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Abstract: Influenza H7N9 virus is a potentially pandemic subtype to which most people are
immunologically naïve. To be better prepared for the potential occurrence of an H7N9 pandemic,
in 2017 the World Health Organization recommended developing candidate vaccine viruses from two
new H7N9 viruses, A/Guangdong/17SF003/2016 (A/GD) and A/Hong Kong/125/2017 (A/HK).
This report describes the development of live attenuated influenza vaccine (LAIV) candidates against
A/GD and A/HK viruses and study of their safety and immunogenicity in the ferret model in order
to choose the most promising one for a phase I clinical trial. The A/HK-based vaccine candidate
(A/17/HK) was developed by classical reassortment in eggs. The A/GD-based vaccine candidate
(A/17/GD) was generated by reverse genetics. Ferrets were vaccinated with two doses of LAIV
or phosphate-buffered saline. Both H7N9 LAIVs tested were safe for ferrets, as shown by absence
of clinical signs, and by virological and histological data; they were immunogenic after a single
vaccination. These results provide a compelling argument for further testing of these vaccines in
volunteers. Since the A/HK virus represents the cluster that has caused the majority of human cases,
and because the A/HK-based LAIV candidate was developed by classical reassortment, this is the
preferred candidate for a phase I clinical trial.
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1. Introduction

Since 1958, when the first human infection with a zoonotic influenza A virus was serologically
confirmed [1], a number of different subtypes of animal and avian influenza A virus have infected
humans [2]. The spread of these viruses in bird populations, the likelihood of reassortment with other
influenza viruses of birds and mammals, the proven transmission from birds to humans, and the
high case-fatality rate (CFR) among infected people have raised significant concerns for global public
health. Many scientists from around the world believe that avian influenza viruses could cause the
next devastating global pandemic [3,4].
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Human infections with avian influenza H7N9 viruses were first reported to the World Health
Organization (WHO) on 31 March 2013 [5]. Since then, 1567 H7N9 human cases have been confirmed
in China, with a CFR of 39% [6].

Vaccination is an essential public health measure to control influenza. In recent years, WHO
recommendations for the composition of influenza vaccines have included both seasonal human
influenza viruses [7] and potentially pandemic strains, predominantly of bird origin [6]. WHO
considers the development of candidate vaccine viruses to be an essential component of the overall
global strategy for pandemic preparedness. Recently, WHO has proposed two new epidemiologically
relevant candidate vaccine viruses, derived from A/Guangdong/17SF003/2016-like highly pathogenic
avian influenza virus (HPAIV) and A/Hong Kong/125/2017-like low pathogenic avian influenza virus
(LPAIV) [8]. Using an Influenza Risk Assessment Tool (IRAT), the Centers for Disease Control and
Prevention (CDC) rated the H7N9 (A/Hong Kong/125/2017) virus as having the highest pandemic
emergence and impact scores among all potentially pandemic viruses evaluated [9].

In the face of the pandemic threat, cold-adapted live attenuated influenza vaccine (LAIV) may
have a number of advantages over inactivated influenza vaccine, because of its ability to stimulate a
broader and longer-lasting cross-protective immune response [10]. Newly developed H7N9 LAIVs
may be used as the first line of defense of all age groups in the case if the H7N9 pandemic occurs.
LAIVs are currently licensed in Russia, the United States, Canada, Europe, Australia and India, and
have been shown to be safe and effective [11,12].

Recently, phase I clinical trials of a number of potential pandemic LAIV candidates were successfully
completed in Russia [13–18]. Candidate strains for LAIV are generated in Russia by classical reassortment
of the epidemiologically relevant wild-type (WT) strain with a cold-adapted master donor virus (MDV),
as described elsewhere [19,20]. The creation of a 6:2 reassortant, by replacement of the genes coding for
the internal proteins of WT virus with the corresponding genes of the MDV, is a reliable and reproducible
method of attenuating WT viruses. The internal MDV proteins ensure that the reassortant virus is safe,
while the surface glycoproteins (hemagglutinin (HA) and neuraminidase (NA)) of the WT virus provide
the targets for the immune response in the vaccinated host.

Classical reassortment in eggs can be used to develop potential pandemic LAIV candidates based
on LPAIVs. In regard to the risk associated with manipulation with HPAIVs and their pathogenicity
to chick embryos, it can be reduced by using a reverse genetics technique for generation of 6:2 cold-
adapted LAIV candidates.

In 2014 an A/17/Anhui/2013/61 (H7N9) LAIV candidate (A/17/AH) was developed on an
A/Leningrad/134/17/57 (H2N2) (Len/17) MDV backbone [21] and tested in volunteers in a phase I
trial that showed the vaccine to be safe, well tolerated and immunogenic [14]. However, recent H7N9
viruses have reacted less well with post-infection ferret antiserum raised against A/Anhui/1/2013
strain, suggesting that it is not protective against currently circulating viruses [8].

