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Abstract: Programmed cell death (PCD) is a highly regulated process that results in the orderly
destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis,
PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the un-
derlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration
(RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene
mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD
triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable.
While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the
past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative
mechanisms. Research into these mechanisms carries the hope that the knowledge created can even-
tually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we
summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell
death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling
targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable
channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of
cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.

Keywords: PKG; cGK; cGMP; photoreceptor; phototransduction

1. Introduction

In multicellular organisms, tight regulation and control of cell death are essential
for development, tissue homeostasis, and survival [1]. Different cell types, tissues, and
varying physiological conditions have resulted in the evolution of a multitude of cell
death mechanisms for which collectively the term “programmed cell death” (PCD) has
been introduced [2]. PCD mechanisms, such as apoptosis, usually involve a genetically
controlled, program-driven activation of biochemical processes and cellular machinery
that result in systematic cellular self-destruction [3].

Hereditary retinal degeneration (RD) is a genetically diverse group of diseases that
typically result in progressive photoreceptor cell death, severe visual handicap, and blind-
ness [4]. The most common disease within the RD group is retinitis pigmentosa (RP) [5], in
which patients initially experience night blindness and gradual constriction of the visual
field until complete blindness sets in [6,7]. The disease typically displays a two-step pro-
gression where primary loss of rod photoreceptors is followed by secondary degeneration
of cone photoreceptors [6,7]. Approximately one in four thousand people are affected by
RP [5,6]. Overall, RD-type blinding diseases are considered to be untreatable [8]. Key
questions in the field of RD research concern the cellular mechanisms that bring about
photoreceptor loss and whether these may be targeted by therapeutic interventions to
prevent or delay the progression of RD.
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While over the last 2–3 decades, research has overwhelmingly focused on apoptosis
as a causative mechanism for RD, recent evidence indicates that apoptosis only plays a
minor role in photoreceptor degeneration [9–12]. Instead, the importance of non-apoptotic
mechanisms, for instance, triggered by exceedingly high levels of cyclic-guanosine-mono-
phosphate (cGMP), is increasingly recognized [13]. Hence, for the purposes of this review,
we will mention apoptosis only briefly to then focus on non-apoptotic cell death mecha-
nisms. This will include cGMP-dependent cell death [13] and PARthanatos [14] as well as
enzymes involved in either or both degenerative pathways. Finally, an outlook is given
into how future therapeutic approaches may use an improved mechanistic understanding
of PARthanatos and cGMP-signaling.

2. Photoreceptor Physiology and Phototransduction

Photoreceptors mediate the conversion of a photon of light into an electrochemical
message that can be interpreted by second-order neurons, a process referred to as photo-
transduction. A feature of vertebrate phototransduction is their separation into rod and
cone photoreceptors, adapted, respectively, for night and day vision. While rods and cones
utilize distinct isoforms of the protein components of the transduction cascade, in both
types of photoreceptors, cGMP plays a key role [15]. In darkness, cGMP concentration is
controlled by the dynamic equilibrium of its synthesis and hydrolysis governed by the
basal activities of retinal membrane guanylyl cyclases (GCs) and phosphodiesterase (PDE6),
respectively [16,17]. Cyclic nucleotide-gated ion channels (CNGCs), belonging to the super-
family of pore-loop cation channels, are ion channels that are located in the outer segment
plasma membrane of photoreceptors and that are activated by the binding of cGMP or
cAMP [18,19]. Interestingly, mutations in genes encoding for CNGC subunits can cause
retinal degeneration [18,20], attesting to their importance for photoreceptor physiology. A
high level of free cGMP in darkness maintains ∼3% of CNGCs in the open state, allowing
for an influx of Na+ and Ca2+ into the outer segment [16,17]. While Ca2+ is extruded from
the outer segment by the Na+/Ca2+-K+ (NCKX) exchanger, Na+ is pumped out of the inner
segment by the adenosine-5′-triphosphate (ATP) -driven Na+/K+ exchanger (NKX). This
continuous flow of Na+ ions forms the circulating dark current (Figure 1) [21].

