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Postpartum breast cancer has a distinct molecular
profile that predicts poor outcomes
Sonali Jindal 1,2,9, Nathan D. Pennock 1,9, Duanchen Sun3,9, Wesley Horton1,3, Michelle K. Ozaki 1,

Jayasri Narasimhan1, Alexandra Q. Bartlett1, Sheila Weinmann4, Paul E. Goss5, Virginia F. Borges6,7,

Zheng Xia 2,3,8,10 & Pepper Schedin 1,2,7,10✉

Young women’s breast cancer (YWBC) has poor prognosis and known interactions with

parity. Women diagnosed within 5–10 years of childbirth, defined as postpartum breast

cancer (PPBC), have poorer prognosis compared to age, stage, and biologic subtype-matched

nulliparous patients. Genomic differences that explain this poor prognosis remain unknown.

In this study, using RNA expression data from clinically matched estrogen receptor positive

(ER+) cases (n= 16), we observe that ER+ YWBC can be differentiated based on a post-

partum or nulliparous diagnosis. The gene expression signatures of PPBC are consistent with

increased cell cycle, T-cell activation and reduced estrogen receptor and TP53 signaling.

When applied to a large YWBC cohort, these signatures for ER+ PPBC associate with

significantly reduced 15-year survival rates in high compared to low expressing cases.

Cumulatively these results provide evidence that PPBC is a unique entity within YWBC with

poor prognostic phenotypes.
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Breast cancer incidence is bimodal, with peaks ~45 and 65
years of age referred to as early and late-onset disease,
respectively1–5. As breast cancer risk does not increase

linearly with age, it is suggested that early and late-onset breast
cancer are distinct entities with their own risk factors and
molecular signatures2,4. Early-onset breast cancer, also known as
young women’s breast cancer (YWBC), is a global concern.
YWBC accounts for ~11% of all new breast cancer diagnoses in
the United States6–8, and the incidence of YWBC in many
developing countries is higher9,10. Further, the incidence of
YWBC is increasing world-wide11–14. A recent retrospective
SEER registry study representing 25% of the US population
reported a 1.62 (1.16–2.09) fold increase in the incidence of
YWBC between 2000 and 2015 alone, with increased incidence
across all races and ethnicities13. In addition, compared with late-
onset breast cancers, YWBC is enriched in poor prognostic tumor
features15–18, has high levels of mortality15,18–21, and has
experienced limited gains in treatment efficacy16,22. Thus, an
improved understanding of the underpinnings of YWBC is nee-
ded to effectively combat this poor prognostic disease.

An elevated proportion of poor prognostic hormone receptor
(HR)-negative and HER2-positive breast cancers is often cited to
account for the adverse outcomes in young patients15–18. How-
ever, several lines of evidence suggest that differences in intrinsic
biologic subtypes—including estrogen receptor (ER) and
HER2 status—do not wholly account for the observed increased
mortality. For example, in the same US SEER study reporting a
1.62-fold increase in YWBC since 2000, the increase in incidence
was attributed exclusively to ER-positive (ER+) disease13. Fur-
ther, contrary to expectations that luminal A and B breast cancers
are less deadly in young women, a National Comprehensive
Cancer Network study of 17,575 women with stage I–III breast
cancer reports higher breast cancer mortality in young women
with luminal A (HR 2.1; 95% CI, 1.4–3.2) and B (HR 1.4; 95% CI,
1.1–1.9) cancers compared with young women with triple-
negative or HER2+ cancers23. Similar trends have also been
reported in young Chinese women24. These studies provide fur-
ther rationale to explore early-onset breast cancers as distinct
entities whose biology is not fully explained by differing ER or
HER2 status.

Since breast cancer incidence is influenced by parity25–30, one
possible explanation for the poor prognosis in young patients is
that cancer outcomes are associated with childbirth. A recent
meta-analysis of 41 studies addressed whether YWBC outcomes
are differentially influenced by a diagnosis during pregnancy or
the postpartum period. This analysis revealed a higher risk of
death only in women diagnosed postpartum (HR 1.79; 95 % CI
1.39–2.29)31. Further, these and other studies found that a diag-
nosis within 5–10 years of a recent pregnancy, referred to as
postpartum breast cancer (PPBC)32, independently associated
with a two- to threefold increased risk of death in both ER+ and
ER− disease33,34. Conversely, studies find that a diagnosis during
pregnancy is not associated with poorer outcomes35–37. Com-
bined, these studies implicate the existence of a postpartum event
that negatively impacts breast cancer prognosis. In women, the
postpartum window coincides with a developmental process
known as weaning-induced breast involution, a process demon-
strated to promote breast cancer development and metastasis in
rodent models38–41. Given that ~50% of all YWBC are diagnosed
within 10 years of a completed pregnancy33,34, further investi-
gation into the impact of postpartum breast involution on tumor
biology is warranted.

Involution is a physiologically normal process that remodels
the epithelial-dense, lactational gland to a pre-pregnant-like, non-
secretory state42–44. In female rodents, where the involution
process has been extensively studied, >80% of the lactational

mammary epithelium dies as part of a developmentally regulated
tissue remodeling process42–44. This process coordinates
responses of mucosal immunity, fibroblast activation, lym-
phangiogenesis, and wound-like extracellular matrix
deposition45–49. In addition to involution creating a transient
stromal microenvironment favorable for the expansion and
spread of primary tumor cells, involution also durably alters
murine mammary tumors. This is evidenced by features of ele-
vated COX-2 expression, increased lymphangiogenesis-inducing
capability, augmentation of a tumor-associated immune milieu,
and enhanced tumor growth and dissemination phenotypes, all of
which persist beyond the period of weaning-induced gland
involution in rodents38,47,50. Collectively, preclinical studies of
PPBC suggest that YWBC may be durably influenced by the
transitory developmental processes of mammary gland involu-
tion, which may result in distinct gene expression profiles pre-
dictive of poor outcomes.

Here, we address whether YWBC can be delineated into dis-
tinct molecular subtypes based on a nulliparous or postpartum
diagnosis. We focus on ER+ disease as an under-investigated
breast cancer subtype accounting for more deaths overall than
ER− disease34,51,52. We perform comparative RNA Seq expres-
sion analyses on treatment-naive formalin-fixed, paraffin-
embedded (FFPE) breast cancer tissues from young patients
using tumor stage-matched, ER+ postpartum (PPBC), and nul-
liparous breast cancers (NPBC). We validate gene expression
results using multiplex immunohistochemistry (mIHC). We find
that PPBC associates with enhanced signatures of cell cycle
control, T-cell activation and exhaustion, decreased ER signaling,
and altered P53 signaling compared with matched cases diag-
nosed in nulliparous women. This study strongly supports the
hypothesis that normal postpartum breast involution durably
alters breast cancer intrinsic and extrinsic factors predictive of
disease progression.