The current study aimed to develop LAIV candidates based on currently circulating low
pathogenic (A/HK) and highly pathogenic (A/GD) H7N9 avian influenza viruses, and to confirm
their safety and immunogenicity in preclinical studies in a ferret model, with a view to choosing the
most promising one for a phase I clinical trial. The study took place under the umbrella of the WHO
Global Action Plan to increase supply of pandemic influenza vaccine [22].

2. Materials and Methods

2.1. Viruses

A list of influenza viruses used in this study is shown in Table 1. (i) The Len/17 cold-adapted
MDV; all rights on the Len/17 belong to the Institute of Experimental Medicine (IEM), St Petersburg,
Russia. (ii) A/Hong Kong/125/2017 (H7N9) avian influenza virus (human isolate) was provided by
CDC, Atlanta, GA, USA. (iii) A/17/HK LAIV candidate was developed by classical reassortment of
A/HK LPAIV with Len/17 MDV in specific pathogen-free (SPF) eggs, as described elsewhere [19,20].
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(iv) The A/17/GD LAIV candidate, based on A/GD HPAIV, was generated by reverse genetics.
Plasmid DNAs encoding the polybasic cleavage site-deleted HA gene and intact NA gene of
A/Guangdong/17FS003/2016 were provided by Dr. Othmar Engelhardt (National Institute for
Biological Standards and Control (NIBSC), UK). Since the NA gene contained 292 K residue
(N2 numbering), which is known to confer resistance to the NA inhibitor Oseltamivir, the K292R
mutation was introduced by site-directed mutagenesis prior to virus rescue. The reverse genetics
plasmids carrying Len/17 MDV genes were generated as described earlier [23]. The candidate live
attenuated cold-adapted reassortant vaccine viruses, A/17/HK and A/17/GD LAIV candidates
inherited HA and NA from the wild-type parental viruses and six internal genes (PB2, PB1, PA, NP, M
and NS)—from MDV (genome composition 6:2). Vaccine candidates retained the major phenotypic
characteristics (cold adaptation and temperature sensitivity) of the MDV. Full-length sequencing of
internal genes of H7N9 LAIV candidates revealed identity of its attenuating mutations to those of
MDV; no attenuating mutations have been lost in the internal genes during. Genes coding surface
proteins of LAIV candidates were identical to those of wild-type parental viruses. Experimental
series of monovalent H7N9 LAIVs based on these two vaccine viruses contained 107 EID50/mL.
(v) The A/17/Anhui/2013/61 (H7N9) LAIV candidate, A/17/AH [21], was developed in IEM by
classical reassortment of A/Anhui/1/2013 (H7N9) LPAIV and Len/17 MDV in eggs.

All work with pathogenic H7N9 viruses was performed in a biosafety level 3 facility.

Table 1. A list of viruses used in the study.

Virus
Genome Composition

Comment
Surface Antigens

HA and NA
Internal Protein

Genes

Len/17 (H2N2) Len/17 Len/17 Master donor virus for LAIV
A/HK WT (H7N9) A/HK WT A/HK WT Human isolate (avian influenza virus)

A/17/HK (H7N9) A/HK WT Len/17 LAIV reassortant virus obtained by
classical reassortment in eggs

A/17/GD (H7N9) A/GD WT modified * Len/17 LAIV reassortant virus obtained by
reverse genetics

A/17/AH (H7N9) A/AH WT Len/17 LAIV reassortant virus obtained by
classical reassortment in eggs

* polybasic HA cleavage site deleted and K292R mutation introduced into NA protein; A/HK WT: A/Hong
Kong/125/2017 (H7N9); A/GD WT: A/Guangdong/17FS003/2016 (H7N9); A/AH WT: A/Anhui/1/2013 (H7N9).

2.2. Ethics Statement

All work with ferrets was conducted in accordance with European Union legislation [24].
The animal use protocol was approved by the Local Bioethical Committee of the Institute of Preclinical
Research Ltd (St. Petersburg, Russia) (ethical approval code No. 1.64/17 (23 October 2017) Protocol of
Local Bioethical Committee of the Institute of Preclinical Research Ltd). All inoculations, nasal washes
and blood sample collections were performed with the animal under short-term anesthesia induced by
intramuscular injection of Zoletil 100, 12.5 mg/kg of body weight; every effort was made to minimize
suffering. At the end of the study, animals were humanely euthanized according to IACUC guidelines.

2.3. Animals

Male ferrets (Mustela putorius furo), aged 5–6 months and weighing 0.7–1.1 kg at the beginning
of the experiment, were supplied by Scientific-Production Organization House of Pharmacy JSC
(St. Petersburg, Russia). They were prescreened by routine HAI test [25] to ensure that they were
negative to circulating human influenza viruses and the viruses being tested.

2.4. Study Design

The study was a randomized, placebo-controlled study to evaluate the safety and immunogenicity
of two H7N9 LAIV candidates in ferrets. Naïve ferrets were given the LAIV candidate intranasally,
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at a dose of 7.0 lg EID50/mL, divided between the two nostrils. The volume of inoculum was 1 mL for
each ferret (0.5 mL per nostril). PBS was used as a control.

