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Abstract

The spectral‐based photochemical reflectance index (PRI) and leaf surface

temperature (Tleaf) derived from thermal imaging are two indicative metrics of plant

functioning. The relationship of PRI with radiation‐use efficiency (RUE) and Tleaf with

leaf transpiration could be leveraged to monitor crop photosynthesis and water use

from space. Yet, it is unclear how such relationships will change under future high

carbon dioxide concentrations ([CO2]) and drought. Here we established an [CO2]

enrichment experiment in which three wheat genotypes were grown at ambient

(400 ppm) and elevated (550 ppm) [CO2] and exposed to well‐watered and drought

conditions in two glasshouse rooms in two replicates. Leaf transpiration (Tr) and

latent heat flux (LE) were derived to assess evaporative cooling, and RUE was

calculated from assimilation and radiation measurements on several dates along the

season. Simultaneous hyperspectral and thermal images were taken at ~1.5 m from

the plants to derive PRI and the temperature difference between the leaf and its

surrounding air (∆Tleaf−air). We found significant PRI and RUE and ∆Tleaf−air and Tr

correlations, with no significant differences among the genotypes. A PRI–RUE

decoupling was observed under drought at ambient [CO2] but not at elevated [CO2],

likely due to changes in photorespiration. For a LE range of 350Wm–2, the ΔTleaf−air
range was ~10°C at ambient [CO2] and only ~4°C at elevated [CO2]. Thicker leaves

in plants grown at elevated [CO2] suggest higher leaf water content and

consequently more efficient thermoregulation at high [CO2] conditions. In general,

Tleaf was maintained closer to the ambient temperature at elevated [CO2], even

under drought. PRI, RUE, ΔTleaf−air, and Tr decreased linearly with canopy depth,

displaying a single PRI‐RUE and ΔTleaf−air Tr model through the canopy layers. Our

study shows the utility of these sensing metrics in detecting wheat responses to

future environmental changes.
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1 | INTRODUCTION

Rising atmospheric carbon dioxide concentrations ([CO₂]) and future

climatic conditions may interact in complex ways to impact crop

production and quality (Ainsworth & Long, 2020; Eller et al., 2020;

Tausz‐Posch et al., 2020). Forecasting these future impacts requires

(1) understanding plant response to biotic and abiotic factors and (2)

integrating these understandings into models to represent such

impacts. The first is achieved through analysing observational data

acquired from natural and manipulative experiments (Kimball, 2016;

Uprety et al., 2006). The second is achieved by formulating

mathematical equations that describe crop responses to interactive

effects (Asseng et al., 2014).

In that sense, remote sensing is a powerful tool that can expand

the scope of the observations in time (through continuous monitor-

ing) and space (to a broader scale) and serve as an additional

calibration and validation tool. Moreover, since a fundamental

challenge for crop modelling is the upscaling of photosynthetic

parameters from the leaf to the canopy due to the often non‐linear

responses among different scales (Jarvis, 1995), the use of remote

sensing can aid in filling this scale gap (Thenkabail et al., 2016).

Remote sensing can be used to parameterize important traits and

processes by relating spectral or thermal metrics derived from

sensors onboard flying vehicles to small‐scale in situ measurements

(Cohen et al., 2015; Gamon et al., 2019; Herrmann & Berger, 2021;

Manfreda et al., 2018).

One important photosynthetic parameter for modelling crop

production is radiation‐use efficiency (RUE). RUE is directly related to

plant growth through the assimilation rate relative to the available

amount of photosynthetic radiation. As such, RUE is one of the most

important physiological traits in the plant's response to climate and

environmental change. The use of RUE was proposed by Monteith

(1977) as a biophysical metric for modelling gross primary productiv-

ity by considering the efficiency of the plant in converting the

absorbed intercepted energy (absorbed photosynthetic active radia-

tion [APAR]) into carbon gain (plant biomass):

GPP = APAR × RUE. (1)

RUE was shown to vary among species and throughout the

season, being highly affected by meteorological and environmental

conditions (e.g., water availability, temperature, vapour pressure

deficit, and soil mineral content), which makes its modelling a

challenging task (Balzarolo et al., 2019; Helman et al., 2017). Crop

models use RUE and transpiration efficiency (TE) parameters to

simulate plant growth and development under different environ-

mental and climate conditions (e.g., Miller et al., 2019). For example,

to account for [CO₂] effects, RUE and TE are adjusted through linear

or near‐linear functions (O'Leary et al., 2015). Several studies,

however, have shown a complex genotype‐by‐environment interac-

tion under elevated [CO2] (eCO2) and different meteorological

conditions that challenge the notion of a simple adjustment of these

parameters through a linear function of [CO₂] (Eller et al., 2020; Jiang

et al., 2022). Thus, a more robust model representation of such

important parameters is required to account for observed climate and

[CO2] effects on crops. The first step would be to monitor RUE and

TE under different conditions through time and at different scales.

The photochemical reflectance index (PRI), which was first

derived and named by Gamon et al. (1992) and Peñuelas et al.

(1995), has been shown to be a good proxy for RUE in many studies

(Filella et al., 2004; Gamon et al., 1997; Garbulsky et al., 2011). PRI

and RUE correlations were found at various levels (Gamon et al., 2005;

Kováč et al., 2018; Sukhov et al., 2021) and timescales (Gamon

et al., 1992; Magney et al., 2016; Porcar‐Castell et al., 2012). Since

PRI can be derived from remote sensing, its use opens up a great

opportunity for modelling RUE from space (Hilker et al., 2009). The

biophysical link between the two is based on the fact that the

inhibition mechanism by which plants avoid damage from excess

energy is related to pigment changes that affect the absorbance of

light at the 530 nm wavelength (Gamon et al., 1992; Peñuelas

et al., 1995). More specifically, when plants are exposed to excess

light, they apply a photoprotective mechanism by which xanthophyll

nonphotochemical quenching occurs (Evain et al., 2004; Kohzuma

et al., 2021). The xanthophyll cycle is a photosynthetic process linked

to excess light energy—that is, light absorption that is beyond ATP

utilization. The mechanism involves the dissipation of excess energy

as heat through the de‐epoxidation of violaxanthin (xanthophyll

pigment) to zeaxanthin. Such a pigment change is reflected in the

absorbance of light at the yellow band of the visible spectrum

(~531 nm) and is the basis for deriving PRI (Gamon et al., 1992;

Peñuelas et al., 1995):

PRI
R R

R R
=

−

+
,

531 570

531 570
(2)

where R531 and R570 represent the reflectance at the 531 and 570 nm

wavelength, respectively.