Results
PPBC RNA expression profile is distinct from NPBC. To gain
insight into the features that could lead to poorer outcomes in
PPBC patients, we focused our analyses on clinically determined
ER+ cases, as ≥65% of all young breast cancer patients (≤45 years
of age) are diagnosed with ER+ disease53. Further, young
women’s ER+ breast cancers have threefold increased likelihood
of progressing to metastatic disease when diagnosed postpartum
(PPBC) compared with nulliparous cases (Nulliparous Breast
Cancer–NPBC)34. To obtain a cohort of age and stage-matched,
treatment-naive, ER+ NPBC and PPBC cases, we performed
chart review for patient age, pregnancy history, tumor stage,
subtype, and treatment history. Of 40 selected cases, 16 ER+
cases (PPBC n= 9, NPBC n= 7) yielded RNA in sufficient
quantity and quality to advance to RNA sequencing and sub-
sequent gene expression analyses. Unsupervised hierarchical
clustering of these 16 samples across all 14,830 expressed genes
yielded separation of 14 of the 16 samples based on parity status
(Fig. 1a, nulliparous (blue) vs postpartum (black)). Of note, these
cases did not separate based on clinical stage, suggesting parity
history is more predictive of tumor gene expression than tumor
clinical stage in this young cohort. We identified the most dif-
ferentially regulated genes between NPBC and PPBC specimens
utilizing DESeq2 bioinformatics program and found 364 genes
with a false discovery rate (FDR) of ≤0.1 (adjusted p value).
Unsupervised clustering of these 364 genes resulted in only one
misalignment between the two parity groups (Fig. 1b). To
determine whether these differentially expressed genes represent a
coordinated change in tumor biology, we used STRING54 data-
base analysis, which predicts protein–protein interactions across a
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variety of annotated “omics studies”. We identified two dominant
(p value < 0.00001) clusters of genes that increased in PPBC
compared with NPBC. One of these clusters is associated with cell
cycle programs (Fig. 1c, purple) and the other with immunity
(Fig. 1c, green).

Gene set enrichment characteristics of PPBC. We next per-
formed rank-based gene set enrichment analysis (GSEA) on
PPBC compared with NPBC. We observed enrichment in path-
ways associated with six distinct biological processes in PPBC
compared with NPBC (Fig. 2a–f, Supplementary Data 1). Con-
sistent with the STRING analysis (Fig. 1c), we observed enrich-
ment for cell cycle and proliferation signatures (Fig. 2a), as well as
signatures associated with cell death and DNA repair (Fig. 2b).
We also observed enrichment in the T-cell presence-activation
signature (Fig. 2c), an observation that provides cell-specific

insight into the enriched immunity signature detected by
STRING analyses. Surprisingly, even though all cases were
determined to be definitively ER+ (Supplementary Table 1a), in
the PPBC cohort we observed enrichment of gene expression
profiles associated with ER-negative breast cancers55 (Fig. 2d).
Further, in PPBC tumors, we observed significant enrichment of
gene signatures associated with the normal developmental pro-
cesses of pregnancy and weaning-induced breast involution,
which supports the idea that PPBC tumors are durably influenced
by their host environment (Fig. 2e, f). To further investigate the
potential role of normal postpartum biology in the imprinting of
tumor biology, we next explored the relationship between our
PPBC cases and gene expression signatures obtained from whole-
transcriptome profiling from breast tissue of healthy patients
(n= 109)56. We analyzed this publicly available data set to focus
on gene sets from healthy nulliparous and postpartum subjects

Fig. 1 RNA expression profiling separates postpartum breast cancer (PPBC) from nulliparous breast cancer (NPBC). RNA seq, performed on RNA
obtained from FFPE specimens of primary ER+ breast cancer from patients 45 years of age or younger, reveals parity effect. Clustering analysis derived
from RNA expression profiles of biologically independent samples of nulliparous breast cancer (NPBC, blue, n= 7) and postpartum breast cancer (PPBC,
black, n= 9). a Euclidean hierarchical clustering of the 14,830 genes determined to be expressed above background. b Euclidean hierarchical clustering
based upon 364 differentially expressed genes between PPBC and NPBC determined by DESeq2 with an FDR < 0.1. c STRING database clustering
analysis54 of 185 upregulated PPBC genes generates two distinct biological clusters of statistical significance (adj= adjusted. p values adjusted according
to Benjamini–Hochberg for multiple comparisons).
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within 2 years of their last childbirth. As anticipated from pre-
vious reports56,57, we observed some normal involution sig-
natures in the postpartum normal tissue expression data sets,
such as a parity signature (Supplementary Fig. 1a) and the
immune infiltrate signature (Supplementary Fig. 1b). However,
neither the immune exhaustion signature (Supplementary

Fig. 1c), the ER-negative breast cancer signature (Supplementary
Fig. 1d) nor the proliferation signatures (Supplementary Fig. 1e, f)
were upregulated in normal postpartum tissue, whereas these
gene signatures were upregulated in PPBC samples. One inter-
pretation of these data is that PPBC is a convergence between
breast cancer and the reproductive milieu.

a b

dc

Cell Cycle-Proliferation

T-cell Presence - Activation

Cell Death-DNA Repair

ER (-)  Breast Cancer 

ParityMammary Gland Involutione

NES + 1.64
p-value - 0.030NES +1.63

p-value - 0.010

p-value - 0.042

p-value - 0.032

NES + 1.43

NES + 1.58

f
p-value - 0.031

NES + 1.44

NES +1.38
p-value - 0.049

NPBCPPBC NPBCPPBC

NPBCPPBC NPBCPPBC

NPBCPPBC NPBCPPBC

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26505-3

4 NATURE COMMUNICATIONS |         (2021) 12:6341 | https://doi.org/10.1038/s41467-021-26505-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Proliferation and TP53 characteristics of PPBC. To further
explore the relationship between the observed cell cycle gene
signature upregulated in PPBC and tumor cell proliferation, we
examined additional cell cycle gene sets and performed immu-
nohistochemistry staining for the cell cycle protein KI67. While
multiple gene sets (Fig. 3a) and single sample composite gene
score analyses (Fig. 3b) confirmed statistically significant
enrichment of cell cycle genes in PPBC, IHC staining for KI67 did
not differ by parity status in our FFPE RNA Seq samples (Fig. 3c,
circles, pseq= 0.3754). To more rigorously assess the consistency
of our RNA Seq findings, we expanded our IHC cohort to include
additional young women’s, ER+ PPBC and NPBC, FFPE speci-
mens (Fig. 3c, squares) providing 15 samples in each group. With
this expanded cohort we found no statistical significance in
KI67 staining between these groups (p= 0.3325), depicting a
disparity between protein single stain of proliferation (KI67) and
composite gene evaluations of proliferative activity. We next
explored the signature of increased cell death, DNA damage, and
DNA repair gene signatures in PPBC (Fig. 2c), which could
suggest increased genetic instability in PPBC tumors. Additional
pathway analyses found elevated programmed cell death and
TP53 pathways in PPBC (Fig. 3d), data consistent with mutant
TP53. To address this possibility, we utilized expression profiling
sequences to perform genomic analysis toolkit (GATK) muta-
tional calling, followed by cross-referencing for known TP53
mutations58 (Fig. 3e, flow chart). These analyses identified four
out of nine PPBC samples as containing canonical TP53 muta-
tions (Fig. 3e, bar chart). IHC analyses for P53 on all 30 IHC
samples validated these mutation calls. Specifically, the four
samples with TP53 mutations displayed enhanced P53 staining
consistent with stabilization of P53 protein by mutation (Fig. 3e,
inset). Of note, within our entire cohort, we observed significant
staining (>10% + nuclei) for P53 in most cases. However,
staining was not statistically different between PPBC and NPBC
samples. To assess the degree these TP53 mutations were
responsible for the increased proliferation signature attributes
observed in PPBC, we tracked the position of these bona fide
TP53 mutants throughout our analysis (orange-filled circles), and
found that TP53 mutational status does not correlate with cell
cycle score (Fig. 3b), nor KI67 (Fig. 3c).

