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Abstract

Objective: Femoral neck geometric parameters (FNGPs), such as periosteal diameter (W), cross-sectional area (CSA), cortical
thickness (CT), buckling ratio (BR), and section modulus (Z), are highly genetically correlated with body lean mass. However,
the specific SNPs/genes shared by these phenotypes are largely unknown.

Methods: To identify the specific SNPs/genes shared between FNGPs and appendicular lean mass (ALM), we performed an
initial bivariate genome-wide association study (GWAS) by scanning ,690,000 SNPs in 1,627 unrelated Han Chinese adults
(802 males and 825 females) and a follow-up replicate study in 2,286 unrelated US Caucasians.

Results: We identified 13 interesting SNPs that may be important for both FNGPs and ALM. Two SNPs, rs681900 located in
the HK2 (hexokinase 2) gene and rs11859916 in the UMOD (uromodulin) gene, were bivariately associated with FNGPs and
ALM (p = 7.5861026 for ALM-BR and p = 2.9361026 for ALM-W, respectively). The associations were then replicated in
Caucasians, with corresponding p values of 0.024 for rs681900 and 0.047 for rs11859916. Meta-analyses yielded combined p
values of 3.0561026 and 2.3161026 for rs681900 and rs11859916, respectively. Our findings are consistent with previous
biological studies that implicated HK2 and UMOD in both FNGPs and ALM. Our study also identified a group of 11
contiguous SNPs, which spanned a region of ,130 kb, were bivariately associated with FNGPs and ALM, with p values
ranging from 3.0661027 to 4.6061026 for ALM-BR. The region contained two neighboring miRNA coding genes, MIR873
(MicroRNA873) and MIR876 (MicroRNA876).

Conclusion: Our study implicated HK2, UMOD, MIR873 and MIR876, as pleiotropic genes underlying variation of both FNGPs
and ALM, thus suggesting their important functional roles in co-regulating both FNGPs and ALM.
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Introduction

Osteoporosis is a common disease, particularly among the

elderly, characterized by decreased bone strength and increased

fracture risk [1,2]. Hip fracture is the most common and serious

type of osteoporotic fracture, often producing prolonged or

permanent disability, or even death, for some patients [1,3]. The

musculoskeletal system, however, contains both bone and muscle,

and these two tissue types are highly interdependent. Bones sustain

mechanical loads and provide load points for muscles, and muscles

keep bones in place and are responsible for major mechanical

loading of bones [4].

Due to the morbidity, mortality, and health care costs associated

with osteoporotic fractures, a variety of phenotypic characteristics

have been analyzed for their associations with bone strength, and

fracture risk. Bone mineral density (BMD) is considered to be an

important, but not exclusive, determining factor for bone strength,

and is also associated with fracture risk [5,6]. Bone geometry,

independent of BMD, is another important factor, that determines

bone strength and is directly associated with osteoporotic fractures

[7]. Several recent studies have reported that femoral neck

geometric parameters (FNGPs) such as periosteal diameter (W),

cross-sectional area (CSA), cortical thickness (CT), buckling ratio

(BR), and section modulus (Z), can be used to improve the accuracy

of identifying people at high risk of hip fracture [3,8,9,10].

The muscular component of the musculosketal system, as

defined by body lean mass, is also closely associated with human

health. Low body lean mass is associated with a series of health
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problems, such as sarcopenia, impaired protein balance, obesity,

and osteoporosis [3,11]. Not surprisingly, body lean mass and

FNGPs are closely related phenotypes. It has been demonstrated

that bone geometry can serve as a useful index that represents

adaptive responses of bone to altered mechanical loading [12].

Body lean mass, in turn, has been shown to contribute to

variations of bone geometry at the femoral neck (FN) [13,14],

potentially due to genetic, mechanical, hormonal and nutritional

factors. For example, dynamic strains provided by muscle may be

an important stimulus of bone adaptation [14]. From the genetic

perspective, previous bivariate quantitative genetic analyses have

shown that body lean mass was significantly correlated with

FNGPs, and that these phenotypic traits might share some

common genetic factors [15]. Subsequently, bivariate whole

genome linkage analysis reported that several genomic regions,

such as 3q12 and 20q13, were linked with both FNGPs and body

lean mass [16]. However, the specific SNPs/genes that are shared

between these two phenotypes are largely unknown.