Although PRI has been proven as a reliable proxy of RUE, as well

as of other ecophysiological variables related to photosynthetic

activity (Demmig‐Adams & Adams, 2006; Kohzuma et al., 2021;

Zhang et al., 2017), its performance at the canopy scale is limited by

several factors (Hmimina et al., 2014; Magney et al., 2016; Peñuelas

et al., 2011; Zhang et al., 2017). Viewing geometry, illumination

angle and canopy structure, including leaf shape and orientation, all

affect PRI and its ability to accurately track RUE (Amthor, 1994;

Garbulsky et al., 2011; Magney et al., 2016; Peñuelas et al., 2011;

Zhang et al., 2016). Light interception/absorption across the canopy

vertical profile changes at different light conditions, leading to RUE

acclimation to prevailing conditions. That may also affect the

PRI–RUE relationship. In addition, abiotic stresses were observed

to affect the PRI–RUE relationship, challenging the use of PRI in

monitoring RUE from space under extreme drought or heatwave

conditions (Fréchette et al., 2015; Porcar‐Castell et al., 2012).

Evaporative cooling is another important parameter in many

models. It occurs through leaf transpiration (Tr), the process by which

plants lose water via the stomata opening, a process that releases

energy. Such energy release results in the cooling of the leaf surface
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(Gates, 1968; Jones et al., 2009; Still et al., 2019). Thus, changes in

leaf temperature (or, more precisely, changes in the temperature

difference between the leaf and its surrounding environment—

ΔTleaf−air) are indicative of evaporative cooling, and different leaf

temperature responses to water stress levels may reflect different

water‐use strategies (Inoue, 1991; Kim et al., 2018; Lapidot

et al., 2019; Lima et al., 2016; Sagan et al., 2019). Depending on

the level of stress, soil water scarcity (i.e., drought) will make the

stomata close as a strategy to conserve water, thereby reducing

transpiration and leading to an increase in the leaf temperature

(Cornic, 2000; Klein et al., 2011; Matese et al., 2018; Muller

et al., 2021b).

Thermocouples equipped with an infrared gas analyser or thermis-

tors can measure such a change. However, this direct‐contact estimation

is confined to the contact point and does not necessarily represent the

entire plant (Kim et al., 2018; Klein et al., 2013). In that sense, thermal

imaging can provide a broader view of the thermal response of plants to

biotic and abiotic factors at different scales (Lapidot et al., 2019; Lima

et al., 2016; Möller et al., 2007; Smigaj et al., 2017; Still et al., 2019;

Vialet‐Chabrand & Lawson, 2019). Since many studies suggest that future

elevated [CO2] combined with projected climate changes are likely to

affect photosynthesis parameters (e.g., RUE) and the water use of plants

(affecting the evaporative cooling of the leaves), it is essential to assess

how such changes will influence our ability to monitor RUE and

evaporative cooling via remote sensing metrics like PRI and ΔTleaf−air.

We conducted two glasshouse experiments in which three wheat

cultivars were exposed to a level of [CO2] expected toward the

middle of this century. Plants were subjected to drought (deficit‐

watered) and compared with plants grown under ambient [CO2] and

well‐watered conditions. We measured gas exchange parameters and

calculated RUE and evaporative cooling (i.e., latent heat [LE]) for the

leaves exposed to ambient and elevated [CO2] under drought and

well‐watered conditions through time and at different depths within

the vertical profile of the canopy. Thermal and spectral images were

taken to derive PRI and leaf surface temperature. We compared the

cultivars and treatments to answer the following questions:

(1) How does elevated [CO2] affect the PRI–RUE relationship in

wheat leaves grown under well‐watered and drought conditions? (2)

How does the PRI–RUE relationship change throughout the vertical

canopy profile of wheat, and whether the relationship is influenced

by [CO2] and water conditions? (3) How does elevated [CO2] affect

the ability to track changes in evaporative cooling via ΔTleaf−air in

wheat? (4) How does the evaporative cooling–ΔTleaf−air relationship

change within the wheat's canopy profile, and to what extent

elevated [CO2] affect such a relationship?

2 | DATA AND METHODS

2.1 | Experimental setting

Two fully randomized spring wheat [CO2] enrichment experiments

were conducted from March to June of 2021 (Experiment #1) and

from February to April 2022 (Experiment #2) in the Faculty of

Agriculture, Food and Environment in Rehovot, Israel. Three

genotypes bred under the Eastern Mediterranean conditions of

Israel, cv. Zahir—an early maturing genotype, cv. Gedera—an

intermediate‐maturing genotype and cv. Ruta—a late‐maturing

genotype, were tested in Experiment #1 and two in Experiment #2

(cv. Gedera, as an intermediate‐maturing genotype, was excluded

since it did not show a significant difference from the other two

genotypes in Experiment #1). The genotypes used are commercially

available in Israel (Shiff et al., 2021) and have different phenology,

productivity and stress tolerances (Aidoo et al., 2017; Bonfil, 2017;

Chaudhary et al., 2021; Helman, Bonfil, et al., 2019; Helman, Lensky,

et al., 2019). In all experiments, three plants were grown in 4 L plastic

pots filled with a peat‐based potting mix of a soluble complex of

N–P–K fertilizer (14–14–14).

Two glasshouse twin rooms were used, one as control with

ambient [CO2] (aCO2, 389± 27 μmol mol–1) and the other enriched

with ~150 μmol mol–1 [CO2] (eCO2, 554± 40 μmol mol–1). We flipped

the rooms between Experiments #1 and #2 to have an independent

replication of the experiment (Rogers et al., 2021), with a fully

randomized factorial design in both replicates. Temperature and

relative humidity (RH) were maintained fixed at 26°C/19°C and 60%/

80% day/night, respectively, in both rooms for the entire experiment.

Sunlight conditions in both rooms were even. No artificial light was

used. In each room, two water treatments were applied: (1) well

watered to 100% pot holding capacity and (2) drought (i.e., plants

were watered to 40% pot holding capacity). Irrigation was applied

four times a day through an automatically controlled drip irrigation

system.