On day 0, eight ferrets were immunized intranasally with A/17/GD LAIV candidate (group 1),
eight ferrets were immunized intranasally with A/17/HK LAIV candidate (group 2), and six ferrets
were given PBS (group 3) (Figure 1). On day 3, three ferrets from each group were euthanized and lung
tissue samples were taken for histopathological analysis and virus detection. On day 28, the remaining
five ferrets from groups 1 and 2 were revaccinated with 7.0 lg EID50/mL of A/17/GD or A/17/HK
vaccine candidate, respectively. The remaining three ferrets from group 3 were re-inoculated with PBS.
Nasal wash specimens were collected on days 1, 3 and 5 after each vaccine dose. Blood samples for
serum preparation were collected 2 days before vaccination and on days 28 and 56.
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Figure 1. Experimental groups and study design.

2.5. Clinical Signs and Morbidity Outcomes

Prior to infection, ferrets were randomly selected and housed individually. They were observed
daily for clinical signs (body temperature, body weight, level of activity, nasal discharge, and sneezing).
Nasal symptoms were scored as follows: 1—nasal rattling could be heard or the ferret sneezed during
transport from its cage to the evaluation area; 2—there was evidence of nasal discharge on the external
nares; 3—animals exhibited mouth breathing: 0—the animal exhibited none of these symptoms.
Activity level was scored over a range from zero to three according to the extent that the animal could
be induced to play: 0—the animal was fully playful; 1—the animal responded to play overtures but
did not initiate any play activity; 2—the animal was alert but not at all playful; 3—the animal was
neither playful nor alert. Scores were summed for each ferret, and group medians calculated.

Body temperature was measured using temperature data loggers (Star-Oddi, Reykjavik, Iceland)
implanted into the peritoneal cavity.

2.6. Determination of Virus Load in Embryonated Chicken Eggs

Virus replication in the respiratory tract was assessed by endpoint titration of nasal washes and
lung tissue samples in embryonated chicken eggs.

All samples were analyzed by inoculation of 10-fold dilutions in 10–11-day-old embryonated
chicken eggs and incubation at 32 ◦C for 72 h. The presence of influenza virus was detected by
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standard hemagglutination test with 1% chicken red blood cells (RBCs) as readout for positive eggs,
as previously described [25].

2.7. PCR-Based H7N9 Vaccine Virus Detection

Nasal washes and lung tissue samples were also tested by real-time PCR for detection of influenza
A virus RNA. RNA extraction from the nasal washes was performed using RIBO-sorb reagent kit
for RNA/DNA isolation from human specimens (InterLabService, Central Research Institute of
Epidemiology under Rospotrebnadzor, Moscow, Russia). Real-time PCR testing was performed
using SuperScript III Platinum One-step qRT-PCR System (Invitrogen, Life Technologies Corporation,
Carlsbad, CA, USA), as described elsewhere [26]. Primers and probes for the influenza A virus RNA
amplification test with reagents were provided by CDC. To estimate the level of influenza virus
RNA, a method of threshold cycle comparison was used. The RT-qPCR/mL titer was calculated
in accordance with the method of Zang et al. [26] using Rotor-Gene 1.8.17.5 Software. AmpliSense
primers and Taqman probes for influenza A virus M gene were used in a two-step RT-qPCR assay.
The set values indicated for the two vaccines served as calibrators. The calibration line was constructed
automatically (ROX channel) for 3 consequent 100× dilutions of the vaccine preparations in three
replicates. The calculation was performed for each vaccine separately (R2 ≥ 0.98). The RT-qPCR titer
per mL of nasal wash or lung suspension calculated for M gene target (H7N9) corresponds to the
vaccine virus titer.

2.8. Hemagglutination Inhibition Assay

The influenza-specific antibody response in the non-vaccinated ferrets was measured by standard
HAI test, as described elsewhere [25]. The serum antibody response after vaccination with H7N9 LAIV
was assessed with 1.0% horse RBCs. Serum samples were pretreated with receptor-destroying enzyme
(RDE) (Denka Seiken, Tokyo, Japan). A fourfold or higher rise in antibody titer after vaccination was
considered a reliable indicator of seroconversion.

2.9. Determination of Influenza-Specific Ferret IgG/IgA

ELISA was used to measure H7 HA-specific serum IgG and IgA antibodies, as described elsewhere [27].
Whole purified H7N9 vaccine viruses, A/17/GD, A/17/HK and A/17/AH at 16 hemagglutinating units
(HAU) per 0.05 mL, were used for absorption. Starting dilution for serum samples was 1:10, while for
nasal wash specimens dilutions were prepared starting from 1:2. Anti-ferret IgG and IgA conjugates to
horseradish peroxidase were supplied by Sigma (St. Louis, MO, USA).