Bivariate GWAS is a newly developed effective approach to

detect pleiotropic genes for complex traits [17]. To identify the

specific pleiotropic SNPs/genes that contribute to both FNGPs

and body lean mass, we performed an initial bivariate GWAS in a

large Chinese sample, and a follow-up replicate study in

Caucasians. We utilized appendicular lean mass (ALM) as our

determinant of lean mass, as several studies have suggested that

ALM is a better proxy measure of body skeletal muscle mass than

total body lean mass for assessing exercise capacity and predicting

related diseases [18,19,20]. ALM is calculated as the sum of lean

mass in the arms and legs.

Results

The basic characteristics of the study subjects are shown in

Table 1. Generally, FNGPs and ALM in men were higher than

those in women. All study parameters, except CT in men, were

higher in Caucasians than in Chinese subjects.

Correlation analysis using our phenotypic data have shown that

body lean mass was significantly correlated with W, CSA, CT and

Z (Table 2), which is generally consistent with previous studies

[15,16].

We identified 13 interesting SNPs that were bivariately associated

with ALM and FNGPs. Among them, SNP rs681900 located in

intron 1 of the hexokinase 2 gene (HK2), ranked among the top 5

SNPs for bivariate association with ALM-W (p = 7.5861026).

Another SNP, rs11859916 of the uromodulin gene (UMOD) ranked

among the top 3 loci for associations with ALM-BR

(p = 2.9361026). We also found replicate association for these two

SNPs in Caucasians, with corresponding p values of 0.024 for

rs681900 and 0.047 for rs11859916 (Table 2). Meta-analyses yielded

stronger associations, with pooled p values of 3.0561026 and

2.3161026 for rs681900 and rs11859916, respectively. A group of

11 contiguous SNPs spanning ,130 kb region harboring the

MIR876 (MicroRNA876) and MIR873 (MicroRNA873) genes were

strongly associated with ALM-BR, with p values ranging from

3.0661027 to 4.6061026. Among them, two SNPs, rs12005658

and rs3849874, were located in the promoter region of the MIR876

gene. As shown in Figure 1, LD signals within this SNP group were

very strong and all 11 SNPs were within one haplotype block.

Since the five bone geometry parameters are closely related, we

compared the results from the five phenotype pairs for the 13

interesting SNPs to detect common and/or specific SNPs for the

five phenotype pairs. As shown in Table 3, three phenotype pairs

(ALM-W, ALM-CT, and ALM-BR) generally have stronger

association signals than other two (ALM-CSA and ALM-Z) for

the 13 interesting SNPs. For SNP rs681900, there were consistently

strong association signals across the five phenotype pairs, with p

values ranging from 1.5761024 to 7.5861026, probably suggesting

that this SNP has a common effect on all five phenotype pairs.

As shown in Table 3, the bivariate association signals were

generally stronger than the univariate association signals, suggest-

ing that bivariate analysis has a higher power to detect shared

genetic factors for related phenotype pairs [17]. For example, with

SNP rs681900, the univariate associations were not significant for

either ALM or W, but bivariate associations were consistently

significant for all phenotypic pairs, with p values ranging from

1.5761024 to 7.5861026. To provide readers more details about

the bivariate GWAS, all the SNPs with p value less than 1024 were

demonstrated in Appendix S1.

Discussion

Using the novel multivariate approach, we performed a

bivariate GWAS for ALM and FNGPs, and found that 13

interesting SNPs located within or near four genes, HK2, UMOD,

MIR876 and MIR873, showed strong associations with both

femoral neck bone geometry and ALM. The present study

represents the first effort to detect shared genetic factors for these

closely related phenotypes (ALM and FNGPs).

GWAS provides impressive statistical power for detecting novel

genetic variants that underlie common human diseases. To date,

however, most published GWAS’s utilize a univariate framework

to analyze different phenotypes separately. Although these

Table 1. Basic characteristics of study subjects.