A summary of the different setups, the number of sampling

dates and the sample size for each experiment and type of

analysis are presented in Supporting Information: Table S1. Below

is a detailed description of the sampling procedure.

2.2 | Multilayer and leaf sampling

Since our goal was to detect changes in RUE and evaporative cooling of

wheat exposed to eCO2 under two water regimes (well‐watered and

drought), we required our measurements to be representative of the

entire plant. The flag leaf (FL), the upper leaf (closest to the head), is

usually taken as the representative leaf of the whole plant. However,

lower leaves within the canopy profile may respond differently to eCO2

and water conditions because of their different exposure to light. Ignoring

these leaves in models, for example, might result in over/underestimation

of the photosynthetic capacity of the whole plant and its true response to

changing environmental and climate conditions.

To account for the vertical profile, we divided the plant into vertical

layers in which each layer corresponds to a single node on the plant's

stem. Thus, for example, the first layer (FL) would correspond to the

upper, fully exposed flag leaf, the next layer (L1) to the lower leaf, and

so on (Figure 1). Usually, wheat has at least four nodes, meaning four

layers. However, since the bottom layer dries out at a very early stage,
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it is impossible to measure gas exchange in these leaves during the

season. We, thus, did not account for the fourth (and below) layer in our

analysis but only for FL and L1–L2. In each of these layers, we measured

gas‐exchange parameters from selected leaves (Section 2.3) and collected

hyperspectral and thermal images of the leaves (Sections 2.4 and 2.5) on

two dates (days after sowing [DAS] 56 and 72 and DAS 64 and 69 for

Experiments #1 and #2, respectively).

Leaf thickness (mm) was measured on DAS 69 (Experiment #2)

between two irrigation events (7 AM and 2 PM) on four intact leaves

per cultivar from the FL by sampling the mid and top regions from the

leaf apex. Measurements were made using a handheld micrometer

(Mitutoyo Digital Micrometer Model 293‐230‐30) with a digital

display and a clutch that ensured uniform pressure on the leaves.

2.3 | Gas‐exchange measurements

Gas‐exchange parameters that included net assimilation (An, µmol

m–2 s–1) and transpiration (Tr, mmol m–2 s–1) rates were measured

around midday (10 AM–2 PM) on randomly healthy and fully

expanded upper open/flag leaves on five dates in Experiment #1

(51, 55, 62, 67 and 74 DAS) and Experiment #2 (53, 58, 64, 69 and 74

DAS), from heading to the hard dough. Parameters were measured

with an infrared gas analyser (LI‐6800; LI‐COR) while controlling for

the RH inside the chamber to a fixed level of 60% and a flow rate of

500 μmol s−1 with CO2 levels of 400 and 600 µmol mol–1 for

measurements in the ambient and elevated room, respectively. The

temperature inside the chamber was left uncontrolled to assess the

evaporative cooling response to eCO2 under well‐watered and

drought conditions. We calculated the leaf RUE as the ratio of An

to PAR and converted it into grams of carbon per megajoule

(g CMJ–1). We present evaporative cooling as the energy consumed

by LE in Wm–2 (see Section 2.7).

2.4 | Spectral data collection and processing

We used a portable handheld hyperspectral camera, SpecimIQ (Specim

Ltd.), to acquire hyperspectral images of the plants. Each image was

acquired simultaneously with gas‐exchange measurements for [CO2] ×

water × genotype treatment, apart from the multilayer images.

The SpecimIQ camera is a handheld push broom system (i.e.,

along‐track scanner) with an integrated operating system and

controls that enable easy preprocessing and classification within

the camera's software (Behmann et al., 2018; Helman et al., 2022). It

covers the wavelengths within the visible–near‐infrared range

(400–1000 nm), having a total of 204 spectral bands with a 7‐nm

full‐width half‐maximum bandwidth and a field of view of 0.55 by

0.55m at 1m and a spatial resolution of 512 × 512 pixels. A

10 × 10 cm2 white reference calibration panel (90% reflectance) was

used in the frame to enable transforming irradiance values into

relative reflectance. The hyperspectral SpecimIQ camera comes with

preinstalled software that allows hyperspectral data capturing and

data processing by changing the irradiance values into relative

reflectance and other analytical options (Behmann et al., 2018).

Images were taken with the camera fixed on a tripod at a distance of

~1.5m from the plant to allow a good field of view that will cover the

entire extent of the plant. To properly represent illumination conditions,

the white reference panel was located next to the sample, and the images

were taken using the simultaneous white reference setting of the camera.

F IGURE 1 RGB (left) and thermal (right) images of a single pot with three wheat plants. The thermal image, taken 67 days from the sowing in
Experiment #1, shows a clear temperature difference between the three vertical layers from flag leaf (FL) through layer 1 (L1) and layer 2 (L2).
Each vertical layer is distinguished by a nod. Lower layers (L3 and L4) were excluded from the analysis because they dry out early in the season.
RGB, red, green, blue.
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The integration time was set between 2 and 10ms, depending on

illumination conditions. Since the Specim IQ software does not support

the direct calculation of vegetation indices, reflectance data from the

captured images were extracted using the Headwall's Hyperspec III

software (Headwall Photonics) by selecting ~30pixels from the measured

leaves as a region of interest (ROI). The PRI was calculated from the

spectral data (Section 2.6) per pixel and then averaged over the ROI for

each measured leaf.

2.5 | Thermal imaging

We used the same setup as the hyperspectral imaging to acquire thermal

images of the plants using a portable FLIR T560 camera (FLIR Systems,

Inc.) that has a 640×480‐pixel resolution and an UltraMax resolution of

1.2MP, a focal length of 17mm, 24° ×18° field of view and 30Hz image

frequency. The camera uses an uncooled microbolometer to detect

longwave radiation between 7.5 and 14.0 µm with an accuracy of ±2°C

or 2% of temperature reading and temperature sensitivity of <0.03°C. It

also has a 5MP digital camera with a built‐in light‐emitting diode photo/

video lamp (technical data taken from the manufacturer). Thermal images

were processed using FLIR Tools software (FLIR Systems, Inc.). The

manufacturer's default factory setting for correcting outdoor atmospheric

effects was maintained. These corrections are often most appropriate for

indoor and laboratory environments where the emissivity and environ-

mental conditions are well controlled (Kim et al., 2018). The emissivity

was set to a value of 0.95 for leaves, according to Fuchs and Tanner

(1966). A specific leaf ROI of 16–30 pixels was selected for each image,

depending on the leaf width. The ROI pixels were extracted and exported

as a comma‐separated value file (for onward analysis), with each cell

containing one temperature value per pixel. In the case of the multilayer

thermal images, we had a calibration problem in DAS 64 of Experiment

#2; thus, we excluded this date from the thermal analysis.

