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Abstract:  
The elucidation of spatial and temporal control during developmental stages is one of the central tasks for systems biology, and a 
variety of intracellular factors are known as regulators for specific gene expression. The activity information of those various 
factors is not directly reflected in their gene expression profiles. Hence, a method based on Structural Equation Modeling (SEM) is 
described. SEM can include the latent variables within the constructed model and infer the relationships among latent and 
observed variables, as a network model. An improved SEM approach for the construction of an optimal model is applied to infer 
the regulatory network for the determination of C lineage fate in C. elegans development. The inferred network model shows that 
the 13 analysed transcription factor genes were regulated by several other factors in addition to pal-1 expression. The other 
regulatory factors are those involved in protein accumulation and localization as important regulatory factors for normal 
development. Those regulatory factors were regulated sequentially in the network model. The regulation of the known pal-1 
regulated genes was dependent on this sequential control of the regulatory factors. The interpretation of the network model shows 
insights to the complex regulation occurring during the C lineage determination by pal-1. 
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Background: 
In multi-cellular organisms, asymmetric cell division and cell 
differentiation are essential for normal development. 
Asymmetric cell division in embryogenesis occurs to generate 
body axes, and cell differentiation determines cell fate [1-3]. 
Through these crucial developmental periods, a cell becomes 
specialized to construct tissues and organs, according to its fate 
[4]. These developmental events are controlled to divide the 
developmental determinants into suitable descendants [5, 6], 
but much remains to be elucidated about the regulatory system 
in the early embryo. Since embryogenesis is controlled spatially 
and temporally, the entire regulatory system in early embryonic 
development is incredibly complicated [7].  

To gain a better understanding of the role of developmental 
control, a gene regulatory network is useful. The application of 
various algorithms, including Boolean and Bayesian networks 
and graphical Gaussian modeling (GGM), to gene expression 
profiles allows us to infer complex functional gene networks [8-
11]. One of the clues toward revealing the developmental 
regulation in the early embryo is to clarify the factors 
influencing cell fate determination during embryogenesis. Cell 
fate is usually determined in normal development, as the course 
from the zygote to the complete organism. At the early stage of 
development, cell fate determination is executed by the 
regulated translation of stored maternal mRNAs and the 
accommodation of protein activity [12, 13]. Furthermore, gene 
expression control by transcription factors is also needed for cell 
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fate determination and cellular differentiation [14]. 
Corresponding to the gene expression changes, cell fate 
determination and cellular differentiation are activated during 
the developmental stage. This means that there are several 
types of cellular factors that regulate cell differentiation in 
embryogenesis. Therefore, to reveal the regulatory networks in 
embryogenesis, such as how a cell's fate is determined, a new 
network inference approach is needed.  
 
Recently, I developed a new statistical approach, based on 
Structural Equation Modeling (SEM) in combination with factor 
analysis and a four-step procedure [15]. I developed this 
approach to reveal a serial transcriptional regulation system 
mediated by transcription factor proteins, by using information 
from only gene expression profiles, and no protein information. 
One of the significant features of SEM is the inclusion of latent 
variables into the constructed model, which allows the inferred 
model to include transcription factor proteins as latent 
variables, and genes as observed variables. This method 
estimates the significant interactions between variables. In the 
constructed model, linear relationships among variables are 
assumed to minimize the differences between the fitted model 
covariance matrix and the calculated sample covariance matrix. 
This approach allowed me to reconstruct the hierarchical model 
of transcriptional regulation that involves different cellular 
components, proteins and DNA. 
 
The clarification of cell fate determinants and their effects by 
my SEM approach is considered to be useful for revealing the 
developmental control occurring in the C. elegans early embryo. 
In C. elegans, cell division during embryonic development, from 
the zygote to all 959 somatic cells, can be traced [16]. Through 
the early stages in embryogenesis, 5 founder cells, AB, MS, E, C 
and D, are produced by asymmetric cell division to generate 
distinct sets of somatic cells [16]. Among these founder cells, the 
C blastomere mainly gives rise to muscle and epidermis, and 
the cell fate of the C blastomere is regulated through a 
genetically defined transcriptional cascade of activation by the 
protein PAL-1 [17]. Based on previous investigations, PAL-1 is 
considered to maintain the identity of the C blastomere at the 
eight-cell stage in embryogenesis. The translation of the 
maternal pal-1 mRNA is known to be sequentially restricted 
until the four-cell stage in embryogenesis, and the C blastomere 
fails to develop in the absence of maternal PAL-1 activity [7]. 
Furthermore, ectopic PAL-1 activity gives rise to muscle and 
epidermal cells by the C-like lineage in the other somatic 
lineages, in the absence of maternal PAL-1 [18].  
 