As opposed to other neuronal cell types, photoreceptors are relatively depolarized in
their resting state, which in turn leads to a constant synaptic release of the neurotransmitter
glutamate. Photon absorption by an opsin protein in the outer segment leads to a confor-
mational change, allowing the opsin to bind and activate the G-protein transducin, which
then binds the inhibitory γ-subunit of phosphodiesterase-6 (PDE6), releasing the catalytic
PDE6αβ subunits to hydrolyze cGMP. The subsequent decline of cGMP concentrations
leads to the closure of CNGCs and the reduction of the dark current. The net decrease in the
influx of positively charged Na+ and Ca2+ leads to a hyperpolarization of the photoreceptor
cell and the cessation of synaptic glutamate release [22,23].

Low intracellular Ca2+ activates guanylyl cyclase-activating protein (GCAP), stimu-
lating GC, and increasing cGMP synthesis [24–26]. Rising cGMP, in turn, re-opens CNGC
and facilitates the recovery of the light response [27,28]. As we will see in the next chapter,
the very high energy consumption of photoreceptor phototransduction has ramifications
for cell death mechanisms.
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Figure 1. Crosstalk between cGMP-signaling and PARthanatos in different photoreceptor compartments. In RD-type
diseases, photoreceptor degeneration is often initiated by high cGMP levels, caused, for instance, by mutations affecting
phosphodiesterase-6 (PDE6). On the one hand, cGMP activates protein kinase G (PKG), which is associated with histone-
deacetylase (HDAC), leading to chromatin condensation and DNA damage. This, in turn, may trigger the over-activation of
histone deacetylase (HDAC) and indirectly PARP, leading to NAD+/ATP depletion. In addition, PAR polymers produced
by PARP can cause mitochondrial dysfunction and translocation of apoptosis-inducing factor (AIF) to the nucleus. On the
other hand, cGMP opens the cyclic-nucleotide-gated channel (CNGC), promoting Na+/Ca2+ influx and voltage change in
the outer segment. In turn, Ca2+ inhibits guanylyl cyclase (GC), which limits cGMP synthesis from GTP under physiological
conditions. The CNGC-dependent voltage change may further open voltage-gated-Ca2+ channels (VGCC) in soma and
synapse, leading to more Ca2+ influx. PARP-dependent ATP-depletion may reduce NKX-mediated ion extrusion, resulting
in higher intracellular Ca2+ levels. These, in turn, may be linked to calpain-type protease activation, precipitating cell death.

3. Retinal Energy Metabolism and Cell Death

The retina is one of the most energy-demanding tissues in the body [29], with a
large part of its ATP consumption caused by NKX activity and maintenance of the dark
current [30,31]. Remarkably, the retina relies mostly on the relatively energy-inefficient
glycolysis even in the presence of oxygen, rather than using oxidative phosphorylation,
which could provide 18 times as much ATP per mol of glucose [32]. This phenomenon
was recognized already by Otto Warburg in the early 1920s and is referred to as “aerobic
glycolysis” or as the “Warburg effect” [33]. While the significance of aerobic glycolysis in
the retina is, in part, still unclear, several studies have proposed that it may enhance the
anabolic activity of photoreceptors [34–36].

At any rate, the availability of ATP will determine what kind of cell death mechanism
can be operated by a cell. For instance, apoptosis as an active, ATP-dependent process
cannot be executed without sufficient ATP, while necrotic forms of cell death require
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much lower ATP-levels or no ATP at all for their execution [37–40]. Several different
pathological situations may entrain a depletion of ATP. For instance, a cGMP-mediated
overactivation of CNG channels may lead to cytosolic Ca2+ overload. High cytosolic Ca2+,
together with other causal factors, may lead to an increase in mitochondrial membrane
permeability and subsequent membrane depolarization, increased mitochondrial reactive
oxygen species (mROS) generation, cytochrome C release, and apoptosis [37,38,41]. In
turn, ROS production may deteriorate mitochondrial function even further [42,43]. On
one hand, this will decrease photoreceptor ATP production, while on the other hand, ATP
consumption will be increased by the extrusion of Ca2+ from the cell soma and synapse
via the ATP-driven plasma membrane Ca2+-ATPase (PMCA) [30]. The net effect would
be a complete depletion of ATP and then cell death via non-apoptotic, ATP-independent
mechanisms.