2.6 | PRI

The PRI was developed based on pigment changes due to the

epoxidation state of the xanthophyll cycle, which is manifested

mainly through changes in the reflectance at the yellow band (Evain

et al., 2004; Peñuelas et al., 1995). Since such a process does not

affect the absorbance at the end edge of the green spectrum (e.g., at

570 nm; Gamon et al., 1997), a normalized index using these two

bands was derived (Peñuelas et al., 1995) (see Equation 2).

2.7 | Evaporative cooling, ΔTleaf−air and leaf energy
balance

We used the thermal images to calculate the average leaf tempera-

ture (Tleaf) and the difference between Tleaf and the air temperature

(ΔTleaf−air) as a proxy of evaporative cooling (i.e., LE). Since air

temperature was maintained unchanged during the day in both

rooms (26°C), ΔTleaf−air is a direct factor of Tleaf; yet, we present our

results as a function of ΔTleaf−air because it indicates the relative

deviation from the ambient temperature conditions.

ΔTleaf−air and LE are linked through the energy balance as

follows:

E H LE M= + + ,leaf leaf leaf leaf (3)

where Eleaf is the total available energy for the leaf, which is the sum

of the net radiation reaching the leaf's surface. Hleaf, LEleaf and Mleaf

are the sensible, latent and metabolic heat fluxes. Since the heat flux

released during the leaf metabolism is very small, Mleaf can be

neglected. The sensible heat flux, Hleaf, is responsible for the change

in the ambient air temperature

∆
H

T

r
= ,leaf

leaf−air

a
(4)

where ra is the leaf's aerodynamic resistance, limiting the heat

transfer (i.e., heat dissipation) from the leaf surface to the air. ra may

be a function of many environmental parameters, including wind

speed and radiation (Muller et al., 2021a). Still, under fixed

environmental conditions without wind, it is mainly a function of

leaf characteristics (e.g., leaf structure, geometry, composition, etc.).

Combining and rearranging Equations (3) and (4) and neglecting Mleaf

results in ΔTleaf−air being a linear function of LEleaf:

T r LE r EΔ = – + .leaf−air a leaf a leaf (5)

Notice that in Equation (5), for fixed environmental conditions

(like in our experiments) and leaves with similar properties (assuming

that the leaves grown under eCO2 are similar to those grown under

aCO2 in terms of structure and composition), the term ra Eleaf is

constant. At the same time, ΔTleaf−air is negatively related through a

linear function to LE—that is, evaporative cooling—LEleaf.

2.8 | Statistical analysis

All data analyses were performed using the JMP 15 Pro statistical

software (SAS Institute). Bar plots of temporal changes in PRI, RUE,

Tr and ΔTleaf−air were computed as a mean of all genotypes together

by water and [CO2] treatment. Tukey's honestly significant difference

posthoc test was used in testing for significant differences among

groups, and Student's t‐test was performed for all pairwise compari-

sons. Tukey's test results are displayed in the bar plot and box plot

figures. Analysis of variance was used to assess the effect of [CO2],

water, genotype and their interaction on PRI, RUE, Tr and ΔTleaf−air. A

simple linear regression model and the coefficient of determination

(R2) were used to study the relationship between PRI and RUE, and

ΔTleaf−air and Tr or LE at probability levels of *p < 0.1, **p < 0.05 and

***p < 0.001. Following the small size of the multilayer samples, a

more relaxed probability level of p < 0.1 was used in its analysis.

Analysis of covariance was used to test for significant differences

between the slopes of two linear fits.
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3 | RESULTS

3.1 | How does elevated [CO2] affect PRI and RUE
under well‐watered and drought conditions?

FL PRI and RUE varied throughout the plant's growth and

development, while a decreasing trend was evident for both PRI

and RUE, particularly under eCO2 (Figure 2). Both [CO2] and drought

significantly affected RUE (Table 1), with eCO2 increasing and

drought reducing the RUE, respectively. No significant effect of

[CO2] or water was found on PRI. Multifactor interactions were all

nonsignificant for PRI and RUE (Table 1).

PRI and RUE were linearly correlated through a positive

relationship (Figure 3a). This was significant, however, only under

eCO2 (R2 = 0.38; p < 0.001). When separating the data per water

treatment, the PRI–RUE relationship was also significant at aCO2

under well‐watered conditions (R2 = 0.32, p < 0.05; Figure 3b), while

at eCO2, the relationship remained significant under both water

treatments (Figure 3c).

The R2 of the linear regressions per genotype ranged from 0.23

to 0.88 for well‐watered and both [CO2] treatments but was primarily

insignificant for the drought treatment under aCO2 (Supporting Infor-

mation: Figure S1). At eCO2, the per‐water‐treatment models were

all significant and similar (p > 0.1 for the difference among the slopes),

except for cv. Ruta, such that a single per‐cultivar model can describe

RUE as a function of PRI under both water conditions.

3.2 | How does the PRI–RUE relationship change
throughout the vertical canopy profile?

RUE and PRI seemed to decrease within the vertical canopy profile

from FL to L2 (Supporting Information: Figure S2). The multilayer

data showed positive PRI–RUE linear regression models for almost all

layers (Figure 4a–d). A gradual decrease through the layers from FL to

L2 suggests that both parameters decrease linearly throughout the

vertical profile. However, such a linear correlation was significant for

all layers at aCO2 and only for FL and L1 at eCO2 under well‐watered

conditions and was significant only for FL at eCO2 under drought

conditions (Figure 4e).

3.3 | How does elevated [CO2] affect evaporative
cooling and ΔTleaf−air relationships?

Tr and ΔTleaf−air varied largely throughout the season, with a greater

irregularity observed in ΔTleaf−air (Figure 5). [CO2]×water and

[CO2]× genotype interactions were significant for ΔTleaf−air and

water× genotype for Tr (Table 1), where ΔTleaf−air was less negative

at eCO2 under well‐watered conditions, but not so much under

drought. In both cases, however, the difference in ΔTleaf−air among

the CO2 treatments was mostly statistically insignificant (Figure 5a,b).