Here, I applied the SEM approach to reveal the pal-1-mediated 
regulation in embryogenesis, by using the expression profiles of 
pal-1-dependent genes, which have been measured to clarify the 
pal-1 effect. The PAL-1 transcription factor protein is considered 
to regulate 12 other transcription factor genes, including 
uncharacterized proteins, and those PAL-1 target genes have 
been experimentally confirmed to affect the C-lineage 
differentiation [17, 19, 20]. Even though some of the regulatory 
pathways from pal-1 to its target genes have been identified, the 
functional mechanisms of the pal-1 mRNA or PAL-1 protein 
remain unclear. In this study, I employed an improved SEM 
approach to extract the factors for cell fate determination and to 
reconstruct a regulatory network model among the pal-1 target 
genes. Using this method, the determinants of cell fates were 

extracted by a factor analysis. I could estimate not only the 
unobserved regulators for gene expression, but also the 
significant regulation pathways, from regulators to genes. The 
resulting gene expression profiles revealed the well coordinated 
developmental control by pal-1. 
 
Methodology: 
Expression data 
I combined two early embryonic expression profiles in C. 
elegans for the SEM calculation. One profile is GSE2180, 
including 123 samples measured by Baugh et al. [17], and the 
other profile is GSE9665, including 74 samples measured by 
Yanai et al. [19]. In both experiments, 22,625 gene expression 
profiles were measured to reveal the C-lineage-specific genes. 
Among them, the following 12 genes were identified as 
transcription factors that are regulated by pal-1 in the C-lineage 
embryo: tbx-8, tbx-9, elt-1, hnd-1, scrt-1, lin-26, nhr-25, vab-7, elt-3, 
hlh-1, unc-120 and nob-1. Furthermore, pop-1 is considered to be 
associated with cell fate decision at the four-cell stage. Thus, I 
analyzed the expression profiles of 14 genes, including pal-1, 12 
pal-1-regulated genes and pop-1, which are considered to 
function in the C-lineage embryo. 
 
Factor Analysis  
The network analysis by SEM includes two steps: parameter 
fitting and model structure fitting. To assume the model 
structure, I selected the optimal number of factors for inclusion 
in the network model as latent variables, by performing a factor 
analysis. In the factor analysis, the covariance matrix between 
the observed variables ∑ is structurized by parameters, as 
follows: 
 
∑=Var[X] = Λ  Λt + Ψ2 → (1) 
 
Where Ψ2 is the covariance matrix of error terms, Λ is the factor 
loading matrix of latent variables, and  is the covariance 
matrix among factors. From this structurized matrix, the values 
of matrix Λ and the variances of the error terms are estimated. 
In this study, the Kaiser criterion states and the scree plot were 
utilized to estimate a number of factors. In the Kaiser criterion, 
the number of factors is equal to the number of eigen values of 
the covariance matrix that are greater than one. The number of 
latent variables was suggested by a principal factor method 
with varimax rotation, which is a general method for rotating 
factors to fit a hypothesized structure of latent variables. 
 
Structural Equation Modeling (SEM) 
In this study, the regulatory model is defined as follows: 
 

ς+Γ+Λ ′= yny  → (2) 
 
Here, y is a vector of p observed variables (genes), and n is a 
vector of q latent variables (regulatory factors). The 
effectiveness of the factors to the genes is represented by Λ ′ , 
and the relationships between the genes are represented by Γ , 
as matrix forms. Errors that affect genes are denoted byς . 
According to this model definition, the model covariance matrix 
( )θΣ  is represented by parameters. In the SEM analysis, the 

parameter estimation was performed by comparing the actual 
covariance matrixΣ , calculated from the measured data, with 
the estimated covariance matrix ( )θΣ  of the constructed model. 
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I used the maximum likelihood method as a fitting function to 
estimate the model parameters. The SEM software package 
SPSS AMOS 17.0 (IBM, USA) was used to fit the model to the 
data. 
 
Iterations for the Optimal Model 
The constructed models are evaluated by their structures, in 
comparison to the measured data. To detect the quantitative 
similarity between a constructed model and an actual 
relationship, fitting scores are usually utilized. By using these 
scores, I developed an iteration algorithm to optimize the 
model, as follows:  
 
Step 1: Reconstruction of the network model without a non-
significant edge; Step 2: Re-calculation of all parameters from 
the reconstructed model; Step 3: Iteration of Steps 1 and 2 until 
all edges become significant; Step 4: Addition of a possible 
causal edge to the reconstructed model by the Modification 
Index (MI); Step 5: Iteration from Steps 1 to 3 to confirm that the 
other edges in the model are significant; Step 6: Determination 
of significant relationships among error terms. 
 
The MI measures how much the chi-square statistic is expected 
to decrease if a particular parameter setting is constrained. After 
all of the edges are significant and all of the MI scores are lower 
than 10.0 in the constructed model, the significant relationships 
between the error terms are estimated by the MI scores. The 
relationships among the error terms have no direction, and thus 
they are a correlation between error terms. These relationships 
were used for the calculations, but were not incorporated into 
the network. 
 