Traits Chinese sample US sample

Male (N = 802) Female (N = 825) Male (N = 558) Female (N = 1728)

Age (years) 31.44611.98 37.44613.78 50.19616.03 51.13613.00

W (cm) 3.5460.27 3.1260.33 3.8260.33 3.3060.34

CSA (cm2) 2.9260.50 2.2560.37 3.0860.59 2.4560.47

CT (cm) 0.1760.03 0.1460.02 0.1660.03 0.1560.03

Z (cm3) 1.8460.38 1.2660.29 2.1260.49 1.4560.36

BR 10.9762.08 11.0862.76 12.2962.57 11.4662.43

ALM (kg) 23.9563.20 15.7562.08 29.8964.85 20.2263.53

Note: all the values are means 6 SD.
doi:10.1371/journal.pone.0027325.t001

Bivariate Analyses of Bone Geometry and Lean Mass
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univariate GWA analyses have led to the discovery of novel genes

for several complex diseases, this approach often lacks sufficient

power to detect pleiotropic genes that may influence multiple

phenotypes. Newly developed methodologies for bivariate

GWAS’s have higher power for detecting pleiotropic genes than

univariate approaches [17,21]. The results shown in Table 3

clearly demonstrate the advantage of bivariate association studies

for identifying pleiotropic genes.

The importance of the 13 interesting SNPs is supported by both

the statistical evidence provided in this manuscript, and by the

known functions of the four genes at the genomic regions

containing these 13 interesting SNPs. HK2 encodes the protein

hexokinase 2, the predominant form of hexokinase presented in

skeletal muscle. Hexokinase is responsible for phosphorylating

glucose to produce glucose-6-phosphate, the first step in most

glucose metabolism pathways. Hexokinase 2 is one of the key

enzymes involved in regulating glucose metabolism for muscle

tissue [22,23]. Glucose metabolism, one of the most basic cellular

biochemical reactions, provides energy and material for funda-

mental cellular activities such as protein metabolism, cell growth,

and proliferation [24,25,26,27]. These activities are essential for

normal muscle growth, and may influence lean mass in human

[28]. Glucose metabolism is also associated with bone develop-

ment, as elevated glucose levels have been shown to inhibit

calcium uptake and bone mineralization [29]. Moreover, bone

resorption is dependent on glucose concentrations. Reduced

expression of HK2 is also associated with non-insulin-dependent

diabetes, which may lead to osteoporosis and losses in lean mass

Table 2. Results of bivariate GWAS for ALM and five FNGPs (p,161025).

Phenotypes pair SNP Chr. Position Gene Allele1 MAF2 MAF3 Bivariate p Replication p