PPBC is enriched for T-cell immunity. The most dominant gene
signature identified in PPBC is immunity (Fig. 1c), specifically
T-cell presence and activation (Fig. 2c). An important direct
mechanism of anti-tumor immunity is direct tumor cell lysis by
cytotoxic cells. Thus, we evaluated for cytotoxic cells in the
individual cases using a validated gene signature59,60, referred to
as an “immune infiltrate” signature, which is reflective of the
presence of cytotoxic T-cells or NK cells. We observed PPBC
samples were enriched in this immune infiltrate signature
(Fig. 4a). We next considered that PPBC tumors might be overall
enriched for immune cells; however, examination of CD45 (a pan
immune cell gene/protein) by IHC analyses (Supplementary
Fig. 2b, p= 0.108) or RNA expression (Supplementary Fig. 2c,
p= 0.351) found that CD45 was not significantly increased in

PPBC tumors. These data are consistent with specific enrichment
of cytotoxic immune cells or T-cells within PPBC. To further
delineate between these possibilities we performed T-cell receptor
(TCR) repertoire analysis to look for T-cell number and evidence
of activation. Using RNA Seq expression data, TCR repertoire
analysis revealed more unique TCR sequences from PPBC com-
pared with NPBC samples (Fig. 4b). Increased TCR repertoire
could be the consequence of increased diversity of tumor resident
T-cell clones or the consequence of having increased overall
T-cell numbers in PPBC specimens. To address the relative
diversity of the repertoire, we performed normalized clonal
analyses. The normalized entropy (clonality index) analysis
(Fig. 4c) and the Gini index analysis (Supplementary Fig. 2d) are
different mathematical models which both assess the diversity of
the repertoire relative to overall numbers of unique TCR
sequences. Both of these normalized measures of TCR diversity
depict a reduced TCR diversity in PPBC specimens, indicative of
clonal expansion. Further, we observe the increased clonality to
occur in PPBC within the “hyper-expanded” and “small” fre-
quency population of T-cell clones (Supplementary Fig. 2e).
Collectively, increased TCR sequences with increased clonality in
two different clonal space populations implicate T-cell activation,
which could occur through expansion of tissue-resident memory
populations as a consequence of inflammation and/or by antigen-
specific T-cell responses61,62. Overall, these data are consistent
with PPBC tumors eliciting a stronger T-cell response (immu-
nologically hotter) when compared with NPBC.

Greater insight as to how a T-cell presence may influence the
tumor microenvironment and perhaps contribute to the response
to therapy can be gained by a better understanding of attributes of
the T-cell pool. Interestingly, in our GSEA analysis, one of the
significant signatures to distinguish between PPBC and NPBC
samples was derived from molecular distinctions between
exhausted and non-exhausted T-cells found to be conserved
between chronic viral and tumor murine models (Fig. 4d). Given
the potential importance of this exhausted T-cell enrichment
profile, we performed additional analyses to further understand
the nature of the T-cells in PPBC samples. First, we performed
CIBERSORT63 analyses (Supplementary Data 2), which provides
a normalized estimation of specific immune cell populations from
mixed population RNA expression data. CIBERSORT analyses
reported significantly (p= 0.009) increased levels of CD8 T-cells
in PPBC cases (Fig. 4e), which we confirmed by IHC analyses
(Supplementary Fig. 2f). CIBERSORT also reported a significant
increase in T follicular helper cells (Tfh) (Fig. 4f). Interestingly,
among the molecules that distinguish Tfh from other T-cell
populations is the high expression of PD-164. Although widely
utilized, CIBERSORT has demonstrated limitations in accurately
predicting differential abundance amongst cell populations with
similar features. To more robustly characterize the abundance
and identity of T-cells in PPBC compared with NPBC we
performed mIHC staining with a specific emphasis on PD-1 (a
shared feature of activated, exhausted, and Tfh T-cells) and the
exhaustion correlated transcription factor TOX165–67. One
distinct advantage to mIHC and image cytometry is the ability

Fig. 2 GSEA identifies cell cycle, cell death, T-cell immunity, estrogen receptor signaling, and mammary gland developmental gene sets as
differentially expressed between PPBC and NPBC. Gene Set Enrichment Analysis (GSEA) was performed on normalized RNA Seq expression data from
biologically independent samples of postpartum breast cancer (PPBC, red, n= 9) and nulliparous breast cancer (NPBC, blue, n= 7) patients from Fig. 1,
utilizing Molecular Signature Database Collections (V. 7.0) and 100 custom gene lists compiled from the literature review. Gene sets with p values < 0.05
belonging to six biological processes were manually curated: a cell cycle and proliferation, b cell death and DNA damage repair, c T-cell related immunity, d
estrogen receptor signaling and estrogen receptor-negative breast cancer, e post-lactation mammary gland involution in rodents, and f parity status in the
human breast. Representative enrichment plots from each group are displayed with the determined nominal (non-adjusted) p value and normalized
enrichment score (NES)103.
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to deepen subset analyses based upon the context of intact tissue.
In our samples, we noted a prominent accumulation of T-cells
(CD3+) at the tumor border (Fig. 4gi, Source Data) in both PPBC
and NPBC. When this tumor border region was interrogated by
image cytometry, we identified a statistically significant increase

of T-cells—and more specifically of CD4 T-cells—as a fraction of
all immune cells (CD45+, Fig. 4gii-v, CD3 p= 0.046, CD4
p= 0.014). Regarding the relative polarization and activation of
T-cells as evaluated by the expression of PD-1 and TOX1, we
observed approximately twofold increases in PD-1+ (red or

Stabilization of P53

10
20
30
40

%
 P

os
iti

ve
 N

uc
le

i

(IHC)

NPBC PPBC

Mut

Cell Cycle Score 
p =0.038

*
NPBC

PPBC

-2.0 0.0 2.0 4.0

a Cell Cycle - Proliferation
PPBC - NPBC

NES + 1.47
p-value - 0.041

NES + 1.62
p-value - 0.013

b

d

NES + 1.66
p-value - 0.012 NES + 1.64

p-value - 0.036

Cell Death

PPBC - NPBC
Cell Death – DNA Damage & Repair e P53 Mutations

GATK 

mutation 

calling

ICGC 

mutation

NPBC PPBC

WT

(CENPE,CCNA2,CCNB2,MCM6,CCNF,

BUB1,CDC20,CDC6,CDK1,PLK1)

c

4

5
7

0

5

10

NPBCPPBC NPBCPPBC

NPBCPPBC NPBCPPBC

KI67
pseq = 0.3754

ca
se

s

100 um

100 um

N
PB

C
PP

B
C

165 um

165um

0

NPBC PPBC

pseq = 0.061

0
10
20
30
40

% P53 +(IHC)

p = 0.3325

p = 0.239

50

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26505-3

6 NATURE COMMUNICATIONS |         (2021) 12:6341 | https://doi.org/10.1038/s41467-021-26505-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


yellow bars, black star) and PD-1+ TOX1+ T-cells (yellow bar,
yellow star) within both the CD4 (Fig. 4giii-iv, white
arrows, Fig. 4gvi) and CD8 T-cell (Fig. 4giii-iv, black arrows, Fig.
4gviii) compartments. Intratumoral T-cells were also evaluated;
however, in general infiltration beyond the tumor border was
sparse. Although these data trended towards the same patterns as
observed at the tumor border, the scarcity of populations reduced
the numerical power necessary for statistical significance.
Combined, these data support the conclusions derived from the
RNA expression signatures, chiefly that PPBC has increased levels
of activated T-cells that express PD-1 and TOX1, which likely
contribute to the enhanced signatures of exhaustion from GSEA
analysis and the Tfh profile observed from CIBERSORT analyses.