ATP is also intricately linked to nicotinamide adenine dinucleotide (NAD+), a metabo-
lite that serves as a cofactor for hydrogen transfer. As such NAD+ is vital for the operation
of glycolysis and ATP-synthesis in the mitochondria [44]. Thus, if NAD+ levels fall be-
low a critical threshold, key metabolic processes capable of delivering ATP will cease to
function. Such a situation may occur in PARthanatos, where the activity of poly(ADP-
ribose)polymerase (PARP) may consume excessive amounts of NAD+, thereby indirectly
also depleting intracellular ATP [45]. In RD-type diseases, the depletion of ATP consump-
tion and NAD+ may be a significant concern for disease pathogenesis.

4. Apoptosis

Apoptosis is a form of PCD that occurs not only during development or aging, but also
as a defense system. Apoptosis can be activated by intrinsic and extrinsic signaling [46]. The
intrinsic pathway, also known as the mitochondrial pathway, is driven by a signal within a
cell, inducing the expression of proapoptotic genes and proteins, including those belonging
to the BCL-2 family, which form the mitochondrial outer membrane permeabilization
(MOMP), allowing for the release of cytochrome C to the cytoplasm where it binds to
apoptotic protease-activating factor-1 (APAF1). The resultant multimeric cytochrome-
c/APAF1 complex activates caspase-9 [47], which in turn cleaves and activates downstream
executioner caspases, such as caspase-3 and -7. The extrinsic pathway is triggered by the
activation of cell-surface death receptors, such as the tumor necrosis factor family. Later,
caspase-8 gets activated, which may then cleave and activate downstream caspases-3 and
-7 directly, or, alternatively, may activate BCL-2 family proteins, executing the same steps
as in classical apoptosis [48–50].

In the past, apoptosis was regarded as a primary degenerative mechanism in RD [51],
yet, in the last decade an increasing amount of evidence pointed to the importance of
non-apoptotic mechanisms, including cell death pathways triggered by high cGMP [12,13].
One of the confounding factors that has made it difficult to separate apoptotic PCD from
the cell death mechanisms that actually underlie RD is the fact that apoptosis is a prominent
feature of retinal development [52] and that many commonly used RD animal models
display mutation-induced photoreceptor cell death in the very same time frame [38].

5. PARP Activity and PARthanatos

PARP-type enzymes catalyze the transfer of ADP-ribose to target proteins [53] and
can sequentially add ADP-ribose units from NAD+ to form polymeric ADP-ribose chains
(PAR) [54]. There are at least 18 PARP family members encoded by different genes and
with a shared homology in the conserved catalytic domain [55]. While PARP activity was
originally associated with DNA repair enzymes and gene regulation [56,57], it may also
be the primary driver for a specific form of cell death, termed PARthanatos [14]. This
relatively recently discovered non-apoptotic cell death process is characterized by PARP
overactivation, accumulation of PAR, and nuclear translocation of apoptosis-inducing
factor (AIF) from the mitochondria. As such, PARthanatos is likely involved in various
retinal degenerative diseases [58,59].
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5.1. The Core of PARthanatos: PARP and PAR Polymers

PARP-1 is probably a central mediator of this cell death mechanism since the majority
(>90%) of PAR polymer synthesis typically stems from PARP-1 [60,61]. PARP-1 can mediate
cell death when high levels of DNA damage activate PARP-1 to a degree that depletes
cellular NAD+ levels. The subsequent depletion of ATP decreases all energy-dependent
functions and leads to cell death before DNA repair can be accomplished [62].