 
Figure 1: Inferred network model of pal-1 regulation. The 
estimated network structure of the pal-1 regulatory system 
shows for lineage-specific differentiation. Genes, which are 
observed variables, are displayed as rectangles, and estimated 
regulatory factors, which are latent variables, are displayed as 

circles. Arrows show the causal relationships among the 
variables in the model. Error terms are omitted in this figure, 
but all error terms were calculated by SEM. The relationships 
between the errors are considered to represent other regulatory 
systems in the cell. For simplicity, these relationships are not 
shown. (a) Network model between genes and regulatory 
factors; (b) Relationships between pal-1-dependent genes. Each 
gene is classified by its regulatory factor, shown on the left side; 
(c) Goodness-of-fit scores. The calculations for these scores 
included the relationships between errors. Four criteria were 
mainly used: GFI>0.90, AGFI>0.90, CFI >0.90 and RMSEA<0.05. 
All four scores indicated that the model fit the measured data 
well. 
 
Discussion: 
Regulatory factors of pal-1 regulated genes 
To reveal the regulatory network in early embryogenesis, I first 
detected the intracellular regulatory factors for gene expression. 
In this study, 14 genes are described as observed variables, and 
the regulatory factors are arranged as latent variables in the 
network model. I utilized factor analysis to reveal the 
underlying structure among the variables. First, exploratory 
factor analysis (EFA) was applied to detect the number of 
regulatory factors for the expression of the 14 genes, since EFA 
is commonly used for identifying the set of latent variables with 
effects on the observed variables.  
 
From the compiled expression profiles of the 14 genes 
measured under 197 conditions, 4 regulatory factors were 
extracted by the first EFA. To clarify the percent of variance in 
each gene explained by the extracted factors, the communality 
of each gene was calculated from the sum of the squared factor 
loading for all factors. According to the first EFA, the 
communality of pal-1 was lower than 0.1, and this may be 
interpreted as meaning that pal-1 expression was not affected by 
the regulatory factors. In this study, pal-1 is considered as an 
initiator of the C-lineage, and thus independent pal-1 expression 
was reasonable. 
 
I applied the second EFA to the expression profiles of 13 genes 
without pal-1, and 3 factors were extracted. The communality 
and factor loading of each factor are displayed in Table 1(see 
supplementary material). In Table 1, the genes are divided into 
three clusters according to their factor loading: the genes mainly 
regulated by factor 1 (F1), the genes mainly regulated by factor 
2 (F2), and the genes mainly regulated by factor 3 (F3). Table 1 
also shows the stage at which each gene was detected, which 
was empirically confirmed by Yanai et al. [19]. The genes that 
had been detected as initiators of the C-lineage, tbx-8 and tbx-9, 
were regulated by F1. Furthermore, elt-1 and scrt-1, which were 
detected at the early stage in embryogenesis, were also 
regulated by the same factor. The genes that were mainly 
regulated by F2 were also detected at an early stage in cell 
division, but not as initiators. From these features, F1 and F2 
may be regulators that function at an early stage of 
embryogenesis. A focus on the detected cell type of each gene 
indicated that F3 regulates all of the genes that were detected as 
only epidermal. Even though one muscle gene was also 
regulated by F3, this muscle gene was detected at a later stage 
in embryogenesis. Thus, the features of F3 are considered to be 
different from those of the other factors.  
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Regulatory networks for C lineage fate 
Before the SEM calculation, I assumed an initial model that 
includes both the latent and observed variables. The restrictions 
of the initial model were determined as follows: 1) three latent 
variables were arranged as the effective regulatory factors of 13 
TF genes, 2) regulatory relationships were assumed from the 
latent variables to the observed variables, depending on the 
values of the factor loadings, and 3) the observed variable pal-1 
was arranged at the starting point in the initial model, since pal-
1 is considered to be an initiator of the C-lineage fate in this 
study. With these restrictions, I applied the modified four-step 
procedure developed in my previous investigation [15], and an 
initial model was constructed with pal-1 and the other TF genes 
connected by latent variables. All possible regulatory patterns 
between pal-1 and the three latent variables were evaluated by 
SEM, and the optimal regulatory model was selected as the 
most suitable network shape for expression profiles.  
 