ALM-W rs6789283 3 21996951 - C/T 0.041 0.034 1.3461027 0.774

(0.573**)4 rs854140 5 56985279 - G/A 0.462 0.467 3.5061026 0.825

(0.501**)5 rs17037864 4 160113841 C4orf45 A/G 0.364 0.378 3.9361026 0.865

rs2062713 12 113660935 - T/C 0.289 0.333 7.3361026 0.592

rs681900 2 74928475 HK2 G/A 0.162 0.133 7.5861026 0.024

ALM-CSA rs4804662 19 7481408 - G/A 0.231 0.211 4.7261027 0.216

(0.729**) rs10928979 2 127136698 - G/A 0.371 0.433 6.4661027 0.441

(0.642**) rs6789283 3 21996951 - C/T 0.041 0.011 2.5061026 0.531

rs12098712 10 5601911 - T/C 0.110 0.122 9.5661026 0.117

ALM-CT rs4507747 8 141288307 TRAPPC9 T/C 0.013 0.000 2.3261026 0.429

(0.524**) rs10928979 2 127136698 - G/A 0.371 0.433 3.7461026 0.766

(0.450**) rs4804662 19 7481408 - G/A 0.231 0.211 3.7661026 0.116

ALM-Z rs6789283 3 21996951 - C/T 0.041 0.011 7.4661028 0.656

(0.768**) rs10928979 2 127136698 - G/A 0.371 0.433 9.5861027 0.491

(0.679**) rs2081106 5 58514356 PDE4D T/A 0.076 0.056 4.9161026 0.650

rs4804662 19 7481408 - G/A 0.231 0.211 6.1961026 0.222

rs12098712 10 5601911 - T/A 0.110 0.122 8.7261026 0.075

ALM-BR rs1368998 9 28869953 MIR873 T/G 0.115 0.111 3.0661027 0.961

(-0.095**) rs12005658 9 28858243 MIR876 A/G 0.116 0.111 3.9661027 0.976

(-0.113**) rs16913782 9 28866158 MIR876 T/C 0.116 0.111 4.6661027 0.970

rs969715 9 28810807 MIR876 C/T 0.117 0.122 5.4961027 0.943

rs11998784 9 28865332 MIR876 G/A 0.116 0.111 8.1261027 0.997

rs1389728 9 28807957 MIR876 C/T 0.116 0.122 9.7461027 0.569

rs13299777 9 28929554 MIR873 C/T 0.116 0.122 9.8361027 0.407

rs3849874 9 28859369 MIR876 C/G 0.116 0.111 1.1361026 0.968

rs16913751 9 28843125 MIR876 T/C 0.119 0.111 1.6461026 0.939

rs854140 5 56985279 - G/A 0.462 0.467 2.1061026 0.773

rs10491629 9 28845155 MIR876 T/G 0.117 0.116 2.9161026 0.911

rs11859916 16 20258732 UMOD A/G 0.227 0.200 2.9361026 0.047

rs10491633 9 28933695 MIR873 T/C 0.115 0.122 4.6061026 0.293

rs4804662 19 7481408 - G/A 0.231 0.211 8.1061026 0.160

Note:
Bold font: the identified 13 SNPs.
1The first allele represents the minor allele of each locus.
2Minor allele frequency calculated in our own Chinese subjects.
3Minor allele frequency reported for Chinese in the public HapMap HCB database.
4Phenotype correlation for Chinese sample. ** p#0.01.
5Phenotype correlation for US data. ** p#0.01.
doi:10.1371/journal.pone.0027325.t002
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[30,31]. This collective information strongly supports the conclu-

sion that HK2 is involved in both muscle and bone metabolism.

The UMOD gene encodes uromodulin, the most abundant

protein in mammalian urine. Uromodulin may influence both bone

and muscle by regulating renal excretion of metabolites. Uromo-

dulin is involved in calcium metabolism, and acts as a regulator of

calcium oxalate crystallization [32]. Missense mutation of UMOD in

mice causes moderate increases in plasma calcium concentrations,

and significant decreases in bone mineral density and bone mineral

content [33]. Uromodulin may also influence lean mass through

creatinine, energy, and protein metabolism, as mice with UMOD

mutations have reduced body weight, including body lean mass, and

significant increases in plasma creatinine and urea levels, compared

with normal mice [33].

Of particular interest, a group of 11 contiguous SNPs locates

within genomic regions containing two miRNA encoding genes

(MIR876 and MIR873) were strongly associated with ALM-BR in

Chinese. Two of the 11 SNPs, rs12005658 and rs3849874 were

located in the promoter region of MIR876. MicroRNAs (miRNAs)

are involved in post-transcriptional regulation of gene expression in

multicellular organisms by affecting both the stability and

translation of mRNA. We used the TargetScan platform (http://

www.targetscan.org release 5.1), web-based software with a low false

positive rate, to identify predicted miRNA target genes. MIR876

encodes two MicroRNAs: miR-876–3p and miR-876–5p. Using

TargetScan software, 93 and 148 genes were predicted to be targets

for miR-876–3p and miR-876–5p, respectively. Among them,

ACTN4 (actinin, alpha 4) [34], MBNL1 (muscleblind-like) [35], and

SEPN1 (selenoprotein N, 1) [36] are involved in muscle metabolism,

and ANKH (ankylosis, progressive homolog) [37], TAPT1 (trans-

membrane anterior posterior transformation 1) [38], and TRPS1

(trichorhinophalangeal syndrome I) [39] are related to bone

metabolism. For MIR873, 176 target genes were identified using

the TargetScan platform. Several of these genes are also involved in

muscle or bone metabolism. For example, DMD (dystrophin) and

BMP7 (bone morphogenetic protein 7) are associated with muscle

and bone metabolism, respectively [40]. However, the exact

mechanisms by which MIR876 and MIR873 are involved in co-

regulating bone and muscle metabolism are unclear. Functional

studies are being planned to validate our findings.

Figure 1. Bivariate associations of 11 contiguous SNPs with ALM-BR in the region of the MIR876 and MIR873 genes. Notes: The Y axis is
the negative Log10p values. The LD between two SNPs is standardized D’ (D/Dmax).
doi:10.1371/journal.pone.0027325.g001

Bivariate Analyses of Bone Geometry and Lean Mass

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e27325



The association results from our initial Chinese sample were

replicated in a Caucasian population. Much of the genetic back-

ground across the two ethnic groups is similar, which indicates that

mutual replication between different ethnic groups is feasible. We

found consistent associations across the two ethnic groups for two

SNPs (rs681900 and rs11859916), suggesting the consistent effects of

these two SNPs on both Chinese and Caucasians. However, ethnic

genetic heterogeneity has also been observed among different races

when studying specific phenotypes or diseases [41,42]. Our study

found a group of 11 contiguous SNPs ranked at the top for bivariate

association with ALM and BR in the Chinese sample, but these

findings were not replicated in Caucasians. It is possible that the

failure to replicate these findings in Caucasians was attributable to

genetic diversity in this region between Chinese and Caucasians.