Poly(ADP-ribosyl)ation (PARylation) was first described by Chambon and colleagues
more than 50 years ago [63]. For PAR chains formation, NAD+ molecules must be cleaved
by PARP, and resulting ADP-ribosyl units must be attached to already existing ones [64,65].
The DNA break-induced activation of PARP-1 triggers PARylation of proteins, including
PARP-1 itself (auto-PARylation), to facilitate the recruitment of DNA repairing enzymes
that contribute to DNA repair near the DNA damage site. Although PARylation is primarily
a survival mechanism, high PARylation activity can cause regulated cell death in cells with
excessive DNA damage [60]. Suppressing PARylation rescues cells from PARthanatos,
attesting to the important role PARylation plays in PARP-1 and DNA damage-induced
cell death [66]. Remarkably, PAR itself exhibits dose-dependent toxicity in neurons when
exogenously administered via BioPorter, a cationic lipid formulation that facilitates PAR
entry into cells [67].

In physiological conditions, several mechanisms counterbalance excessive PARP-1
activity. (1) PAR molecules are rapidly catabolized by poly-(ADP-ribose) glycohydrolase
(PARG) and ADP-ribosyl protein lyase [68,69]; (2) auto-PARylation of PARP-1 downreg-
ulates its activity by interfering with interactions between the DNA and DNA binding
domain [70]; (3) accumulation of nicotinamide as a by-product of NAD+ consumption
inhibits PARP-1 and may act as a negative feedback signal [45,62].

5.2. PAR-Dependent Translocation of AIF

AIF was originally identified as a soluble 57-kDa fragment, which upon dissipation
of the mitochondrial membrane potential is released from the mitochondria and translo-
cates to the nucleus in a caspase-independent manner [71]. PAR induces a conformation
change in AIF that lowers its affinity to the mitochondrial outer membrane leading to its
release [72]. Hence, after PARP-1 overactivation, AIF can be released into the cytoplasm
and translocate further to the nucleus, promoting cell death [73]. The protective effect by
blocking mitochondrial AIF release or reducing AIF abundance indicates that AIF plays a
crucial role in PARthanatos [65,74,75]. Furthermore, AIF can recruit macrophage migration
inhibitory factor (MIF) to the nucleus, where MIF cleaves genomic DNA into large-scale
fragments via its nuclease activity [73]. Such DNA damage may lead to even more PARP-1
activation, effectively forming a feedback loop that accelerates NAD+ depletion, mitochon-
drial dysfunction, and DNA degradation.

5.3. Crosstalk between PARthanatos, Ca2+, and Calpain-Type Proteases

As described above (Section 3), ATP depletion caused by excessive PARP-1 activ-
ity [76] will compromise a cell’s capability for Ca2+ extrusion via ATP-dependent PMCA
(Figure 1). The resulting rise in intracellular Ca2+ may lead to Ca2+-dependent activation
of calpain-type proteases [48,53]. While calpain may be involved in AIF release from mito-
chondria [77], during PARthanatos, AIF release can also happen independently of calpain
activity [78]. Still, other than via calpain activation, high intracellular Ca2+ levels, and Ca2+

sequestration into mitochondria can also lead to the generation of reactive oxygen species
and mitochondrial dysfunction, further promoting the execution of PARthanatos [79,80].

6. cGMP-Dependent Cell Death in RD

Many genetically distinct forms of RD display a substantial increase in the intracel-
lular photoreceptor concentration of cyclic guanosine monophosphate (cGMP) [12,81,82].
We have previously proposed for this to constitute a new cGMP-dependent cell death
pathway for photoreceptor degeneration [48] that would apply to any disease-causing
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mutation that raises intracellular cGMP levels. In this mechanism, overactivation of the
prototypic cGMP targets CNGC and protein kinase G (PKG), produces excessive Ca2+

influx and protein phosphorylation, respectively [12]. Both CNGC and PKG alone or in
concert precipitate cell death: CNGC-mediated Na+ and Ca2+ influx may strain the energy
metabolism and activate calpain [83,84]. PKG-dependent phosphorylation is associated
with histone deacetylase (HDAC) activation [85], which in turn appears to be connected to
the activation of PARP [86].