PPBC regulon activity predicts poor outcomes in YWBC. To
further compare differences between PPBC and NPBC, we assessed
transcription factor activity networks known as regulons, as prior
work relying on FFPE tissues demonstrated enhanced fidelity of RNA
pathway analysis through regulon analysis55. Consistent with the
STRING and GSEA data above, we observed the most upregulated
regulons to be transcription factors associated with cell cycle path-
ways (e.g., E2F1, E2F4) (Fig. 5a). Second, we noted the most
downregulated pathways in PPBC to be TP53 and ESR1, data also
consistent with our pathway analyses (Fig. 3e, Fig. 2d). Although all
tumors in our study are highly ER+ by clinical assessment and do
not differ in percent ER positivity between groups (Supplementary
Fig. 3a, b), several of the most differentially regulated regulons
between PPBC and NPBC are transcription factors that are also
differentially regulated between ER− and ER+ breast cancers55

(Fig. 5a, green boxes). This correlation becomes more evident when
we plot regulon activity in PPBC vs NPBC in comparison with reg-
ulon activity previously reported between ER− vs ER+ cases
(Fig. 5b)55. To evaluate ER signaling further, we plotted the single
sample regulon activity score for the ER-associated pathway (ESR1)
for all samples, which revealed significantly decreased ESR1 signaling
in PPBC compared with NPBC (Fig. 5c).

Several gene sets and weighted gene expression algorithms exist for
ascribing tumor cell molecular subtype identity and treatment
recommendations, which historically have focused on HR activity as
a target for therapy and delineator of subtype. We next evaluated
whether these validated gene sets could distinguish between PPBC
and NPBC cases. First, we performed PAM50® molecular subtype
determination on all 16 samples. Unsupervised hierarchical clustering
based upon the PAM50® gene expression values did not robustly
separate the 16 cases by parity status or molecular subtype (Fig. 5d).
However, traditionally good prognostic luminal A cases in the PPBC
group clustered with the poorer prognostic luminal B cases in the
NPBC group (red boxes), data consistent with the idea that luminal

A PPBC has poorer outcomes than predicted based on their luminal
A designation. Next, we used normalized RNA Seq expression values
from Oncotype Dx® genes, designed to provide a recurrence score in
ER+ tumors68,69 to compute pseudo-Oncotype Dx® scores70,71

(Fig. 5e). As predicted, the Oncotype scores were lowest in luminal
A (dark purple), increased in luminal B (pink), with further increases
in Her2 (green) and finally basal cases (orange, PPBC only). We also
observed a statistically significant increase (p= 0.034) in overall
Oncotype Dx® score in the PPBC cohort compared with the NPBC
cohort, data consistent with overall reduced ER signaling in the PPBC
tumors. Likewise, we evaluated how genes in the Mammaprint®
signature, which is considered to be a tumor cell-intrinsic
determination of tumor cell subtype, devoid of stromal-related genes,
clustered our PPBC and NPBC cases (Supplementary Fig 2c). We
found no association between the expression of these genes and the
parity status of samples. Combined, these analyses reveal a need for
improved prognostic gene signatures for YWBC. We next utilized
our results characterizing PPBC through regulon analysis
and immune exhaustion gene sets to establish a PPBC signature
for ER+ disease.

To generate a composite PPBC signature, we added together
the single sample regulon values for the immune exhaustion and
E2F1 regulons (the two most upregulated PPBC regulons), and
then subtracted the P53 and ESR1 regulon values (the two most
downregulated PPBC regulons). To determine whether this PPBC
gene expression signature could predict outcomes in an ER+
YWBC cohort. We assembled a YWBC cohort (≤45 years old)
with outcomes data by compiling gene expression data across
seven previously published studies72–78. Although no parity
history was available on these publicly available cases, upon
applying our PPBC gene signature to this YWBC cohort (n= 311
patients with both ER+ and ER− disease) we observed a highly
significant decrease in 15-year overall survival in breast cancer
patients with a PPBC Hi signature score (HR 2.134, p= 0.0011)
compared with those with a low score (PPBC Lo, Fig. 5f).
Classically, ER+ breast cancers have a better prognosis than ER−
cancers, and this was found to be true in this cohort as well
(Supplementary Fig. 3d, HR= 2.455, p= 0.0001). To determine
whether our PPBC signature was indicative of only ER status, we
repeated the analysis on only the ER+ cases (n= 214) and again
found statistically significant reduced survival in the PPBC
signature high group compared with the low group (Fig. 5g,
HR= 2.30, p= 0.0084).

Discussion
In the present study, we addressed whether PPBC is molecularly
distinct from breast cancer diagnosed in nulliparous women. We
utilized a small FFPE breast cancer cohort, rigorously controlled

Fig. 3 Cell Cycle and TP53 gene signatures, TP53 mutational analysis, and immunohistochemical validation. Detailed examination of the proliferation,
cell death, and DNA damage pathways, as identified by RNA expression profiling described in Fig. 2, and IHC examination of these pathways. Depiction of a
two additional GSEA enrichment plots for cell cycle. b Single sample cell cycle score determined from RNA expression values from the indicated genes
(PPBC n= 9, NPBC n= 7). Data are presented as a minimum to maximum with median value marked by a line within the depicted interquartile range, and
p value determined by Students’ unpaired two-tailed t test with Welch correction. c Examples of immunohistochemical (IHC) evaluation of KI67-positive
(brown color) protein expression (left), with quantification of KI67 signal evaluated as the proportion of nuclei (right, PPBC n= 15, NPBC n= 15) Data are
presented as mean values ±SEM, and p value determined by Students’ unpaired two-tailed t test with Welch correction. Samples evaluated by RNA Seq are
depicted by circles and pseq refers to p values for these samples only, while expanded cases for IHC are depicted by squares and p values reflect values for
the whole cohort. d GSEA analysis assessments of cell death (left) or DNA damage and repair associated gene sets (TP53, right) (PPBC n= 9, NPBC
n= 7). e Flow diagram outlining computational steps and results for prediction of the presence of wildtype (WT) or mutant (MUT) TP53 genes in PPBC
(n= 9) and NPBC (n= 7) cohorts utilizing RNA Seq expression data (left), and P53 protein expression (brown color) assessed by IHC (PPBC= 15,
NPBC= 15), with P53 signal reported as percent positive area (right). Data are presented as mean values ±SEM and p value assessed by students’ unpaired
two-tailed t test with Welch correction. International Cancer Genome Consortium (ICGC) identified TP53 mutations are noted by orange-filled circles. For
GSEA plots, p values and normalized enrichment score (NES) were determined by GSEA software103 comparing PPBC (red, n= 9) and NPBC (blue, n= 7)
biologically independent samples as described in Fig. 1 and 2.
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for patient age, BMI, parity history, tumor clinical stage, ER
status, and treatment naivety, which permitted us to delineate the
role of recent childbirth on tumor gene expression in the absence
of potential treatment effects. We observed gene expression sig-
natures of PPBC to include pronounced T-cell presence and