In conclusion, we used a novel bivariate GWAS approach in a

large Chinese sample, and a follow-up replication study in

Caucasians, combined with functional evidence, to identify two

genes, HK2 and UMOD, that appear to co-regulate FNGPs and

ALM. Two additional MicroRNA genes (MIR873 and MIR876)

were also associated with bone geometry and ALM in Chinese, but

these findings were not replicated in Caucasians. These findings

enhance our knowledge of genetic associations between bone

geometry and ALM, and provide a rationale for subsequent

functional studies of these implicated genes in the pathophysiology

of diseases related to these phenotypes, such as hip fracture and

sarcopenia.

Materials and Methods

Subjects and phenotypes
The study was approved by the institutional review boards of

Hunan Normal University, Xian Jiao Tong University and

University of Missouri-Kansas City. All study participants signed

informed consent documents before they entered the project. Two

independent samples were included in this study: a sample of

1,627 unrelated adult Han Chinese (802 males and 825 females)

recruited from Changsha and Xi’an and their surroundings areas,

and another sample of 2,286 unrelated homogeneous US

Caucasians (including 558 males and 1,728 females) recruited

from the Midwestern US in Kansas City, Missouri and Omaha,

Nebraska. Anthropometric measures and a structured question-

naire including diet, lifestyle, medical history, family information

and others were obtained for all subjects.

The five FNGPs, such as W and CSA are calculated based on

the BMD (g/cm2) and bone size (cm2) at the FN. Detailed

calculation formulas for the five parameters have been described

elsewhere [43,44,45]. ALM (g) was calculated as the sum of lean

soft tissue (nonfat, non-bone) mass in the arms and legs. BMD and

bone size at the FN and ALM were measured by dual-energy X-

ray absorptiometry (DXA) with Hologic densitometers (Hologic

Inc., Waltham, MA, USA) that were calibrated daily. For Chinese

subjects, the coefficient of variation (CV) values of DXA

measurements for BMD, bone size at the FN and ALM were

1.87%, 1.94%, and 1.0%, respectively. Similar CV values were

obtained with US Caucasians.

Genotyping
Genomic DNA was extracted from peripheral blood leukocytes

using the Puregene DNA isolation kit (Gentra Systems, Minneap-

olis, MN, USA). All subjects were genotyped using the Human

mapping SNP 6.0 assay kit (Affymetrix, Inc, Santa Clara, CA),

following the standard protocol recommended by the manufacturer.

For quality control (QC) of SNPs, we set the default value of greater

than 0.4 as the contrast QC threshold. The final average contrast

QC across the entire sample reached the high level of 2.62. In the

initial stage, 909,622 SNPs were genotyped for the Chinese subjects.

After excluding 17,888 SNP with allele frequencies deviating

extremely from Hardy-Weinberg equilibrium (p,0.01) and 202,984

SNPs with minor allele frequencies (MAF) ,1% (618 SNP were

included by both exclusion criteria), a final total of 689,368 SNPs

were retained for subsequent analyses, yielding an average marker

spacing of ,4 kb throughout the human genome.

Statistical Analyses
Although previous studies have reported that FNGPs and body

lean mass are two related phenotypes [15,16], we re-estimated their

phenotype correlation used our Chinese data. The bivariate

correlation analysis was performed using the statistical package

SPSS version 17.0.

Table 3. Bivariately/univariate associations for 13 interesting SNPs.

SNP Role Bivariate p values univariate p values

ALM-W ALM-CSA ALM-CT ALM-Z ALM-BR ALM W CSA CT Z BR

rs681900 Intron1 7.5861026 1.5761024 5.4461025 9.3961025 3.0161025 0.59 0.06 0.90 0.61 0.95 0.46

rs11859916 Intron7 1.5861022 6.0161022 3.6761024 4.1261021 2.9361026 0.72 0.03 0.09 0.55 0.03 0.68

rs12005658 Promoter 4.6061025 6.4261023 4.1461025 4.6161022 3.9661027 0.84 0.87 0.36 0.45 0.76 0.98

rs16913782 Upstream 3.3761025 7.9661023 6.5561025 4.1861022 4.6661027 0.93 0.87 0.40 0.52 0.80 0.93