ΔTleaf−air and Tr were significantly correlated through a negative

linear relationship in almost all dates, regardless of the [CO2] level

(except for 67 DAS under eCO2), though the relationships differed

among dates and treatments (Figure 6), and were less clear in

Experiment #2 (Supporting Information: Figure S3). Including all

dates together generated a linear fit of R2 = 0.32 (p < 0.001;

Supporting Information: Figure S4).

A narrower range in ΔTleaf−air was observed per genotype at

eCO2, especially under drought. Surprisingly, the mean ΔTleaf−air was

1.5–2.0°C higher at aCO2 than at eCO2 in the drought treatment and

was generally the same under well‐watered conditions (Support-

ing Information: Figure S5). The only exception was the early

maturing genotype of Zahir, which showed a higher mean ΔTleaf−air
of ~1.2°C at aCO2 compared to eCO2 even under well‐watered

conditions (Supporting Information: Figure S5b).

3.4 | How does the evaporative cooling–ΔTleaf−air
relationship change within the canopy profile?

Differences in Tleaf throughout the vertical canopy profile were

evident in the thermal images (Figure 1), with cooler leaves at the top

and warmer leaves at the bottom of the canopy (Supporting

Information: Figure S6). Tr generally decreased while ΔTleaf−air
increased from top to bottom (FL to L2), with ΔTleaf−air increase

being more clear under well‐watered conditions (Supporting Informa-

tion: Figure S6b).

As with the PRI–RUE, a single linear model describes the

ΔTleaf−air–LE relationship throughout the layers (black lines in

Figure 7). However, ΔTleaf−air was much more responsive to

evaporative cooling (calculated as LE) under aCO2 than under eCO2

(steeper slope of the black line in Figure 7a compared to the slope of

the black line in Figure 7b). For a change in evaporative cooling (LE) of

~350Wm–2, the range in the ΔTleaf−air response was around 10°C at

aCO2, while it was only ~4°C under eCO2. Leaf thickness measure-

ments showed a significant effect of [CO2], with thicker leaves found

under eCO2 (Table 2), which suggests an increase in the leaf water

content under eCO2, especially under well‐water conditions (a

significant [CO2]×water interaction; Table 2).

4 | DISCUSSION

4.1 | PRI–RUE relationship in wheat is preserved
under drought due to the high [CO2]

Previous studies have shown close relationships between PRI and

photosynthetic activity, including relationships with net assimilation,

chlorophyll content and RUE from the leaf to the canopy and the

ecosystem scale (Gamon et al., 1997; Garrity et al., 2011; Wu

et al., 2015; Zhang et al., 2017). Our study concurs with these

previous results. Significant leaf‐level PRI–RUE correlations were

observed in three wheat genotypes bred under semiarid Mediterra-

nean conditions with differing phenological characteristics and stress
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tolerances (Figures 3 and 4). However, this is the first time such a

relationship has been reported for plants grown under elevated

[CO2]. Interestingly, the PRI–RUE relationships were similar at

ambient and elevated [CO2], with the only exception being the

plants grown under consistent drought that showed a decoupling in

the ties of PRI and RUE (Figure 3b,c).

A decoupling in PRI–RUE under drought conditions was

previously reported in trees (Fréchette et al., 2015; Porcar‐Castell

et al., 2012). As far as we know, such a decoupling was never

reported in field crops or, more specifically, in wheat. The interesting

part of these results is that such a decoupling was absent in plants

grown under elevated [CO2]. Water deficit, extreme temperature and

intense light may cause the decoupling of photosynthetic electron

transport and ribulose 1,5‐bisphosphate carboxylase/oxygenase

(RuBisCO) carboxylation. Such decoupling is most likely to result in

anomalies in the PRI–RUE relationship (Huang et al., 2019; Kováč

et al., 2018). Under stress conditions (e.g., drought), alternative

electron pathways of heat dissipation come into play (Fréchette

et al., 2015).

For example, an important mechanism not detected by PRI

involves the increase in electron transport around photosystem I,

which may be a significant energy sink when plants are exposed to

(a) (b)

(c) (d)

F IGURE 2 PRI (a, b) and RUE (g CMJ–1) (c, d) of wheat plants exposed to elevated (black) and ambient (grey) [CO2] levels across five dates in
Experiment #1 (51, 55, 62, 67 and 74 DAS) and Experiment #2 (53, 58, 64, 69, 74 DAS). Plants were subjected to drought (a, c) and well‐watered
(b, d) conditions. The numbers in the brackets represent the sample size (N). Error bars represent the standard error over all the measurements
from both experiments. Different letters indicate significant differences at p < 0.05 from Tukey's HSD test per treatment. DAS, days after
sowing; HSD, honestly significant difference; PRI, photochemical reflectance index; RUE, radiation‐use efficiency.
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extreme light, temperature or drought conditions (Fréchette

et al., 2015; Takahashi & Badger, 2011). Another such photoprotec-

tive mechanism is photorespiration. Photorespiration, once taught to

be a wasteful process in which carbon is released from the plant back

to the environment (Busch, 2013), is now acknowledged as an

essential photoprotective mechanism. It prevents the production and

accumulation of reactive oxygen species in the peroxisome when

plants are exposed to a stress (Eisenhut et al., 2017; Voss et al., 2013).

Since such a process does not involve pigment changes, spectral‐

based indices such as PRI cannot track it. This might be a serious

limitation of remote sensing of critical photosynthetic parameters

such as RUE.

However, in our study, the exerted drought did not affect the

PRI–RUE relationship when plants were exposed to an elevated

[CO2] of +150 ppm. Such an observation was consistent in all three

cultivars in two independent replicates of the same experiment.

PRI–RUE correlations, however, were nonsignificant in L1 and

L2 under drought even at elevated [CO2] (Figure 4), suggesting

that xanthophyll nonphotochemical quenching was significantly

affected with leaf aging. If photorespiration was the primary

photoprotective response to drought at ambient [CO2], this was

unlikely the case in FL at elevated [CO2]. Usually, drought leads to

stomatal closure, which limits the diffusion of CO2 to the

chloroplast. This results in increased photorespiration due to a

reduced stromal C:O concentration ratio (Kangasjarvi et al., 2012),

which, in turn, shifts RuBisCo towards preferring oxygenation over

carboxylation (Busch, 2020; Von Caemmerer, 2000). However,

when intercellular CO2 concentration is high enough due to an

enriched [CO2] environment, for example, the abovementioned

oxygenation to carboxylation shift would be more limited under

drought (Dusenge et al., 2019; Liu et al., 2018; Wada et al., 2020).