ELISA titers were expressed as the inverse of the highest dilution that gave an optical density
(OD) equal to or greater than twice the mean OD of the control (blank) wells. A fourfold or more rise
in antibody titer after vaccination was considered a reliable indicator.

2.10. Necropsy

At the time of necropsy, a complete macroscopic post-mortem (gross pathology) examination was
performed. The trachea and lungs were studied in detail, and the abdominal and pelvic cavities were
examined. All lung lobes were inspected. Macroscopic changes in the lungs were scored according to
color, the number of foci, and the severity of lesions. After necropsy, lungs were collected and weighed.
Histopathological assessment of the lungs included such parameters as congestion, emphysema,
hemorrhage, bronchioloalveolar hyperplasia and inflammation, and edema.

2.11. Histopathology

Tissue sections of trachea and lungs were taken. One lobe of the lungs from each sacrificed
animal was collected on day 3 post-vaccination and used for histological analysis; the other lobe
was used for determination of viral replication. After fixation in 10% buffered formalin, lungs were
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embedded in paraffin and prepared for histopathological analysis. Tissue sections were stained with
Alcian blue at pH 2.5, then with hematoxylin and eosin for microscopic studies to reveal goblet
cells. A semiquantitative assay of respiratory tract tissue was performed to assess epithelial damage,
inflammation and alveolar damage, scored as: 0 absent; 1 minimal; 2 slight; 3 moderate; 4 strong; and
5 severe [28].

2.12. Testing of Human Serum Samples

Human sera obtained from a phase I clinical trial of A/17/AH completed in 2015 (identifier
no. NCT02480101 at ClinicalTrials.gov) was tested against newly recommended viruses, A/GD and
A/HK in a standard HAI and MN tests [25]. Sera were collected after the first and the second dose of
A/17/AH LAIV on day 28 and 56 post-vaccination [14].

2.13. Statistics

The Shapiro-Wilk test was used to assess distribution parameters (normality test). Differences
between groups were analyzed statistically by one-way ANOVA, post-hoc Tukey test, and Kruskal-Wallis
ANOVA by ranks, using StatSoft Statistica 10.0 (StatSoft Inc., Tulsa, OK, USA). Differences were
considered significant at p ≤ 0.05.

3. Results

3.1. Clinical Observations in Ferrets

3.1.1. Body Weight

The body weight of ferrets immunized with a single intranasal dose of H7N9 LAIV increased from
day 1 to day 21 similar to the body weight increase in the control group treated with the phosphate-
buffered saline mock vaccine (Figure 2A). There was no statistically significant difference between
vaccinated and non-vaccinated animals (ANOVA, post-hoc Tukey test).

The initial body weight of ferrets before revaccination was 1.0 to 1.4 kg. Changes in body weight
after the second vaccination are presented in Figure 2B. There was no statistically significant difference
between the control group and the revaccinated animals after the second vaccination (ANOVA,
post-hoc Tukey test).

Thus, vaccination and revaccination of ferrets with H7N9 LAIVs did not significantly affect
body weight.Vaccines 2018, 6, 7 of 19 
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3.1.2. Clinical Signs

For the qualitative evaluation of a single administration of H7N9 LAIV, the group medians of
sums of scores per ferret were calculated. As shown in Figure 3A, the vaccine had no effect on the
general condition and behavior of ferrets on days 1–5 after vaccination (Kruskal–Wallis analysis,
p > 0.05).

The results obtained after the second dose of H7N9 LAIV are presented in Figure 3B. Revaccination
had no effect on the general condition and behavior of ferrets on days 28–56 (Kruskal–Wallis analysis,
p > 0.05).

There were no clinical signs of adverse effects in ferrets after one or two doses of H7N9 LAIV.
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3.1.3. Body Temperature

Univariate ANOVA showed that a single administration of vaccine had no effect on the ferrets’
body temperature (p > 0.05) on days 1–28 post vaccination (Figure 4A). Similarly, after revaccination, the
ferrets’ body temperature was not significantly different from that of the control group on days 28–56
(p > 0.05, ANOVA) (Figure 4B).
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3.2. Vaccine Virus Replication

Replication of A/17/GD and A/17/HK vaccine viruses in the upper respiratory tract of vaccinated
animals was assessed by titration of nasal wash samples in embryonated chicken eggs on days 1, 3 and
5 after vaccination or revaccination. After the first dose, virus titers ranged from over 5 lg EID50/mL
on day 1 to over 3 lg EID50/mL on day 5. There was no statistically significant difference between the
two vaccine groups (Table 2). No infectious virus was found in lung tissue samples on day 3 after the
first vaccination.

Table 2. Vaccine virus in lungs and nasal washes of ferrets, as measured by PCR and by culture in
embryonated chicken eggs.