6.1. RD Mutations Associated with High Photoreceptor cGMP

Regarding the genetically very heterogenous group of RD-type diseases, a relevant
question concerns the generality of cGMP-dependent cell death. Indeed, excessive accu-
mulation of cGMP in photoreceptors has been observed in various genetically distinct RD
mutants [12,81,82,87,88], suggesting cGMP as a near-universal trigger for non-apoptotic
PCD mechanisms in RD. Disease-causing mutations may, for instance, result in gain-of-
function in genes involved in cGMP synthesis [89,90]. Similarly, loss of function in genes
downregulating cGMP can cause RD [91–93], and so can mutations in cGMP-signaling
targets [19,84,94], such as in CNGC genes. For further details on mutations in RD disease
genes that have been connected to exceedingly high levels of cGMP in photoreceptors,
please refer to [47,95].

6.2. cGMP-Gated Ion Channels, Ca2+ -Influx, and Cell Death

As mentioned in Section 2, cGMP-activation of CNGCs plays a central role in photo-
transduction [19]. These channels are heterotetramers consisting of CNGA1 and CNGB1
subunits in rod photoreceptors and CNGA3 and CNGB3 subunits in cones [19]. Elevated
photoreceptor cGMP levels may overactivate CNGC and increase Na+ and Ca2+ influx.
Knockout of the Cngb1 gene caused rod CNGC dysfunction and significantly delayed pho-
toreceptor degeneration in Pde6b mutant mice [84,87]. On the other hand, loss-of-function
mutations in CNGC genes cause RD [95], and even further pharmacological inhibition of
CNGC in Pde6b mutant retina accelerated photoreceptor cell death [96]. A possible expla-
nation for these seemingly contradictory outcomes could be that a low concentration of
intracellular Ca2+ activates GCAPs to stimulate GCs and increase cGMP synthesis [24–26].
In Cngb1-/- mice, the introduction of an additional knockout of the PKG1 gene (i.e., Prkg1-/-)
delays photoreceptor degeneration [87], suggesting that photoreceptor death ultimately is
mediated by PKG-dependent processes.

The activity of CNGCs depolarizes photoreceptors to the extent that voltage gated
Ca2+ channels (VGCC) in the soma and synapse open [97]. This results in further Ca2+

influx that must be extruded by PMCA at the expense of additional ATP and which,
otherwise, could lead to the activation of calpain-type proteases, which may promote cell
destruction [98–100]. Accordingly, the idea that high Ca2+ may be responsible for cell
death [48], and by extension for photoreceptor degeneration [101], has motivated several
studies attempting to block either CNGC or VGCC for therapeutic purposes. Unfortunately,
these attempts generally failed to yield tangible success [102–104], which may indicate that
Ca2+ influx is, in fact, not as relevant for photoreceptor cell death as previously thought [96].
The lack of therapeutic effect of Ca2+ channel blockers also suggests that the main drivers
of cGMP-dependent photoreceptor cell death are mainly independent of Ca2+ [21].

6.3. Protein Kinase G: A Link between cGMP-Signaling and Cell Death?

PKG is a major downstream effector of cGMP-signaling pathways [105]. Conven-
tionally, cGMP-PKG signaling is often seen as protective, especially in a neuronal cell
context [106–108]. However, overactivation of PKG can also cause cell death [109–111],
and in the retina and in photoreceptors, a link between excessive cGMP-signaling, PKG
activity, and cell death has been well established [81,112,113]. Moreover, application of
PKG inhibitors in vivo in RD retina resulted in photoreceptor protection [81,114], and
abolishing Prkg1 expression in the mouse promoted rod photoreceptor survival [87]. Con-
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versely, knockout of the Prkg2 gene in the mouse protected cone photoreceptors in a model
for hereditary cone degeneration [115]. However, it is worth noting that the exact PKG
expression patterns in the retina are still partially unresolved and that in situ hybridiza-
tion [116,117] and immunostaining studies [118] are not in entire agreement with each
other as to which PKG isoform is expressed in which retinal cell type.