Hence, under high [CO2] (in our case, 550 μmol mol–1), the

PRI–RUE relationship would be maintained even under a severe

drought, such as that experienced by the plants in the current

experiment (40% of the pot holding capacity). The xanthophyll

nonphotochemical quenching becomes the primary inhibition

TABLE 1 Statistics F ratio and p
value > F ratio of full factorial three‐way
ANOVA for RUE (g CMJ–1; N = 325) PRI
(unitless; N = 325), ΔTleaf−air (°C;
N = 325) and Tr (mmol m–2 s–1; N = 325)

Effect

RUE PRI ΔTleaf−air Tr

F p > F F p > F F p > F F p > F

[CO2] 38.2 <0.001 0.1 0.73 0.1 0.74 7.7 <0.01

Water (W) 26.6 <0.001 3.0 0.09 103.6 <0.001 137.8 <0.001

Genotype (G) 11.6 <0.001 2.4 0.09 3.2 0.04 6.9 <0.01

[CO2]×W 0.5 0.48 0.01 0.93 7.4 <0.01 1.2 0.28

[CO2]×G 0.7 0.48 1.8 0.16 5.5 <0.01 1.0 0.36

W×G 0.3 0.74 1.8 0.17 1.0 0.39 6.3 <0.01

[CO2] ×W ×G 1.1 0.35 1.1 0.35 2.6 0.08 1.9 0.15

Note: Statistically significant effects at p > 0.05 are marked in bold.

Abbreviations: ANOVA, analysis of variance; PRI, photochemical reflectance index; RUE, radiation‐use
efficiency; Tleaf, average leaf temperature; ΔTleaf−air, the difference between Tleaf and the air

temperature.

(a) (b) (c)

F IGURE 3 Linear regressions of PRI versus RUE for (a) ambient (square) and elevated (circle) [CO2] treatment for both water treatments
together and for (b) ambient and (c) elevated [CO2] by water treatment (WW: well watered; D: drought). Error bars represent the standard error.
The colour of each symbol indicates its specific date as days after sowing (DAS). The R2 of the correlation, the linear fit equation and its
significance level are presented in the plots. PRI, photochemical reflectance index; RUE, radiation‐use efficiency. [Color figure can be viewed at
wileyonlinelibrary.com]
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mechanism again, while photorespiration is vastly reduced under

elevated [CO2].

Another possible explanation for the unobserved decoupling of

PRI and RUE under drought and elevated [CO2] could be the increase

in water retention in the soil and leaves, which would reduce water

stress and, consequently, photorespiration. It is well known that

plants exposed to elevated [CO2] transpire less and retain more

water in the soil (Blumenthal et al., 2018; Liu et al., 2018; Paudel

et al., 2018). An elevated [CO2] has been shown to increase theTE of

plants by closing the stomata (Ainsworth & Rogers, 2007; Leakey

et al., 2009), thereby conserving more water in the soil (Christy

et al., 2018; Tausz‐Posch et al., 2013). The usually increased

assimilation and reduced transpiration under elevated [CO2] has

been suggested to improve crop water productivity—the ratio

between the yield production and water use (Deryng et al., 2016),

thus benefiting crops under drought (Wall et al., 2006). The low leaf

temperature responsiveness to water stress under elevated [CO2]

observed in our study (Figure 5a and Supporting Information:

Figure S6a) partly supports this explanation. This may indicate higher

water availability in the soil for plants grown under elevated [CO2]

and/or higher relative water content in the leaves of these plants (as

will be discussed further in the following subsection).

(a) (b)

(c)

(e)

(d)

F IGURE 4 Linear regression of PRI versus RUE at the different leaf layers (a–d) from the flag leaf (FL; dark green) to the two bottom layers
(L1 in light green and L2 in brown) of plants exposed to elevated (squares) and ambient (circles) [CO2] under drought (open symbols) and
well‐watered conditions (closed symbols). (e) Table showing the R2 of the correlations obtained in (a–d) and the corresponding p values.
Nonsignificant correlations (p > 0.1) are marked with ns. ns, Not significant; PRI, photochemical reflectance index; RUE, radiation‐use efficiency.
[Color figure can be viewed at wileyonlinelibrary.com]
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The fact that the PRI–RUE relationship is maintained under drought

at a high [CO2] such as expected in the next two to three decades is

encouraging for future remote sensing monitoring of crop systems.

However, conditions by which the correlation between PRI and RUE

decouples in wheat as well as the mechanisms by which an elevated

[CO2] affects such a decoupling still need to be further investigated

under both, controlled and field experimental settings. Specifically, we

point to measuring photorespiration under different water and [CO2]

conditions to assess or reject our above‐mentioned hypotheses.

4.2 | Leaf temperature is less responsive to
evaporative cooling under elevated [CO2]

The relationship between ΔTleaf−air and Tr was, as expected, negative

(Figure 6). Such a negative correlation was regardless of the water

condition and was observed at both levels of [CO2]. Such leaf cooling

is a well‐known heat dissipation mechanism used by plants (Dusenge

et al., 2019; Urban et al., 2017). As such, leaf temperature and

ΔTleaf−air may be used to assess transpiration rate (e.g., Lapidot

(a) (b)

(c) (d)

F IGURE 5 ΔTleaf−air (°C) (a, b) and Tr (mmol m–2 s–1) (c, d) of wheat plants exposed to elevated (black) and ambient (grey) [CO2] levels across five
dates in Experiment #1 (51, 55, 62, 67 and 74 DAS) and Experiment #2 (53, 58, 64, 69 and 74 DAS). Plants were subjected to drought (a, c) and
well‐watered conditions (b, d). The numbers in the brackets represent the sample size (N). Error bars represent the standard error over all the
measurements from both experiments. Different letters indicate significant differences at p < 0.05 fromTukey's HSD test per treatment. DAS, days
after sowing; HSD, honestly significant difference; Tr, leaf transpiration; ΔTleaf−air, the difference between Tleaf and the air temperature.
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et al., 2019) and other gas‐exchange parameters such as stomatal

conductance and photosynthesis (Kim et al., 2018). As may be

expected, warmer leaf temperatures are usually observed in plants

exposed to drought stress (Lapidot et al., 2019) or high [CO2] levels

(Grey et al., 2016). The latter is because plants close their stomata

and reduce their transpiration in response to elevated [CO2] (Jones

et al., 1984; Long et al., 2004).