Culture in Chicken Eggs (lg EID50/mL)

Day after First Vaccination A/17/HK A/17/GD

Nasal Washes Lung Tissue Nasal Washes Lung Tissue

1 5.45 ± 0.243 (8/8) n.d. 1 5.39 ± 0.242 (8/8) n.d.
3 4.38 ± 0.161 (8/8) < 1.5 2 (0/3) 4.04 ± 0.254 (8/8) <1.5 (0/3)
5 3.86 ± 0.289 (5/5) n.d. 3.40 ± 0.391 (5/5) n.d.

Day after Second Vaccination A/17/HK A/17/GD

Nasal Washes Nasal washes

1 <1.5 (0/5) <1.5 (0/5)
3 <1.5 (0/5) <1.5 (0/5)
5 <1.5 (0/5) <1.5 (0/5)

PCR (RT–qPCR/mL)

Day after First Vaccination A/17/HK A/17/GD

Nasal Washes Lung Tissue Nasal Washes Lung Tissue

1 5.690 ± 0.240 (8/8) n.d. 1 5.731 ± 0.151 (8/8) n.d.
3 4.239 ± 0.160 (8/8) 4.525 ± 0.625 (3/3) 4.817 ± 0.114 (8/8) 3.423 (1/3)
5 5.207 ± 0.254 (5/5) n.d. 4.261 ± 0.681 (5/5) n.d.

Day after Second Vaccination A/17/HK A/17/GD

Nasal Washes Nasal Washes

1 3.371 (1/5) 3.481 (1/5)
3 <1.5 2 (0/5) <1.5 (0/5)
5 <1.5 (0/5) <1.5 (0/5)

1 n.d.: not determined. 2 Estimated threshold limit value.
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Notably, no live virus was found in nasal washes of ferrets in groups 1 and 2 after the second
dose of H7N9 LAIV. None of the animals in groups 1–3 had live vaccine virus in the upper airways
(Table 2). These data indicate that the single dose of H7N9 vaccine prevented vaccine virus replication
after revaccination.

The presence of genetic material of H7N9 LAIV virus in the airways was also evaluated using
real-time polymerase chain reaction (PCR). Results were similar to those obtained by titration of
samples in eggs: H7N9 LAIV viruses were detected in nasal washes of vaccinated animals during the
5 days after vaccination (Table 2). Genetic material of the H7N9 LAIV viruses was also found in the
lungs of vaccinated ferrets. Lung tissue samples of one ferret vaccinated with A/17/GD and of three
ferrets vaccinated with A/17/HK were RNA-positive on day 3 (Table 2).

On day 29 (one day after revaccination), genetic material of the vaccine virus was found in the
nasal washes of one animal in each of the vaccinated groups (Table 2); this could be residual inoculum.

3.3. Pathomorphological Examination of Trachea and Lungs

To study morphological changes in the ferrets’ respiratory tract after a single dose of H7N9 LAIV,
trachea and lung tissue were subjected to histological and semiquantitative analysis.

Macroscopically, there were no pathological changes in the trachea of any animals. The histological
structure of the trachea of all examined animals was normal (Figure 5A–C).
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Figure 5. Microscopic analysis of trachea and lung pathology. Representative hematoxylin and eosin-
stained trachea and lung sections of ferrets inoculated with one dose of A/17/GD LAIV (A,D), A/17/HK
LAIV (B,E) or PBS (C,F): (A–C) trachea slices; magnification 200×. There are no pathological changes.
(D–F) lung slices; magnification 100×. Red arrows indicate lymphocytic infiltration. (D) mild lymphocytic
infiltration associated with hyperplasia of peribronchial lymphoid tissue. (E) moderate lymphocytic
infiltration associated with hyperplasia of peribronchial lymphoid tissue. (F) mild lymphocytic infiltration
associated with hyperplasia of peribronchial lymphoid tissue.
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Macroscopic analysis of the lungs of vaccinated animals also showed no pathological changes.
Histological examination revealed mild nonspecific changes, in the form of hyperemia of the
alveolar septa with small hemorrhages, minor lymphocytic and mononuclear infiltration of interstitial
tissue, and weakly expressed focal peribronchitis accompanied by moderate hyperplasia of the
bronchoalveolar epithelium and peribronchial lymphoid tissue (Figure 5D,E).

Specific morphological changes—the activation of bronchus-associated lymphoid tissue (BALT)
characteristic of the development of an immune response to respiratory virus—were identified in
groups 1 and 2 (Figure 5D,E).

Histological examination of the lungs of control ferrets (group 3) revealed mild nonspecific
changes in the form of hyperemia of the alveolar septa with small hemorrhages and mild focal
peribronchitis without signs of hyperplasia of peribronchial lymphoid tissue (Figure 5F).

A semiquantitative analysis of the revealed pathologies is presented in Table 3. Some slight
to moderate pathologies were detected in groups 1 and 2. Statistical analysis with Kruskal–Wallis
ANOVA by ranks did not reveal any statistically significant difference between the groups (H = 1.72,
p = 0.42).

Table 3. Semiquantitative analysis of lung tissue and bronchial tree in male ferrets, day 3 post vaccination.