rs969715 Downstream 3.0661025 1.9761022 9.4161025 8.5861022 5.4961027 0.82 0.97 0.64 0.44 0.89 0.78

rs11998784 Upstream 9.4161025 9.2561023 7.3761025 6.6161022 8.1261027 0.96 1.00 0.37 0.44 0.82 0.87

rs1389728 Downstream 4.1661025 2.3161022 1.6161024 8.9661022 9.7461027 0.80 0.99 0.63 0.44 0.87 0.79

rs3849874 Promoter 8.9661025 7.9961023 9.5761025 4.9561022 1.1361026 0.89 0.88 0.39 0.50 0.79 0.96

rs16913751 Downstream 1.2061024 1.0761022 1.4261024 6.5361022 1.6461026 0.93 0.98 0.55 0.38 0.81 0.76

rs10491629 Downstream 1.3761024 1.0461022 2.4361024 4.8261022 2.9161026 0.91 0.96 0.57 0.36 0.85 0.73

rs1368998 Downstream 3.1861025 6.2961023 3.3361025 4.8261022 3.0661027 0.94 0.81 0.28 0.37 0.64 0.96

rs13299777 Upstream 8.7661025 1.5161023 1.9161025 3.2761022 9.8361027 0.65 0.81 0.93 0.68 0.70 0.71

rs10491633 Upstream 1.9561024 3.2161023 8.2861025 4.4261022 4.6061026 0.58 0.77 0.79 0.80 0.60 0.76

doi:10.1371/journal.pone.0027325.t003
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We adopted similar statistical analyses in the initial GWAS and

replicate study. Before association analyses, raw phenotypes of

FNGPs and ALM were adjusted for age and sex. Principal

component analysis (PCA) was performed [46] to calculate the

principal components, and the ten default main eigenvectors were

used as covariates to adjust raw phenotypic data for correction of

population stratification.

We performed bivariate GWAS to detect associations between

each SNP and two phenotypes. An additive genetic model was

applied to both univariate and bivariate association analyses.

Based on a linear model, bivariate regression analyses were

conducted using the R software package (available at http://www.

r-project.org). This method is expressed as follows: for an

individual i, yi is a vector of a length of 2 and coding the

individual’s bivariate phenotype, which can be modeled as

y i 1

y i 2

0
BB@

1
CCA ~

m 1

m 2

0
BB@

1
CCA z ( Z1 Z2 � � � Zn )

b
( 0 )
11 b

( 0 )
12

b
( 0 )
21 b

( 0 )
22

b( 0 )
n 1 b( 0 )

n 1

0
BBBBBBBB@

1
CCCCCCCCA

z

b1

b2

0
BB@

1
CCA : xi z

e i1

e i2

0
BB@

1
CCA

In this model: m ~

m 1

m 2

0
@

1
A is the grand mean vector; Z = (Z1

Z2???Zn) is a vector coding for covariates, that may include other

risk factors and confounding factors; b’s are the corresponding

effects of covariates or the SNP under test; xi is the genotype score

at the locus of interest for individual i, and ei is the vector of

random error. We compared the likelihood of the model under the

null hypothesis (SNP effects are restricted to 0), with that under the

alternative hypothesis (the SNP effects are not 0), to test the

alternative hypothesis. Then the likelihood ratio can convert to an

F-statistic, which follows an F-distribution under the null

hypothesis. The bivariate p value was calculated based on the F-

statistic.

To compare the results from univariate and bivariate

association analyses, we also conducted univariate association

with each of the tested phenotypes using Plink (version 1.07,

http://pngu.mgh.harvard.edu/,purcell/plink/) in our GWAS

and replicate cohorts, where genotypic association analysis was

performed under a linear regression framework. Genotype was

treated as the independent variable, study phenotype (such as

ALM, W) as the dependent variable, and phenotype was modeled

as a linear function of alternative genotypes at a certain SNP.

To quantify overall evidence of association achieved in our

GWAS and in the US replication cohort, we combined individual

p values of the two cohorts using a Fisher’s method[47] for meta-

analysis. The calculation was performed using the MetaP web tool

(http://people.genome.duke.edu/,dg48/metap.php). The link-

age disequilibrium (LD) [standardized D9(D/Dmax)] patterns of

interesting SNPs and the haplotype block map was analyzed using

Haploview software (available at http://www.broad.mit.edu/

mpg/haploview/).
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