Another open question is the nature of the protein targets that PKG may phospho-
rylate in the retina and how such phosphorylation could bring about photoreceptor cell
death. A recent study used protein phosphorylation array technology to identify PKG
targets in retinal tissue lysates. While some of the previously known PKG targets—such
as vasodilation-stimulated phosphoprotein (VASP) and cyclic AMP response element-
binding (CREB)—were confirmed, many novel substrates were also found, including
ryanodine receptor-1 (RYR1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3) [119]. The exact significance of these and other PKG targets for photoreceptor
degeneration will have to be elucidated in future studies.

6.4. Histone Deacetylase Activity as an Event Downstream of PKG

Modification of histones by the activity of histone deacetylases (HDACs) plays a key
role in epigenetic regulation of gene expression by changing the structure of chromatin and
by modulating the accessibility for transcription factors to their target DNA sequences [120].
Notably, excessive activation of HDACs in photoreceptors has been observed in connection
with the accumulation of cGMP and activation of PKG [12,86,121], and inhibition of HDAC
protects the retina from cGMP-induced neurodegeneration in several RD mutants [122–128].
Nonetheless, the mechanism of HDAC activation remains mysterious. While in C. elegans,
PKG-dependent phosphorylation appears to activate HDACs [85], it is unclear whether
such direct PKG-HDAC interactions also happen in higher vertebrates, even though
HDAC1 can serve as a substrate for PKG in vitro [129]. Overall, HDAC activity may have
both positive and negative effects on cell survival, and a PKG-dependent disturbance in
the equilibrium of different HDAC functions—whether direct or indirect—could play an
important role in neurodegeneration.

6.5. PARP: A Link between PARthanatos and cGMP-Dependent Cell Death

As discussed above, PARP-1 is the central mediator of PARthanatos due to its ability
to synthesize PAR polymers [60,61]. In addition, PARP activity is strongly increased in
photoreceptors during the progression of RD [12,130,131]. Remarkably, the inhibition of
HDAC activity with trichostatin A led to a decrease in photoreceptor PAR accumulation, in-
dicating that PARP activity may occur downstream of HDAC [86,125]. This may be linked
to HDAC-mediated removal of acetylated residues from histones, leading to chromatin
condensation and transcriptional repression. Chromatin condensation, in turn, impairs the
recruitment of DNA repair factors and results in the accumulation of DNA breaks [132].
Due to continuous exposure to endogenous and exogenous DNA-damaging insults, cells
accumulate DNA damage such as single-strand DNA breaks (SSBs) and double-strand
DNA breaks (DSBs). This requires constant surveillance and activation of the DNA repair
response [132] that is facilitated by PARP-1 [52]. Paradoxically, inhibition of PARP signif-
icantly delays photoreceptor loss in cGMP-dependent cell death [133–136], and PARP-1
gene knockout increases resistance to RD [137], indicating that PARP activity, perhaps
through its consumption of NAD+, is an important driver of photoreceptor degeneration.

Taken together, PARP activity may link PARthanatos (Section 5) on the one hand with
cGMP-dependent photoreceptor degeneration [48] and on the other hand with photorecep-
tor energy metabolism (Section 3).

7. Therapy Developments Targeting Programmed Cell Death

The degenerative photoreceptor pathways discussed thus far may provide targets
for the rational design of therapeutic interventions that could prevent or slow down the
progression of RD. Numerous studies have attempted to exploit mechanistic insights for
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therapy development purposes, and many of these works have focused on apoptosis as
the presumed causative mechanism (Table 1).