Histopathological Parameters
Score of Histopathological Changes

A/17/GD A/17/HK PBS

(Group 1) (Group 2) (Group 3)

Animal index number 1 2 3 1 2 3 1 2 3
Exudate in lung lumen 0 0 0 0 0 0 0 0 0

Hypertrophy of bronchial epithelium 0 0 0 0 0 0 0 0 0
Hyperplasia of bronchial epithelium 0 0 0 1 0 0 1 0 0

Necrosis of bronchial epithelium 0 0 0 1 0 0 0 0 0
Exudate in bronchiole lumen 0 2 1 1 1 0 0 0 0

Hypertrophy of bronchoalveolar epithelium 0 0 0 1 0 0 1 0 0
Hyperplasia of bronchoalveolar epithelium 0 2 0 0 1 0 2 0 0

Necrosis of bronchoalveolar epithelium 0 0 0 0 0 0 0 0 0
Bronchitis 0 1 0 1 0 0 0 0 0

Peribronchitis 1 2 1 1 1 0 0 1 1
Bronchiolitis 0 2 2 1 0 1 0 0 0

Peribronchiolitis 0 1 1 1 0 0 1 0 1
Perivasculitis 0 1 0 1 1 1 0 1 1

Vasculitis 0 1 1 1 1 1 0 0 0
Interstitial infiltrate 0 1 1 1 1 1 0 0 0

Alveolitis 0 1 1 1 1 1 0 0 0
Hyperemia of alveolar septum 1 1 0 1 0 0 1 0 1

Alveolar emphysema 1 0 0 0 0 0 0 0 0
Alveolar hemorrhages 0 0 1 1 0 0 1 0 1
Total points per animal 3 15 9 14 7 5 7 2 5

Median 9 7 5

0: no changes; 1: minimum changes; 2: moderate changes; 3: pronounced changes. Statistically significant
differences were not found (Kruskal–Wallis test, p > 0.05).

3.4. Antibody Response to H7N9 LAIV

All ferrets were prescreened by routine hemagglutination inhibition test (HAI) to ensure that
they were negative to circulating human influenza viruses and to the viruses being tested. None of
the ferrets had HAI antibody titers ≥1:5 to any virus prior to vaccination. Both H7N9 LAIVs were
highly immunogenic: 28 days after the first vaccination, all ferrets showed a 4-fold or greater increase
in HAI antibody titers to homologous and heterologous H7N9 LAIV viruses (Figure 6). Homologous
geometric mean titers (GMTs) were 176 for A/17/GD and 120 for A/17/HK. Both LAIVs induced
cross-reactive HAI antibodies. The GMT of HAI antibody against A/17/HK and A/17/AH after
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one dose of A/17/GD reached 104 and 60, respectively. Similarly, the GMT of HAI antibody against
A/17/GD and A/17/AH after one dose of A/17/HK reached 53 and 62, respectively.

After the second vaccination with H7N9 LAIV, the homologous HAI antibody titers increased slightly
(to 279 and 160 for A/17/GD and A/17/HK, respectively), but no seroconversion was detected between
the first and second dose (Figure 6A). The same pattern was noted with heterologous HAI antibodies.

Strikingly, the development of serum IgG and IgA titers was different for the two H7N9 LAIVs.
For the majority of antigens tested, IgG antibody titers after two doses of A/17/GD vaccine were
significantly higher than after a single dose, whereas A/17/HK LAIV induced high titers of IgG
antibody after the first dose, and the second dose did not increase these antibodies (Figure 6B,C). These
data suggest that two doses of A/17/GD might be required to establish fully functional antibody
responses, while the A/17/HK vaccine is sufficiently immunogenic after a single dose. In addition,
both H7N9 LAIVs induced homologous secretory IgA (sIgA) antibody in upper respiratory tract
(Figure 6D). Although the A/17/HK vaccine was more immunogenic than the A/17/GD (GMT
8.0 versus 1.7 after the second dose), the difference didn’t reach statistical significance (p = 0.095,
Mann-Whitney U test), most probably due to the low number of animals in the analysis. Interestingly,
the A/17/HK-induced sIgA were strongly strain-specific, whereas two of five ferrets immunized with
A/17/GD vaccine developed cross-reactive sIgA responses to heterologous H7N9 viruses (Figure 6D).
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Figure 6. Homologous and heterologous antibody titers in ferrets given two doses of H7N9 LAIV
intranasally at 28 days interval. Individual data and geometric means are shown. Test of Wilcoxon
was used for comparison of antibody GMTs. (A) HAI antibody titers. (B) Serum IgG antibody titers.
(C) Serum IgA antibody titers. (D) Secretory IgA antibody titers in nasal washes.