T-cell activation/exhaustion signatures, reduced TP53 activity,
reduced ER signaling, and increased cell cycle gene signatures.
Further, we find PPBC cases in our cohort are characterized by
gene expression signatures associated with normal murine
mammary gland involution79–83, as well as recent childbirth in
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healthy women56,84. We compiled a signature composed of
transcription factor regulons representing the discrete biological
pathways differentially expressed in ER+ PPBC and applied this
PPBC regulon signature in a large YWBC population. This ana-
lysis revealed a significant overall survival disadvantage in young
women who had a high PPBC score compared with those with a
low score. In sum, these data are consistent with the transient
event of normal mammary gland involution durably influencing
breast cancer biology, leading to more lethal cancers.

Our data related to a pronounced T-cell presence and acti-
vated/exhausted T-cell signatures in PPBC samples is consistent
with the idea that normal weaning-induced breast involution
impacts the tumor immune milieu. Normal mammary gland
involution is characterized by increased T-cell infiltrate56, which
in rodent models includes regulatory (Foxp3, Il-10) and aner-
gized/tolerized T-cell phenotypes40,45,50. Physiologically regulated
T-cell suppression likely mitigates the potential for self-antigen
recognition that could result during the physiologically normal,
massive epithelial cell death phase that occurs with cessation of
weaning85,86. In rodents, PPBC tumors, but not tumors arising in
nulliparous hosts, were characterized by an immune milieu
consistent with T-cell suppression and tumor cell immune
avoidance50. This result is consistent with involution durably
altering the tumor immune milieu.

Our observation of loss of wildtype TP53—specifically in PPBC
tumors—may also reflect normal, weaning-induced involution
biology. The P53 tumor suppressor has been studied extensively
with respect to its role in maintaining genomic stability87.
However, P53 is also established as a physiological regulator of
involution where its activation initiates apoptosis in the secretory
epithelium88,89. We speculate that tumor cells present in the
involution environment may obtain a survival advantage by
suppressing response to this physiologic TP53 dependent cell
death pathway. Of potential relevance, studies comparing early
and late age at first pregnancy found that early age at first birth
associates with long-term protection, whereas late age at first
birth is associated with increased risk for breast cancer. In these
studies, TP53 mutations were enhanced in late parity cancer
cases90, implicating older maternal age as an additional risk factor
for harboring TP53 mutations. Collectively these results and our
observations in the present study warrant further investigation
into the relationships between parity, maternal age at first
childbirth and P53, in conferring poor prognosis.

A dominant molecular distinction in our genomic cohort data
was reduced ER signaling in PPBC cases as compared with

NPBC. This observation was surprising given that immunohis-
tochemical assessments revealed these tumors to be highly ER-
positive. One simple interpretation of these data is that in the
postpartum setting, ER-positive breast cancer is more analogous
to ER-negative disease with respect to downstream ER signaling
pathways. Consistent with our observations of reduced estrogen
signaling in PPBC, in a study of postpartum normal and tumor
breast tissue84, the signatures of ER signaling (ESR1) were
reduced in postpartum cases compared with their nulliparous
counterparts91. As with P53, it is possible that the downregulation
of ER signaling in tumor cells is a specific adaptation to the
involution microenvironment. Signal transducer and activator of
transcription (Stat) 5a is a well-established positive regulator of
lactation and its suppression is a requisite for the execution of
epithelial cell death after weaning80. Further, Stat5 expression is
under estrogen control in the murine mammary gland92. Thus,
one untested possibility is that ER+ tumor cells maintain
Stat5 survival signaling during involution by downregulating ER
signaling. Consistent with this hypothesis, expression of a con-
stitutively activated variant of Stat5 in the murine mammary
gland prevented weaning-induced involution and was associated
with ER+ adenocarinomas93. In sum, our study adds to a
growing body of literature reporting poor prognosis in breast
cancers expressing classic weaning-induced mammary gland
involution gene signatures56,81,83, and for the first time, extends
these studies to demonstrate enrichment of these signatures in
breast cancers that have experienced the involution
microenvironment.

We also observed a robust increase in cell cycle genes in PPBC.
It is noteworthy that these proliferation-associated gene expres-
sion signatures did not correlate with increased tumor cell pro-
liferation, as measured by KI67. The lack of increased
proliferation in PPBC compared with NPBC is concordant with
published data from a large retrospective study showing increased
metastasis rates in PPBC compared with nulliparous cases, but
similar tumor cell proliferation rates34, which were also assessed
by KI67 protein expression. It is possible that the biology cap-
tured in the cell cycle gene sets is, in fact, distinct from cell
division biology, and/or that KI67 does not adequately capture
cell proliferation94,95. Additional research is required to address
this apparent conundrum.

Finally, we suggest the gene expression signatures outlined here
in human PPBC will provide insight as to why PPBC patients
have poorer treatment responses and stimulate interest in alter-
native treatment approaches. When we considered how our

Fig. 4 PPBC is enriched for activated T-cells compared with NPBC. Characterization of the immune cell presence and T-cell immunity enriched in
postpartum breast cancer (PPBC) compared with nulliparous breast cancer (NPBC). a RNA Seq expression data was evaluated for genes associated with
cytotoxic or T-cell immunity using a gene signature called the single sample immune infiltrate score (PPBC n= 9, NPBC n= 7). b Unique numbers of T-cell
receptors (TCR) for each RNA Seq sample, compared between groups (PPBC n= 9, NPBC n= 7). Relative clonality demonstrated by c normalized (norm)
entropy (PPBC n= 9, NPBC n= 7). d GSEA profile-derived from exhausted T-cell signature. CIBERSORT deconvolution of RNA Seq data depicts increased
e CD8 T-cell and f T follicular helper (Tfh) presence as a fraction of total leukocytes (PPBC= 9, NPBC= 7). g multiplex IHC analysis of the tumor border in
NPBC (n= 13) and PPBC (n= 14) cases was subjected to quantification by image cytometry. gi Hematoxylin (blue) stain & AMEC (red/brown) for CD3
demonstrating T-cell accumulation in the tumor border region. Dashed lines indicate demarcation of intratumoral and tumor border regions. gii Aligned
pseudo colored multiplex IHC images depicting staining from hematoxylin (dark blue) and chromagen mediated antibody detection of CD4+ (light blue)
CD8+ (purple), PD-1+ (red) or TOX1+ (green) cells. PD-1+/TOX1+ cells giii appear yellow due to overlap of red and green coloring. giv PD-1+ and
TOX1+ cells depicted in giii can be either CD4+ (white arrows) or CD8+ (black arrows) T-cells. gv Pie-charts depicting increased CD4+ CD3+ T-cells
(light blue, p= 0.0052) and total T-cell content (light blue and purple, p= 0.0225) as fraction of CD45+ cells in the PPBC cohort. PD-1+ (red), TOX1+
(green) or PD-1+ TOX1+ (yellow) cells as a fraction of the gvi CD45+ CD3+ CD4+ (yellow group comparison= yellow star p= 0.0225, PD-1/red +
yellow comparison= black star p= 0.05) or gvii CD45+ CD3+ CD8+ (yellow group comparison= yellow star p= 0.0205, PD-1/red + yellow
comparison= black star p= 0.028) T-cell compartments. P values determined by GSEA software (nominal, non-adjusted p value, d) or Students’ unpaired
two-tailed t test with Welch correction (a–c, e, f), or Students’ unpaired one-tailed t test with Welch correction for confirmatory IHC(*p≤ 0.05, g). ICGC
identified TP53 mutations are noted by orange-filled circles. For box and whisker plot (a) data are presented as minimum to maximum with median value
marked by a line within the depicted interquartile range, whereas data depicted in bar graphs (b, c, e, f, gvi, gvii) are presented as mean values ±SEM.
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observations fit into existing paradigms of informative gene sets,
we found no clear correlation from PAM50® subtype determi-
nation nor the Mammaprint® signature. The Oncotype Dx®

