultaneously investigate macro- and micro-
environmental sensitivities when environments are
discrete.

Application to breeding
Taking macro- and micro-environmental sensitivities
into consideration is highly relevant in animal breeding.
Due to the high level of globalisation in animal breeding
programs, it is necessary to breed animals that can
perform well in a wide range of environments. There-
fore, it may be important to select animals that have
limited environmental sensitivity, especially for environ-
ments with a higher risk of environmental disturbances.
Reduction in environmental sensitivity increases the pre-
dictability of performance and reduces risk for farmers
[46]. Furthermore, reduction in micro-environmental sen-
sitivity will increase the uniformity of animal products
[47], which is a general goal. In plant breeding, application
of a model for macro- and micro-environmental sensitiv-
ities is also highly relevant since G × E interactions are
generally very strong and uniformity of crops is very im-
portant. Recent papers by Ordas et al. [48], Makumburage
and Stapleton [49] and Kliebenstein [50] show that there
is an interest for increased uniformity in plants. Economic
values could be derived for micro-environmental sensitiv-
ity [47]. The economic value of macro-environmental sen-
sitivity can be determined as a function of the importance
of environments along the environmental gradient. Based
on Mulder et al. [3,47], progeny testing schemes are more
efficient than sib testing schemes to reduce micro-
environmental sensitivity since it behaves as a trait with a
small heritability. Genomic selection could be an alterna-
tive selection strategy with sufficient accuracy and shorter
generation intervals.

Conclusions
In this study, a model was developed to estimate genetic
parameters of macro- and micro-environmental sensitiv-
ities, combining a reaction norm model with a double
hierarchical generalized linear model within a REML
framework. Simulations showed that the genetic parame-
ters obtained were mostly unbiased, but designs with at
least 100 sires, each with 100 half-sib offspring, were re-
quired to estimate genetic parameters with sufficient
precision. Using AIC, the true genetic model was se-
lected as the best statistical model in at least 90% of rep-
licates when the number of offspring per sire was 100.
Application of the model to milk yield data in dairy cat-
tle showed that both types of environmental sensitivity
existed. Our model and AIC based on h-likelihood can
be used to increase our understanding of the genetic
control of environmental sensitivity in livestock popula-
tions but more research is needed to test the model in a
wider range of situations.
Appendix
DHGLM algorithm for a sire model
The original DHGLM algorithm of Rönnegård et al. [19]
was developed for an animal model. Here we describe
the estimation algorithm for the sire model used in the
current paper, including a few adjustments of the algo-
rithm in Rönnegård et al. [19] to correct for the fact that
the residual variance in a sire model (without permanent
environmental effects, e.g. with animals with a single ob-
servation) contains three quarters of the additive genetic
variance in addition to the environmental variance. The
adjustments in the algorithm are as follows: adjustment
of the squared residuals (yv) accounting for the fact that
the residual variance in a sire model includes three
quarters of the additive genetic variance, use of average
residual variance σ̂ 2

es to calculate ψs (instead of predicted
individual values), and computations of the diagonal
weight matrices Ws and Wsv. These adjustments
resulted in a computationally robust algorithm with
small or no bias (as presented in Results).
To compute the linearized response ψs for the bivariate

sire model in Equation (3), first we calculate yvi as:

yvi ¼
ê2si
1−hið Þ �

σ̂ 2
es

—–

σ̂ 2
ea

—— : ð6Þ

This is equivalent to the calculations for the response
yv in [19], except for the multiplication by the ratio of
the average estimated residual variance in a sire model

( σ̂ 2
es

—— ¼ σ2∈ s
= �ws , where �ws ¼ tr Wsð Þ=n and n is the total

number of records) and the average residual variance in

an animal model, which is calculated as σ̂ 2
ea

—— ¼ σ̂ 2
es

——
− 3

4 σ̂
2
Aint

,

( σ̂ 2
Aint

¼ 4 σ̂ 2
sint ). Because we use a log link function, yvi is

linearized as:

ψsi ¼ log σ̂ 2
es

——� �
þ yvi−σ̂

2
es

——

σ̂ 2
es

—— : ð7Þ

The diagonals of Ws are the reciprocals of ψ̂s (i.e.
Wsi ¼ 1=ψ̂si ), which is the vector of predicted residual
variances for each observation based on the previous
iteration and is calculated as:

ψ̂si ¼exp log σ̂ 2
es

——
−
3
4
σ̂ 2
Aint

� 	
þ svi

� 	
þ 3
4
σ̂ 2
Aint

: ð8Þ

The sire effects for environmental variance svi only
affect the part of the residual variance which is truly en-
vironmental variance and therefore three-quarters of the
additive genetic variance is subtracted in the multiplica-
tive part of Equation (8). The diagonals of Wsv are the



Mulder et al. Genetics Selection Evolution 2013, 45:23 Page 13 of 14
http://www.gsejournal.org/content/45/1/23
reciprocals of the residual variance of ψs and were calcu-
lated as:

Wsvi ¼
1
2

1−hið Þ2 σ̂ 2
ea

——

σ̂ 2
es

——

 !2

: ð9Þ

This is motivated by the fact that by combining Equations
(6) and (7), and by assuming that the estimated residuals
are close to the true ones, we have:

var ψsi

� �
¼ var

e2si
1−hið Þ �

σ̂ 2
es

——

σ̂ 2
ea

—— � 1

σ̂ 2
es

——

 !

¼ var
e2si
1−hið Þ �

1

σ̂ 2
ea

——

 !
¼ 2 1−hið Þ−2 σ̂ 2

es

——

σ̂ 2
ea

——

 !2

:

ð10Þ
since the true residuals are assumed normal and the
squared true residuals are therefore Gamma distributed

with a variance of 2 σ̂ 2
es

� �2
.

The algorithm can be summarized as:

1. Run model on y in Equation (3) with homogeneous
residual variance.

2. Calculate ψs, Ws, Wsv, where Ws ¼ diag σ̂ 2
e

� �
in

iteration 1.
3. Run bivariate model in Equation (3).
4. Update ψs, Ws, Wsv

5. Iterate steps 3 till 4 until convergence

Approximation of the adjusted profile h-likelihood
In our paper, the model selection was based on an ap-

proximation of the adjusted profile h-likelihood (APHL),
which is defined as [51]:

APHL ¼ 2h−log det Hð Þð Þð Þ τ¼τ̂;j ð11Þ

where H is the Hessian of the h-likelihood and τ is the
vector of all fixed and random effects both in the mean
and variance parts of the model. For the model in Equation
(3), minus two times the h-likelihood (− 2h) is:

−2h ¼ −2ð lðyjsint; ssl; svÞ þ lðsint; ssl; svÞÞ

¼
Xn
i¼1

log σ̂2
ei

� �
þ ê2i
σ̂ 2
ei

 !
þlog det ~G

� �� �þ ~s 0~G−1~s;

ð12Þ

where l is log-likelihood, σ̂ 2
ei (σ̂

2
ei ¼ σ̂ 2

∈ s
=wsi , with wsi be-

ing the ith diagonal of Ws) is the residual variance of ob-
servation i, ê2i is the estimated squared residual of

observation i, ~G is the covariance matrix of all random
effects ( ~G ¼ 1
4G⊗A), s is a vector of all random sire ef-

fects (~s 0 ¼ sint ssl sv½ �) and wsi is the weight for the
mean model for observation i. The minus two log
REML likelihood (logL) from the bivariate model in
Equation (3) is:

−2logL ¼
Xnþk

i¼1

log σ̂ 2
ei

� �
þ ê2i
σ̂ 2
ei

 !
þ log det ~G

� �� �þ ~s 0~G−1~s þ log det Cð Þð Þ;
ð13Þ

where the first n residual variances come from the first
part of the bivariate model (y) and the next k residual
variances come from the second part of the bivariate
model (ψs) (k = n = number of records), and C is the
Hessian of the bivariate model (i.e. left-hand-side of the
mixed model equations). Because log (det(C)) is a reason-
able approximation of log (det (H)) [31], we can approxi-
mate APHL as given in Equation (4) in the main text:

APHL ¼ −2logL−
X

wsvi σ̂ 2
∈ sv

� �−1
−
X

ln σ̂ 2
∈ sv

� �
=wsvi

ð14Þ

Thus, the REML likelihood for the bivariate model is
corrected for the fact that the squared residuals are used
as “observations” in the bivariate model. Note that equa-
tion (14) can also be used for animal models by replacing
the elements wsvi and σ�sv2 with the corresponding ele-
ments of Equation (2) or for models with more or fewer
random effects in the mean and variance model.
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