3.5. Heterologous Antibody Immune Response of Healthy Volunteers to H7N9 Viruses

In a separate experiment we investigated the cross-reactivity of human sera obtained from a
phase I clinical trial of A/17/AH completed in 2015 against newly recommended viruses, A/GD and
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A/HK. A/17/AH LAIV-induced antibodies were poorly cross-reactive against recent H7N9 viruses
(Table 4), confirming that there was no cross-protection by HAI or microneutralization (MN) tests in
sera obtained from the earlier phase I clinical trial of A/17/AH to the newly recommended viruses.
Therefore, new LAIV candidates are really needed.

Table 4. Homologous and heterologous antibody immune responses of healthy volunteers after vaccination
with A/17/AH (H7N9) LAIV.

Assay H7N9 Virus

After First Vaccination After Second Vaccination

Seroconversion GMT Rise Seroconversion GMT Rise

No. % No. %

HAI
A/17/AH 3 10.3 1.7 19 65.5 3.4
A/17/GD 1 3.4 1.1 1 3.4 1.3
A/17/HK 0 0 1.0 0 0 1.0

MN
A/17/AH 14 48.0 3.4 21 72.4 5.5
A/17/GD 2 6.9 1.3 7 24.1 1.6
A/17/HK n.d. 1 n.d. n.d. n.d. n.d. n.d.

1 n.d.: not determined.

4. Discussion

The threat of a new influenza pandemic is real. Currently, there is a large reservoir of influenza A
viruses among animals and birds. A number of different subtypes of animal influenza A viruses have
infected humans, including Hsw1N1 [29], H5N1 [6,30,31], H5N6 [32–34], H6N1 [35], H7N3 [36–38],
H7N4 [39], H7N7 [40–42], H7N9 [5,43–46], H9N2 [6,47,48] and H10N8 [49,50].

One of the most important initiatives of the World Health Organization in preparing for a
future influenza pandemic is focused on the development and evaluation of various vaccines against
potentially pandemic influenza viruses. The presence of an effective vaccine at the beginning
of a pandemic will largely determine the outcome of the first pandemic wave. Because of the
inability to predict which strains will trigger subsequent pandemics, a large number of antigenically
divergent variants representing various subtypes of potentially pandemic influenza viruses have been
recommended for the development of pandemic vaccines [6,51]. Different approaches and platforms
have been used to develop vaccines against potentially pandemic influenza viruses, and over the past
few years, a lot of data has been accumulated on the safety and immunogenicity of these vaccines. The
latest summary of clinical trials of pandemic vaccines can be found on the WHO website [52].

The effectiveness of preventive measures at the beginning of any influenza pandemic depends
on the quality and availability of specific influenza vaccines. As the example of the 2009 pandemic
showed, when a completely new strain emerged in circulation, against which relevant vaccines were
not prepared, the most important action to mitigate the risk to public health is the rapid preparation,
characterization and production of safe and immunogenic vaccines from an appropriate strain for
immunizing high-risk groups. In this regard, LAIVs have a number of advantages over inactivated,
the most important of which in the pandemic situation is the accelerated production of a large number
of vaccine doses in short period of time. In addition, LAIV is administered by a painless intranasal
route (nasal spray), which does not require the presence of qualified medical personnel for mass
immunization, and also promotes the induction of cross-reactive factors in the adaptive immune
response [53,54]. Another important advantage of LAIV is the induction of a mucosal immune
response—the first barrier in the pathway of influenza infection, which significantly reduces the
spread of the virus in the team [55]. In addition, the immunization with LAIV causes the formation of
CD8 + CTL-immune response, which provides heterosubtypic defense of the organism [56,57]. All of
these benefits were recognized by WHO experts, and LAIV was included in the WHO Global Action
Plan to increase the supply of influenza vaccines [22], as well as to the WHO Global Plan for Pandemic
Preparedness [51].
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The current study was focused on the development and preclinical study of two H7N9 LAIV
candidates generated on the base of recently isolated H7N9 viruses. These viruses are considered
to be the most probable causative of the next influenza pandemic [9]. The first Russian H7N9 LAIV
candidate was developed from an early isolate, A/Anhui/1/2013 [21] and tested in volunteers [14].
It was found to be well tolerated and safe and showed good immunogenicity [14]. However, as was
shown in experiments with post-infection ferret anti-A/Anhui/1/2013 serum [8] and also in our
experiment with human serum samples obtained in 2014-15 from a phase I clinical trial of A/17/AH
LAIV, recent viruses react poorly with anti-A/Anhui/1/2013 antibody. Therefore, to be prepared for
the potential occurrence of an H7N9 pandemic, two H7N9 LAIV candidates that are antigenically
distant from A/Anhui/1/2013 (H7N9)-like viruses, A/17/GD and A/17/HK, were constructed on
Len/17 backbone according to WHO recommendations [8].

The A/HK WT parental virus is a human isolate, for which the HA and NA have been antigenically
and genetically characterized as representing the majority of novel currently circulating influenza
A (H7N9) viruses [8]. A/HK is considered as a low pathogenic virus. Thus, the A/17/HK LAIV
candidate was produced by classical reassortment in embryonated chicken eggs in a biosafety level
3 facility. The fifth H7N9 wave was characterized by the occurrence of a highly pathogenic form, as
evidenced by the presence of a polybasic HA cleavage site. Therefore, to generate the A/17/GD LAIV
candidate against this HPAIV the use of reverse genetics was required. In addition, reverse genetics
technology allowed introducing an K292R amino acid change in the NA protein, thus generating an
Oseltamivir-sensitive variant.