recurrence score calculation did modestly delineate between
nulliparous and PPBC cases, however, the majority of these 16

YWBC cases had high recurrence scores regardless of ER
expression or parity status. Thus, further research is needed to
determine the best clinical tools capable of delineating low- and
high-risk ER+ YWBC and the influence of parity status on those
outcomes. By combining parity, treatment, and outcomes data
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already available, it may be possible to inform novel treatment
strategies for PPBC and determine if any of the existing agents for
overcoming ER therapeutic resistance, such as the CDK4/6
inhibitors and their inhibition of the cell cycle, may have added
benefit for PPBC, or identify other novel combinations. In
addition, given the observation that PPBC, which evolved in the
involution environment, has an elevated and activated T-cell
compartment with increased expression of PD-1, there may be a
select benefit for these patients from checkpoint blockade inhi-
bitors. Already, preclinical data in mouse models depict unique
and favorable responses in PPBC tumors to immune modulation
via COX-2 suppression38,96 as well as checkpoint blockade97.

The chief limitations in this study are the modest size of the
NPBC and PPBC cohorts and the reliance on FFPE tissues. As
recently highlighted, both of these limitations are predicated on
the lack of well-annotated clinical data in YWBC, including time
since last pregnancy, as well as the relative rarity of YWBC and
PPBC98. A further limitation is that the immune milieu profiling
by mIHC was focused on a small subset of T-cell activation and
exhaustion markers. Future studies are needed to better under-
stand the complexity of the immune milieu in YWBC in general,
and in PPBC specifically. Studies of PPBC utilizing fresh, and
therefore potentially more informative specimens, necessitate
multi-institutional coordination, a worthy objective given the
poor prognosis of this disease.

This study utilized an extensive chart review of a single breast
cancer repository, spanning 15 years of samples, to build a rig-
orously controlled FFPE cohort of YWBC with known repro-
ductive histories. This approach demonstrated that ER+ breast
cancer in the background of recent childbirth is a molecularly
distinct, poor prognostic subtype. This study serves as a mole-
cular anchor point, aligned with extensive epidemiological data,
which can support future studies focused on the utilization of
fresh samples and larger cohorts. Such studies will undoubtedly
provide further insights into the interactions between reproduc-
tive history, breast cancer biology, and YWBC patient outcomes,
with the potential to improve clinical practice and patient
outcomes.

Methods
Ethics approval and consent. The research was conducted on archived FFPE
tissues samples collected under IRB-approved protocols at the Kaiser Permanente
Northwest Center for Health Research (KPNW IRB) and the Oregon Health &
Science University (OHSU IRB). These tissue archives are comprised of clinical
samples obtained from women with invasive cancer who were receiving standard of
care treatment. The study was retrospective, entailing the use of routinely collected
data and archival invasive breast disease tissue and therefore granted a waiver of
informed consent by the participating IRBs. All data were fully anonymized before

access by the researchers, labeled only with study-specific identifiers at all points,
and the study was approved by the Committee on Clinical Investigations of the
OHSU and by the Kaiser Permanente Northwest Biospecimen Review Committee.

Sample description. Archival FFPE breast cancer tissues (n= 40) were from
primary breast cancers of premenopausal women aged 21–45. Inclusion criteria for
the cases section were based on age at cancer diagnosis (≤45), parity status, body
mass index (BMI), and availability of necessary clinical data and archived tissue
specimens. The study was open to all races and ethnicities, however, based on study
site demographics, the majority of the study population was white, nonhispanic,
women (73%) (Supplementary Table 1a). Exclusion criteria included unknown
time intervals from last childbirth, cases who were pregnant at breast cancer
diagnosis, archived tissue specimens unavailable for research use, or from women
who did not give consent for use of their tissue or clinical data for future research.
As our study specifically used breast tissue that was naive for any treatment
including neoadjuvant therapy, if that tissue was unavailable for research we
excluded the case from the current study. Further, ER-negative cases (n= 9) and
cases with DCIS without evidence of invasive cancer on the available tissue section
(n= 1) were excluded from the current study. Using the above inclusion and
exclusion criteria, the selected cases (n= 30) included women under the age of 45,
ER-positive, who were either diagnosed with invasive breast cancer ≤4 years of last
childbirth (PPBC) or were nulliparous (cases with spontaneous and/or elected
abortions were excluded) based on reproductive history recorded in clinical charts
(NPBC). The clinical characteristics of this cohort are shown in Supplementary
Table 1a.

All archived H&E-stained slides from clinically indicated surgery were
evaluated by a pathologist for each case. Blocks from slides with >80% tumor
content were chosen for RNA extraction (10 µm sections), and sequential sections
were used for immunohistochemical analysis (4 µm sections).

RNA isolation. Total RNA was extracted from freshly cut 10 µm FFPE sections
using the miRNeasy FFPE kit (Qiagen, Valencia, CA) according to the manu-
facturer’s protocol, using 1–4 sections (10–40 µm) per case55. RNA yield was
determined by UV absorption on a NanoDrop 1000 spectrophotometer and
fragment size was analyzed using the RNA 6000 Nano assay (Agilent Technologies,
Santa Clara, CA) run on the 2100 Bioanalyzer. RNA quality was assessed using
DV200 values. Of 40 cases meeting our inclusion criteria, 16 ER+ cases (PPBC
(n= 9), NPBC (n= 7)) yielded RNA of quality (DV200 > 27%) needed to advance
to RNA sequencing and in-depth RNA expression profiling. The tumor char-
acteristics of these tumors are presented in Table 1b.