The inferred network is shown in (Figure 1). By my iteration 
steps developed for model optimization, all edges within the 
model were significant (p<0.05). The causalities between the 
factors and the genes are shown in (Figure 1a), and the 
relationships among the genes are shown in Figure 1b. It is 
known that lin-26 and hnd-1 repress nhr-25 and hlh-1, 
respectively [19], and those known regulatory relationships 
were well described in (Figure 1b). The regression weight 
between lin-26 and hnd-1 and that between hnd-1 and hlh-1 were 
estimated as negative values, which means repression control. 
To evaluate the model fitting, I utilized general goodness-of-fit 
scores, as follows: goodness-of-fit index (GFI), adjusted GFI 
(AGFI), CFI, and RMSEA. These indices have threshold values 
as criteria to decide whether the model is suited to the 
measured data, and Figure 1c shows that all of the indices 
indicated that the inferred model is suited to the expression 
data.  
 
In (Figure 1a), the three latent variables are regulated 
sequentially, and almost all of the early embryo genes were 
regulated by the first latent variable, F1. The factors were 
expected to be regulated by pal-1, such as encoding, maternal 
mRNA division, protein activity by accumulation, and so on. 
Thereby, the three factors were interpreted by regulatory orders 
in the resulting model. Figure 2 shows the interpretation of the 
latent variables. Factor F1 was considered to be the quantity of 
the PAL-1 protein, since it is only regulated by the pal-1 mRNA, 
and thus the regulatory relationships between pal-1 and F1 were 
considered as "translation". Factor F2 was only regulated by F1, 
and it regulated early embryonic genes and other genes. 
Sequential restriction of PAL-1 activity is known to occur, and 
thus F2 was interpreted as the PAL-1 activity that was 
dependent on the blastomere. Factor F3 was regulated by pal-1 
and F2, and F3 mainly regulated epidermal genes. All of the F3 
regulated genes were detected when the C blastomere divides 
into 31 cells, even though the other genes were detected at the 
former stage in cell differentiation, Thus, F3 was considered as a 
regulator functioning after cell division. Actually, the pal-1 
mRNA is known to be partitioned into daughter cells during 
cell differentiation. Thus, the causality between pal-1 and F3 
was estimated as mRNA segregation, and F3 was considered as 
the localization for pal-1 spatial control. 

 
Figure 2: Biological interpretation of the inferred model. 
Biological interpretations of regulatory factors are expressed 
within the network. All genes are displayed as rectangles, and 
the color of the gene name indicates the detected cell type or 
developmental phase in embryogenesis: Green: Early embryo, 
Red: Muscle cell, Blue: Epidermal cell and Black: Both muscle 
and epidermal cells. The pal-1 rectangle indicates the quantity of 
pal-1 mRNA, and thus the first regulatory factor is considered to 
be the PAL-1 protein. From the sequential regulation of the 
regulatory factors, all factors and relationships were 
interpreted. 
 
Conclusion: 
In normal development, genes are regulated by many factors; 
however, the ambiguity of the underlying mechanisms is one of 
the serious obstacles to artificial cell differentiation. SEM is a 
powerful approach to estimate the gene regulatory network in 
cell differentiation. The spatial and temporal control 
mechanisms of pal-1 have been solved by my inferred network, 
since SEM is a useful method for constructing a regulatory 
network including unknown factors. The inferred network 
shapes reflect the features of cell fate determination for the C 
lineage, which is regulated by pal-1. The effects of protein 
accumulation and localization were suggested as latent 
variables in addition to PAL-1 regulation in the inferred model. 
SEM will be applicable to a wide number of gene networks, to 
clarify the control of gene expression by intracellular factors as 
biological data gets accumulated. The ability to identify 
expression profiles and the corresponding biological functions 
is expected to provide applications for SEM for the inference of 
regulatory mechanisms in cell differentiation. 
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Supplementary material: 
 
Table 1: Relationships among estimated factors and stage-specific expressio 
                        Factor loading                  Detected stage 
Gene Communality Factor 1 (F1) Factor 2 (F2) Factor 3 (F3) Epidermal Muscle Early embryo 

tbx-8 .858 .857 -.350 .022   〇(initiator) 
tbx-9 .831 -.656 .631 -.043   〇(initiator) 
elt-1 .495 .682 .150 -.082 〇  〇 
unc-120 .647 .754 -.278 -.041  〇  

scrt-1 .311 .556 -.036 .009 〇 〇 〇 
vab-7 .775 -.590 .175 .267 〇 〇  

nob-1 .450 .674 -.563 -.055 〇 〇  

pop-1 .597 .493 -.586 .107  〇 〇 
hnd-1 .750 .002 .866 -.017  〇  

hlh-1 .466 -.343 -.024 .590  〇  

lin-26 .732 -.018 .289 .805 〇   

nhr-25 .415 -.125 .133 -.618 〇   

elt-3 .413 -.060 -.096 .633 〇   

Communality indicates the percent of variance in each gene, explained by the factors. Factor loading is the correlation coefficients 
between genes and factors. The red-colored number indicates the highest absolute value for each gene. The "detected stage" 
indicates the gene detected in the cell type and the developmental phase in embryogenesis. The detected stages were described in 
Yanai et al. [19]. 