In our case, the leaves of plants grown under drought were warmer

(Figure 5a); yet, those grown under elevated [CO2] were relatively

cooler than ambient [CO2]‐grown leaves even under drought. A

plausible explanation for the somewhat cooler temperatures of the

elevated [CO2]‐grown leaves may be a high water content in these

leaves. Since high [CO2] causes the stomata to close, plants may retain

more water in their tissues, including their leaves, thereby regulating

their internal temperature more closely to ambient conditions even

under drought (Liu et al., 2018; Paudel et al., 2018; Swann et al., 2016).

Though we did not assess leaf water content directly in this

study, the thicker leaves found under elevated [CO2] partly support

F IGURE 6 Per‐date (DAS) linear regressions of leaf ΔTleaf−air (°C) versus Tr (mmol m–2 s–1) for plants exposed to ambient and elevated [CO2]
in Experiment #1. Genotypes are indicated in different colours—Zahir: red; Gedera: purple; Ruta: blue. Only statistically significant regression
lines are shown. DAS, days after sowing; ΔTleaf−air, the difference between Tleaf and the air temperature. DAS, days after sowing; HSD, honestly
significant difference; Tr, leaf transpiration; ΔTleaf−air, the difference between Tleaf and the air temperature. [Color figure can be viewed at
wileyonlinelibrary.com]

(a) (b)

F IGURE 7 ΔTleaf−air (°C) relationship with evaporative cooling, measured as LE (Wm–2) of plants exposed to (a) ambient and (b) elevated
[CO2] under drought (open symbols) and well‐watered conditions (closed symbols). Layers are distinguished by different colours (FL—dark
green; L1—light green; and L2—brown). Notice that for a similar range in LE (x‐axis), plants grown at elevated [CO2] had a narrower range in
ΔTleaf−air (°C), implying a more efficient thermoregulation response to transpiration changes. LE, latent heat; ΔTleaf−air, the difference between
Tleaf and the air temperature. [Color figure can be viewed at wileyonlinelibrary.com]
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that (Table 2). In addition, the higher PRI of the leaves grown under

elevated [CO2] than those grown under ambient [CO2] partly implies

that the leaf water content among the [CO2] treatments differed.

Previous studies show that leaves with higher water content also

have higher PRI. In fact, a linear relationship was found between the

two (Zhang et al., 2018). Further, if we consider that the total

available energy (E) was the same for all plants since temperature,

RH and radiation were all the same in both rooms (i.e.,

E E E= =eCO aCO2 2 ), then for a specific evaporative cooling—LE, we

can rewrite Equation (5) for two leaves, one grown under elevated

and another grown under ambient [CO2], as follows:

T r E LEΔ = ( − ),CO
leaf−air

e
a
eCO2 2 (6)

T r E LEΔ = ( − ).leaf−air
aCO

a
aCO2 2 (7)

We can then combine the two equations and eliminate similar

terms:

T T r rΔ /Δ = / .leaf−air
aCO

leaf−air
eCO

a
aCO

a
eCO2 2 2 2 (8)

Notice that Equation (8), which describes the change in ∆Tleaf−air

for a similar shift in LE, shows that the difference (ratio) in ∆Tleaf−air

between the two leaves is a result only of the difference in the

aerodynamic resistance among the leaves. This means that something

in the leaf grown under elevated [CO2] was changed. Such a change

affected its thermoregulation response by affecting its aerodynamic

resistance and, consequently, its temperature response to evapora-

tive cooling. Indeed, a shift in ~350Wm–2 in LE was found to change

ΔTleaf−air by more than 10°C at ambient [CO2], while a similar change

in LE changed ΔTleaf−air by only ~4°C for plants grown under elevated

[CO2] (Figure 7). In the case where a leaf exposed to elevated [CO2]

had increased its water content compared to a leaf grown at ambient

[CO2], as we suggest here through the thicker leaves observed under

elevated [CO2] (Table 2), this could explain the more efficient

thermoregulation of the high [CO2]‐grown leaf at different levels of

LE (i.e., it explains the much narrower ∆Tleaf−air response to LE under

elevated [CO2] than under ambient [CO2]).

Indeed, several factors, asides from the water supply, may

influence the temperature difference between the leaf and the

surrounding environment. These include biotic factors such as the

physical location of the plant, its leaf characteristics and canopy

structure, as well as abiotic factors, including weather and [CO2],

which may interact with the crop in complex ways (Muller

et al., 2021a; Still et al., 2019, 2021). Because plant position and

canopy structure, as well as the weather conditions, were nearly the

same for plants in both rooms (as much as this can be achieved in a

controlled glasshouse experiment), a change in leaf characteristics

would be the most reasonable explanation for the different leaf

temperature responses to a similar evaporative cooling. Of course,

such a claim should be investigated and confirmed directly while

further assessed under field conditions. Yet, if true, this is an essential

outcome because a future rise in [CO2] can impact small yet

important physiological traits that can lead to significant water and

energy balance changes at a much larger scale.

4.3 | Multilayer vertical aspect

The expectation that an ongoing rise in [CO2] and more frequent and

severe drought in many crop areas worldwide will interact with crops

in a complex manner has important implications (Eller et al., 2020).

This incumbrances interaction at the leaf level and the canopy, and

the entire ecosystem scales (Rogers et al., 2017). High [CO2] may

have a contrasting effect on leaf temperature. Typically, a rise in

[CO2] would lead to warmer leaf temperatures due to reduced

stomatal conductance and reduced transpiration (evaporative cool-

ing). At the same time, we may expect more water to be retained in

the soil due to reduced transpiration (Kimball, 2016; Tausz‐Posch

et al., 2020). Thus, the additional water in the soil is likely to cool the

leaves through surface evaporation even higher under elevated

[CO2], ameliorating the stomata closure's warming effect.

