
BRAIN NETWORKS

Modeling breathing rhythms
Computational models are helping researchers to understand how

certain properties of neurons contribute to respiratory rhythms.

JAN-MARINO RAMIREZ AND NATHAN A BAERTSCH

O
rchestral music is beautiful, rich and

complex, yet analyzing the contribu-

tion of any one instrument can be dif-

ficult. In many ways, neuroscientists face similar

challenges when they try to understand how the

networks in the brain work. These circuits are

made of many types of neurons, each of which

has different properties. Moreover, the proper-

ties of a neuron can change because of its inter-

actions with other cells in the network.

Researchers have started to unravel this com-

plexity by building computational models of

both neurons and networks of neurons, and by

focusing on pairs of interacting properties. This

is similar to how one might study how the left

and right hand of a violinist work together to

produce melody and rhythm, and then use this

knowledge to better understand other stringed

instruments and their roles in the orchestra.

Within the ‘rhythmogenic’ networks of the

brain, different types of neurons work together

to create the body rhythms that are essential for

life. For example, a complex network generates

breathing rhythms, and it is often used to under-

stand rhythmogenic circuits in general. The bal-

ance between excitatory and inhibitory

connections between neurons is critical to shape

network activity (Ramirez and Baertsch, 2018).

Equally important, but less well understood, are

the interactions between intrinsic properties that

are built into individual neurons.

In particular, two intrinsic properties are

thought to play a role in controlling breathing

rhythms and network activity in general. The first

is a persistent sodium current (INaP), which is

slowly activated and inactivated by changes in

the voltage across the neuronal membrane. The

second does not depend on voltage: rather, the

calcium-activated non-selective cation current

(ICAN) is triggered when the level of calcium ions

inside the cell increases. The source of these cal-

cium ions is unknown, but there is experimental

evidence that they could be provided by mecha-

nisms at the synapses between neurons

(Del Negro et al., 2010; Del Negro et al.,

2011). Both INaP and ICAN allow some neurons to

generate rhythms on their own, without being

stimulated by their neighbors. Yet, in the actual

network, these properties also enhance the sig-

nals transmitted by excitatory synapses

(Ramirez et al., 2004). Because INaP and ICAN
interact with synaptic properties, as well as with

each other, it is difficult to isolate their relative

contributions.

Pharmacological and genetic manipulations

have shed light on how INaP and ICAN work in the

respiratory network (see, for example,

Koizumi et al., 2018; Picardo et al., 2019), but

there is still no consensus on how they contrib-

ute to rhythmogenesis (Feldman and Del

Negro, 2006; Ramirez et al., 2004). Now, in

eLife, Jeffrey Smith of the National Institute

Neurological Disorders Stroke (NINDS) and col-

leagues – including Ryan Phillips as first author –

report results from a computational modeling

approach that re-examines how INaP and ICAN
control breathing (Phillips et al., 2019).
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The researchers, who are based at NINDS,

the University of New Hampshire and Georgia

State University, established a simplified model

of the breathing network, which only takes into

account excitatory synaptic interactions. Then,

they tuned the contributions of three variables,

INaP, ICAN, and the source of intracellular calcium

ions, and explored how this affected the fre-

quency and amplitude of breathing. First, they

examined how changes in the source of calcium

ions influenced the contribution of ICAN to the

network. If calcium came from within neurons,

ICAN controlled the frequency, but not the

strength, of breathing. On the other hand, if cal-

cium depended on synaptic activity, ICAN acted

as a synaptic amplifier to control the strength of

the rhythm, but it had little effect on its fre-

quency. This scenario best matched experimen-

tal data and prior conclusions (Del Negro et al.,

2011; Koizumi et al., 2018), prompting Phillips

et al. to conclude that ICAN is activated by cal-

cium ions that are primarily of synaptic origin.

The group then went on to demonstrate that

ICAN does not establish the rhythm in their

computational model, but that it increases the

strength of breathing by recruiting more neu-

rons to participate in the network. Indeed, when

ICAN was eliminated from the model network, a

weak breathing rhythm remained, which was

generated by a small number of neurons with

high levels of INaP activity (Figure 1). Eliminating

this ‘rhythmogenic kernel’ from the model

stopped the rhythm altogether, in agreement

with some (Peña et al., 2004), but not all

(Pace et al., 2007) experimental data.

Unlike the model built by Phillips et al., the

actual network that controls breathing is not

exclusively excitatory, but is subjected to impor-

tant inhibitory and neuromodulatory control.

Further, alternative mechanisms of rhythmogen-

esis that do not depend on INaP have also been

Figure 1. How the intrinsic properties of neurons contribute to the breathing rhythm. Phillips et al. established a

model of the brain network that controls breathing, and used it to deduce how two built-in properties of neurons,

the INaP sodium current (blue) and the ICAN current (green), control the breathing rhythm. Without INaP, the

network is silent, with the neurons exhibiting non-rhythmic activity (grey). However, a small number of neurons with

high levels of INaP activity can produce a weak rhythm, even in the absence of ICAN. In turn, the model suggests

that ICAN is activated by calcium ions coming from synapses; the current would then amplify excitatory interactions

between neurons. This amplification leads to additional neurons participating in the rhythm (red), producing a

robust functional network.
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proposed (Del Negro et al., 2010; Rubin et al.,

2009). Could different rhythmogenic mecha-

nisms therefore contribute to breathing,

depending on the demands of the network? In

particular, could the contributions of INaP and

ICAN change based on the neuromodulatory

state of the network? Addressing such questions

will require further back-and-forth between

experiments and increasingly complex models.

Overall, the results of Phillips et al. allow us

to understand how intrinsic neuronal properties

independently control the strength and fre-

quency of the breathing rhythm. Their model is

also a useful framework in which to explore how

changes in the way INaP and ICAN interact can

dynamically impact rhythmogenic properties.

For example, it could shed light on the way how

the network reconfigures when the body lacks

oxygen. Ultimately, describing the duet between

INaP and ICAN in the respiratory network may

help dissect how rhythmic activity is controlled

in other regions of the brain (Penn et al., 2016;

Riquelme et al., 2018).
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