Library preparation and sequencing. An input of 75 ng of total FFPE derived
RNA was used with the TruSeq RNA Access Library Prep Kit and was prepared
according to manufacturer instructions (Illumina, San Diego, CA). Libraries were
quantified by real-time PCR using KAPA Library Quantification kits (Kapa Bio-
systems, Wilmington, MA) on ABI StepOne thermocycler, pooled according to
library method (three libraries per lane), and sequenced on a Hi-Seq 2500 (Illu-
mina) using a 100 cycle, single-end protocol providing ~90 million reads per
sample. Base call files were converted to fastq format using Bcl2Fastq (Illumina), as
described55.

RNA sequence alignment. All RNA Seq reads were aligned to the human refer-
ence genome (GRCh38, release 84) using STAR (version 2.5.2b)99 with default
parameters. The STAR “GeneCounts” module was used to quantify the number of
reads mapping to each gene. We also used RSEM (version: v1.2.31) to quantify
fragments per kilobase of transcript per million (FPKM) of the gene expressions.

Fig. 5 Regulon activity signatures identify key biological processes in PPBC that predict poor prognosis in Young Women’s Breast Cancer. RNA
expression profiles between postpartum breast cancer (PPBC, red, n= 9) and nulliparous breast cancer (NPBC, blue, n= 7) were evaluated for a
transcriptional network activity through regulon analysis and b compared with regulon results comparing FFPE derived ER-negative to ER-positive breast
cancer specimens. Most differentially active ER- regulons are highlighted as green boxes (a) and green circles (b). Most differentially active regulons
between PPBC and NPBC are highlighted by bolded circles in red (upregulated) or blue (downregulated). c Single sample ESR1 regulon activity scores for
PPBC (n= 9) and NPBC (n= 7) were evaluated. ICGC identified TP53 mutations are noted by orange-filled circles. Data are presented as a minimum to
maximum with a median value marked by a line within the depicted interquartile range. d Gene expression values for the expressed (49) genes of the
PAM50® subtype determination assay were evaluated to determine intrinsic subtype for each sample assessed for determination of sample clustering in
PPBC and NPBC samples. e Pseudo-Oncotype Dx® recurrence scores were derived from RNA expression values for each sample and compared between
cohorts (NPBC n= 7, PPBC n= 9). Data are presented as mean values ±SEM. f A postpartum breast cancer regulon-based gene expression signature was
composed incorporating immune exhaustion (Fig. 4d), proliferation (E2F1), P53, and ESR1 regulon activity values and evaluated for prognostic significance
from a multi-study accumulated cohort of Young Women’s Breast Cancer (n= 311) composed of female breast cancer patients whose primary breast
cancer diagnosed occurred at the age of 45 or under. g Subset analysis in ER-positive cases (n= 214) from this YWBC cohort. Cohorts were split into PPBC
signature high (hi, red, n= 107) or low (lo, black, n= 107) cohorts based upon the median value of the group plotted. P values were determined by
Students’ unpaired two-tailed t test with Welch’s correction (c, e) or by two-tailed log-rank (Mantel–Cox) evaluation for survival plots (f, g). Log-rank
evaluated Hazard Ratios (HR) are depicted.
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Data processing and significance testing. Gene expressions quantified by read
counts from STAR were used as input into DESeq2100 for differential expression
gene (DEG) analysis. Genes with counts per million (cpm) >0.05 in at least three
cases for each group were kept (14,830 genes) for subsequent DEG analyses. DEG
analysis was performed by comparing the PPBC cases and the nulliparous cases.
The differentially expressed genes were called based on the FDR 0.01 and log two-
fold change >1. In the DESeq2 package, counts were normalized using the variance
stabilizing transformation (VST) module in DESeq2 for downstream analyses.

Breast cancer subtype prediction. All cases included in the study were designated
as ER-positive as per clinical immunohistochemical evaluation. Using the PAM50®

prediction parameters as described by Parker et al.101, the tumor biologic subtypes
(luminal A, luminal B, Basal, HER2) were predicted for these cases based upon
gene expression values derived from whole-exome sequencing.

Mammaprint®, and PAM50® gene set heatmaps. To assess the ability of pre-
viously reported cancer gene sets to distinguished cohorts, VST transformed counts
by DESeq2 were a subset for all expressed matching genes from the Mammaprint®,
and PAM50® gene sets. Dendrograms were produced using hierarchical clustering
of the z score transformed Euclidean average linkage distances through the Mor-
pheus software package (https://software.broadinstitute.org/morpheus). For
PAM50®, subtypes, as well as proliferation, ER, and HER2 scores, were generated
using the original prediction parameters as described by Parker et al.101.

Pseudo-oncotype Dx® score. Whole-exome sequencing derived rather than
clinical diagnostic approved Oncotype Dx® scores (therefore pseudo) were calcu-
lated from reported gene expression values utilizing reported normalization
equations70,71,102. Specifically, all group scores were determined by subtracting the
average expression value across control genes (normalized reference) from each
target gene value and adding a value of 10 to the difference and scores
computed102.

Gene set enrichment analysis. For GSEA103 on PPBC compared with NPBC,
GSEA version 4.0.3 was used to identify enriched gene sets from the Molecular
Signature Database (MSigDB v 7.0, Hallmark, Collection 2, 3, 5–7), as well as 100
customized gene sets prepared from studies relevant to breast cancer, cancer
immunity and normal breast biology56,59,80,81,83,84,90,104–113 (Supplementary
Data 01). Gene sets were considered to be enriched if their FDR q value was 0.05.
Whole-exome gene expression array data from healthy nulliparous (NP, blue,
n= 30) or healthy postpartum breast (PP, red, within 2 years of completed
pregnancy, n= 10) tissues was obtained from a previous study (GEO Acces-
sion#GSE26457) normalized using Transcriptome Analysis Console software (TAC
V.4.02, ThermoFisher Scientific). and used as input values for comparison of GSEA
profiles (Supplementary Fig. 1).

Master regulator analysis. In order to infer the activities of transcription factors,
we used the master regulator inference algorithm (MARINa)114 compiled in R
‘viper’ package115 to perform the regulon analyses on PPBC and NPBC samples.
Two sources of data, gene expression signature, and regulatory network were
required as model inputs. In this work, the Student’s t test based statistic as sug-
gested in viper manual was used as gene expression signatures. The regulon used
for the transcription factor activity inference was curated from four databases116.
The single sample-based regulon activities were inferred by function “viper”, which
is an extension of MARINa114 and transforms a gene expression matrix to a
regulatory protein activity matrix. For the model input, we used the FPKM
quantification of PPBC and NPBC samples as the expression matrix and the same
regulon network described above as the regulatory network.