On top of that, a discrepancy may exist among the different

scales. For example, a free‐air CO2 enrichment experiment con-

ducted on broadleaf deciduous trees showed that leaf stomatal

conductance was reduced by 40% under elevated [CO2], while

canopy‐scale conductance was reduced by only 10% (Wullschleger

et al., 2002). Such a scale discrepancy means that the microclimate

within the canopy cannot be assumed to be equal for all vertical

layers. Hence, the leaf‐level processes need to be correctly

integrated to represent the whole canopy by considering the

multilayer vertical aspect (Katul et al., 2012).

Simulating the effects of elevated [CO2] on crop growth and

yield in process‐based models involves introducing new factors or

multipliers and modifying specific components, one of which is

integrating the leaf response into the whole‐plant scale (Tubiello &

Ewert, 2002). To effectively scale up responses of essential

parameters like evaporative cooling, transpiration, and RUE to a

simultaneous effect of drought and [CO2], mechanistic models need

TABLE 2 Statistics F ratio and p value > F ratio of full factorial
three‐way ANOVA for leaf thickness from Experiment #2

Effect F p > F

[CO₂] 10.95 0.003

Water (W) 0.95 0.34

Genotype (G) 1.34 0.26

[CO2]×W 5.32 0.03

[CO2]×G 0.037 0.85

W×G 0.052 0.82

[CO2]×W×G 0.091 0.77

Note: Statistically significant effects at p > 0.05 are marked in bold. The
sample size is N = 32 (two leaves × two pots × two genotypes × two water

treatments × two CO2 treatments).

Abbreviation: ANOVA, analysis of variance.
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to account for the response of each of those parameters throughout

the different vertical layers in the canopy. Only by considering the

various processes throughout the different layers can a more realistic

view of the whole‐canopy response be achieved (Ewert et al., 2002;

Katul et al., 2012).

Our results show apparent differences in evaporative cooling,

leaf temperatures, PRI and RUE across the canopy vertical layers

supporting the abovementioned claim. Further, they contradict the

widespread idea that leaves at the top of the canopy (e.g., flag leaves

in wheat) represent the whole plant. Such an assumption is essential,

for example, in ‘big‐leaf’ and ‘two big‐leaf’ models, which are very

popular simulation models used to study crop responses to future

conditions (Rogers et al., 2017). Models like the one proposed by

Monteith (e.g., Helman et al., 2017; Miller et al., 2019) have been

used to scale parameters assuming that the overall canopy term is

equivalent to the top leaf layer (i.e., the FL), which represents all other

leaves in the canopy. Yet, many studies, including ours, have shown

that a single leaf could not be used to accurately represent all leaves

in the canopy (Gara et al., 2019; Gitz III et al., 2016).

A common challenge for models in the upscaling of photo-

synthetic and other leaf gas exchange parameters is the heterogene-

ity of processes and the non‐linear scaling response from the leaf to

the canopy (Jarvis, 1995; Niinemets et al., 2015). Accordingly,

multilayer models are more accurate because they consider the

response at the various layers within the canopy profile (Bonan

et al., 2021). The problem is that such an approach is complex, and

the retrieval of multilayer parameters is not straightforward. Remote

sensing may aid in this task. Yet, the parameterization should be

conducted with proper calibration and validation set at the various

scales. Here we aimed to add to this effort by looking at leaves from

different layers and relating the observed processes to spectral‐based

and thermal information. The good news is that our results show that

evaporative cooling, leaf temperatures, PRI and RUE all decrease

linearly with canopy depth, at least in wheat. This means that a simple

linear model can be used to account for the response of these

parameters to abiotic changes throughout the vertical canopy profile

in wheat. Though requiring further assessment in the field, this first

attempt to model evaporative cooling and RUE response to [CO2]

and drought throughout the canopy profile of wheat can be used to

improve multilayer modelling.

5 | CONCLUDING REMARKS

We found significant PRI–RUE relationships in our experiment as in

previous studies. However, this is the first time such relationships are

reported for plants exposed to elevated [CO2] and, more specifically,

in wheat. In that context, PRI–RUE relationships in typical Israeli

wheat genotypes differed among [CO2] levels, with a steeper

PRI–RUE linear regression model observed in plants exposed to

elevated [CO2], meaning higher sensitivity of PRI to RUE variations.

We also found a decoupling between PRI and RUE in wheat plants

exposed to drought at ambient [CO2], a phenomenon previously

reported in trees. Such a decoupling did not occur under elevated

[CO2], indicating that the PRI–RUE decoupling under drought may be

due to enhanced photorespiration. This means that remote sensing of

RUE might be enabled even under stress conditions in a future world

of higher [CO2].

Evaporative cooling was also significantly correlated with leaf

surface temperature, which opens up new opportunities for thermal

remote sensing to detect crop transpiration response to biotic and

abiotic stresses. In that sense, water conditions did not affect the leaf

temperature‐latent heat flux relationships. However, leaf tempera-

ture was much less responsive to evaporative cooling under elevated

[CO2] for unclear reasons. The leaf temperature of plants exposed to

elevated [CO2] was kept very close to the ambient air temperature

even for a LE change of 350Wm–2. Leaf thickness, energy balance

calculations and PRI results suggest that leaves exposed to elevated

[CO2] had higher relative water content, which affected their

thermoregulation response to soil water conditions. This suggestion,

however, warrants further investigation with more focused measure-

ments to confirm or reject such a hypothesis.

Multilayer measurements resulted in PRI–RUE and leaf

temperature–LE linear relationships throughout the vertical canopy

profile. This means that a simple linear model can describe these

parameters throughout the canopy. Further, the gradual decrease in

RUE and LE with the canopy depth suggests that the response of

these parameters is linear throughout the vertical canopy profile. Of

course, this may change according to the plant position, sun angle and

so on. Yet, the linear relationship with the sensing‐based metrics (PRI

and thermal leaf image) implies that such means can be easily used to

parametrize and upscale important biophysical parameters like

transpiration and RUE using remote sensing in the field. Further,

the use of new remote sensing tools such as LiDAR may greatly assist

in bridging between the scales because it enables assessing the

sensing metrics at a three‐dimensional level in the field. This may add

substantial power to current remote sensing efforts of photo-

synthesis monitoring.

Finally, the complex whole‐plant response alongside the differ-

ent leaf trait responses across the crop vertical profile raises the need

for further research to uncover new underlying mechanisms of crop

response to climate conditions under future elevated [CO2].
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