Both H7N9 LAIV candidates had the required vaccine genome composition of 6:2 and were tested
to evaluate their safety, immunogenicity and protective efficacy in the ferret model. We were not able
to challenge the ferrets with HPAIV because of the limitations of the animal facility. Thus, ferrets in
groups 1 and 2 were revaccinated (challenged) with 7.0 lg EID50/mL of A/17/GD or A/17/HK vaccine
candidate, respectively. In the absence of a challenge using wild type virus, protective efficacy of H7N9
LAIV candidates was evaluated by the absence of live vaccine virus replication post second vaccination
dose. The use of attenuated influenza viruses as a surrogate measure for challenge with wild-type
virus has been utilized in other studies, not only in ferrets [27], but also in human trials [58,59].

When ferrets were intranasally vaccinated or revaccinated with the H7N9 LAIV candidates they
did not develop any clinical signs of influenza illness. Macroscopic and histological inspection of the
trachea of ferrets inoculated with A/17/GD or A/17/HK did not reveal any effect of vaccination.
Examination of the lungs of ferrets sacrificed three days after vaccination found only minor lesions
similar to those seen in the control ferrets. Some slight to moderate pathological changes detected in
the vaccinated ferrets could be associated with the development of an immune response.

Pronounced replication of vaccine viruses in the upper respiratory tract of ferrets after the first
dose of vaccine was detected by titration of nasal washes in embryonated chicken eggs. Importantly,
none of the ferrets had detectable replication of vaccine virus in the lungs. After the second dose,
no live vaccine virus was found in nasal washes, indicating that one dose of H7N9 LAIV prevented
vaccine virus replication after revaccination. These data suggest that a single administration of H7N9
LAIV might protect against corresponding variants of the WT H7N9 virus.

The presence of H7N9 LAIV viruses in the airways was also evaluated using real-time PCR.
Genetic material of H7N9 LAIV viruses was found in the lungs of vaccinated ferrets on day 3 post-
vaccination. After the second dose, genetic material of vaccine virus was found in the nasal washes
of one ferret in each vaccinated group on day 29 (one day after revaccination); this may have been
residual viral inoculum.

It should be noted that PCR detects the presence of viral RNA, including in material where virus
replication does not occur, as well as RNA fragments and non-replicable virus particles. LAIV viruses
can attach to the surface of lung epithelial cells, but are unable to replicate inside the cells because of
their attenuated nature. Consequently, conclusions about the presence of viable virus can be made
only on the basis of the virological method.
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The absence of clinical signs of disease, the fact that virus replication was limited to the upper
respiratory tract, and the minor pathological changes in ferrets’ airways confirmed the attenuated
phenotype of the H7N9 LAIV candidates.

Administration of a single H7N9 vaccine dose induced high anti-HA antibody titers in ferrets.
The second dose of vaccine did not further enhance the anti-HA antibody response, suggesting that
a fully functional antibody immune response was established after a single dose. This protected the
animals against the homologous LAIV virus replication after their revaccination given 28 days after
the first vaccination. This finding is consistent with the results of other studies indicating that a single
dose of A/Anhui/1/2013-based LAIV prevented virus replication in ferrets [22,60].

Nevertheless, the serum IgG and IgA antibody titers, as measured by enzyme-linked immunosorbent
assay (ELISA), suggest that two doses of A/17/GD LAIV might be beneficial in the development of a
strong immune response. The A/17/HK LAIV was sufficiently immunogenic after a single dose, and no
boosting effect was seen after the second dose. Both vaccines induced cross-reactive HAI and IgG/IgA
antibody titers; however, the faster induction of IgG and IgA antibody by the A/17/HK LAIV makes this
the preferred candidate vaccine for further clinical development.

In 2006, the WHO announced a Global pandemic influenza action plan for influenza vaccines
(GAP). WHO, recognizing potential advantages of LAIV over the inactivated influenza vaccine in a
pandemic situation, included LAIV in the GAP. Newly developed H7N9 LAIVs may be used as the
first line of defense of all age groups in the case if the H7N9 pandemic occurs.

5. Conclusions

The two new live H7N9 influenza vaccines seem to be well tolerated and attenuated for ferrets. No
clinical symptoms of respiratory disease were detected. A single intranasal administration induced a
strong antibody immune response, protecting the animal from the homologous LAIV virus replication
after the second administration. These results indicate that both H7N9 LAIV strains have the potential
for use as a pandemic vaccine. However, since the A/HK virus represents the cluster that has caused
the majority of human cases, and since it can be manufactured by classical reassortment, it is the
preferred candidate for a phase I clinical trial in volunteers.
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