Clonal entropy and reciprocally related clonal index analyses. We employed
MiXCR (Version 3.0.12,MiLaboratory LLC) (Fig. 4d, e) to analyze TCR, which has
an option to identify TCRs from standard RNA Seq. Specifically, MiXCR removed
out-of-frame TCR sequences and identified unique V-CDR3 (nucleotide
sequence)-J seed sequence and clustered identical sequences computing the fre-
quency of each unique TCR clonotype. A number of TCR repertoire metrics were
reported by summarizing the results from MiXCR, including the number of unique
TCRs, normalized entropy, clonality index, and repertoire occupancy. Diversity
was represented by normalized Shannon entropy (H) reflecting a quantitative
measure of how many unique TCR clonotypes were present per sample, and
simultaneously indicating how evenly they were distributed (p). For diversity
measurement, the value of a diversity index increases when the number of unique
TCR sequences increases and when evenness increases. For a given number of
uniques, the value of a diversity index is maximized when all types of unique TCRs
are equally abundant, and calculated using the default entropy function from the
entropy R package using the formula: H ¼ �∑n

k¼1f k ´ lnðf kÞ, where n is the
number of unique clonotypes in a sample, k represents a particular clonotype and f
is the frequency of the kth clonotype. Clonality or Clonal index (C) reflects the
inverse of the normalized Shannon’s entropy H, a statistic for how much of the

repertoire is made up of expanded clones calculated by C ¼ 1� H= lnðnÞ, where H
is the Shannon entropy, and n is the number of unique clonotypes per sample.

CIBERSORT analysis. In order to estimate the abundances of immune cells from
the bulk RNA Seq, we utilized CIBERSORT63 to calculate the proportions of 22
human leukocyte cell subsets defined in the CIBERSORT package for each bulk
RNA seq sample. Statistical significance of proportions of each immune cell type
between NPBC and PPBC were determined using a two-tailed Student’s t test with
Welch’s correction.

Compilation and analysis of YWBC cohort. In this study, YWBC data sets were
collected from 8 studies and downloaded from the Gene Expression Omnibus
(GEO) with the following accession number: GSE199272, GSE2062473,
GSE2165374, GSE653275, GSE299079, GSE492276, GSE739077, and GSE1961578.
The GEOquery and biomaRt R packages117 were used to download the raw
expression and meta data. YWBC was defined as a diagnosis at age less than 45,
which resulted in 648 YWBC samples in total. The raw data sets with different
Affymetrix platforms were merged together and the expressions of all data sets
were corrected by ComBat R package to remove the underlying batch effects. The
averaged expression profiles of microarray probe IDs that map to the same gene
symbols were used to quantify the gene expressions for these 648 samples.

Multiplex IHC, Aperio, and ER quantification. Formalin-fixed, paraffin-embed-
ded (FFPE) tissues were sectioned at 4 μm. Prior to staining, slides were baked for
2 h at 60 °C and then rehydrated through sequential immersion through xylene,
graded alcohols, and water. Next, slides were antigen retrieved in a pressure cooker
using DAKO Target Retrieval Solution (pH 6) at 125 °C for 5 min and then
cyclically probed50 in the following order with the indicated antibody, dilution and
incubation times: Cycle 1 (PD-1, abcam, ab52587, Clone NAT105, 1:100, 1Hr),
Cycle 2 (KI67, Thermofisher, RM-9106-S, Clone SP6, 1:300, 1Hr), Cycle 3 (TOX1,
abcam, ab237009, Clone NAN448B, 1:800, overnight), Cycle 4 (P53, Thermofisher,
MA5-12557, Clone DO-7, 1:100, 2Hr), Cycle 5 (Phospho-Histone H2A.X (Ser139),
Cell Signaling, 9718, Clone 20E3, 1:250, 1Hr), Cycle 6 (CD8, BioSB, BSB5174,
Clone C8/144B, 1:100, 1Hr), Cycle 7 (CD3, Dako, A0452, 1:400, overnight), Cycle 8
(CD45, Dako, M0701, Clones 2B11+ PD7/26, 1:300, 1Hr). Next, secondary anti-
rabbit or anti-mouse Simple Stain MAX PO Histofine Peroxidase Polymer
(Nichirei Biochemicals, 414144 or 414134) or anti-rat ImmPRESS Peroxidase
Polymer (Vector Laboratories, MP-7444) antibodies were applied, followed by
chromogenic detection with peroxidase substrate 3-amino-9-ethylcarbazole (AEC).
The stained sections were scanned digitally using Aperio Image Scope AT2 (Leica
Biosystems, CA, USA) at 20x magnification. For Aperio analysis, scanned images
were visualized on Image scope software (v12.4.3) and the tissue sections were
annotated for all tumor areas present per section followed by the semi-quantitative
image analysis performed on the entire tumor area using Aperio deconvolution and
nuclear algorithms (Leica Biosystems, CA, USA)57,118. Further, for the CD45, CD3,
CD8, PD-1, and Tox multiplex IHC (mIHC) staining analysis on a per-cell basis,
the pixel density of the scanned images necessitates region of interest (ROI) ana-
lysis, thus ~3–4 ROIs were selected per case where the immune cell infiltrate was
high (based on H&E and CD45 staining review). Regions with high immune cell
infiltrate were selected so that sufficient events needed to perform statistically
supported single-cell analyses were captured. The selection of ROIs for each case
was done by 2 analysts blinded to the reproductive status of the cases, with cases
randomly sorted prior to ROI selection. Image processing, alignment of selected
regions, and extraction of AEC signals was performed in MATLAB
(V9.90.1592791) using the SURF algorithm in the Computer Vision Toolbox (The
MathWorks, Inc) and FIJI as reported55,119. Pipeline for image processing and cell
quantification was performed using FIJI (FIJI v 2.1), CellProfiler Version 4.1.3, and
FCS Express Image Cytometry RUO (7.06.0015, De Novo Software, Glendale,
CA)120. ER staining (ER, Novocastra, NCL-L-ER-6F11, 1:200, 1Hr) and patholo-
gical assessment for the intensity and % positive tumor cells for assigning an overall
percent positive staining was done by a pathologist. The % positive ER results were
independently confirmed by a second observer blinded to the study group. mIHC
evaluation was carried out for all cases which passed multiple image alignment and
segmentation quality control evaluations (n= 13 NPBC and n= 14 PPBC cases).

Statistics and reproducibility. Statistical significance determined by p values were
generated by GraphPad-Prism Software (V9.2.0) (GraphPad Software, San Diego,
California USA) unless otherwise stated and was performed as Students’ unpaired
two-tailed t test with Welch correction (*p ≤ 0.05), or Students’ unpaired one-tailed
t test with Welch correction for apriori directionality in confirmatory IHC. Survival
curves were also plotted with GraphPad-Prism Software and p values reported
from log-rank (Mantel–Cox) evaluation and log-rank Hazard Ratios (HR)
reported.

To preserve the precious human clinical samples the mIHC staining was
conducted once. With each staining run, human breast cancer and tonsil tissue
samples were used as negative and positive controls for technical validation of
staining and standardization of analysis across cases.

RNA library preparation and sequencing were carried out once per case
utilizing previously established methodologies which demonstrated reproducibility
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of a single technical replicate through evaluation of isolation and sequencing
replicates55.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-derived sequencing data generated in this study have been deposited in the
Gene Expression Omnibus (GEO) database under accession code GSE158854. The
publicly available RNA expression data from healthy nulliparous and postpartum breast
tissues used in this study are available in the GEO database under accession code
GSE26457. The publicly available outcomes data based upon RNA expression profiling
used in this study as a YWBC cohort are available from the GEO database under
accession codes, GSE1992, GSE20624, GSE21653, GSE6532, GSE2990, GSE4922,
GSE7390, and GSE19615. All numerical data used in generating plots of figures are
available as Source Data. All remaining data are available within the Article,
Supplementary Information, or Source Data files. Source data are provided with
this paper.
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