Table 1. An overview of current therapeutical targets in three different PCDs.

Cell Death
Mechanism Targets Methods Results References

Apoptosis

Caspase-type
proteases

Pharmacological
inhibition No effect/minor delay of

photoreceptor loss

[136]

Bcl-2, Bcl-XL, c-fos,
caspase-3, caspase-7 Gene knockout [137–141]

BAX Gene knockout Only saving rods [135,142]

PARthanatos PARPs Pharmacological
inhibition Delayed photoreceptor loss [130,133,143]

cGMP-dependentcell
death

CNGC
Gene knockout,

pharmacological
inhibition

Photoreceptor protection with
gene knockout, no protection

after pharmacological
inhibition

[95,144]

VGCC
Gene knockout,

pharmacological
inhibition

Minor delay after gene
knockout, no protection

pharmacological inhibition
[102,103]

PKG Pharmacological
inhibition

Morphological and functional
photoreceptor protection [111]

IMPDH Pharmacological
inhibition

Reduced photoreceptor cGMP,
photoreceptor protection [81,145]

7.1. Apoptosis as a Target for Therapeutic Intervention in RD

RD was initially thought to be driven by apoptosis [51], motivating many inter-
ventional studies that aimed to block different steps of the apoptotic cascade [138–140].
Unfortunately, these approaches were mostly ineffective, even though virtually the whole
apoptotic cascade has been targeted. For instance, neither the pharmacological inhibition
of caspase-type proteases [139], nor the genetic manipulation of Bcl-2 [141], Bcl-XL [142],
c-fos [146], caspase-3 [140], or caspase-7 [147] promoted long-term photoreceptor survival.
On the other hand, proapoptotic protein Bcl-2-associated X protein (BAX) activation was
observed in three different animal models for RD [148]. However, the role of BAX in RD
also seems ambiguous as its gene knockout may delay cell death of rod photoreceptors
but not that of cones in Rpe65 KO animals [138]. Together, most of the available evidence
does not suggest a major role for apoptosis in RD and hence makes it seem unlikely that
therapeutic interventions targeting apoptosis can be successful.

7.2. Targeting PARthanatos and PARP Activity

PARthanatos occurs in a highly choreographed, multistep fashion, and several steps
in the cascade could serve as therapeutic targets for managing diseases associated with
cell death [143]. Since PARthanatos is characterized by overactivation of PARP-1 [60,61],
PARP inhibitors should prioritize saving photoreceptor degeneration. Currently, PARP
inhibitors are mostly used for cancer therapy due to their ability to prevent DNA repair,
and several PARP inhibitors are being tested clinically or have already been approved for
clinical use [144]. Thus, it could be economically efficient to repurpose PARP inhibitors for
applications beyond oncology, including in RD [136].

Olaparib became the first PARP inhibitor to be approved by the FDA to treat metastatic
breast cancer in January 2018 [149]. In the Pde6b mutant rd1 mouse, Olaparib significantly
delayed photoreceptor loss [133] and affected the release of extracellular vesicles associated
with immune modulation, tumor invasion, regeneration, degenerative processes, cellular
communication, cell homeostasis, and neovascularization [134]. In addition, other PARP
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inhibitors also showed its neuroprotective effects in the retina. For instance, BMN-673,
3-aminobenzamide [136], and PJ34 [145] decreased PARylation and reduced photoreceptor
cell death. While these data confirm PARP in general as a therapeutic target for RD, it is
still uncertain whether PARP-1 is the main target or other PARP isoforms also need to be
considered. Moreover, a better understanding of how PARP activity precipitates cell death
will likely be needed to develop a truly effective therapy.

7.3. Novel Therapeutic Approaches Targeting cGMP-Dependent Cell Death

In a large subset of RD patients, cGMP-dependent cell death may be the prevalent
pathogenic mechanism, highlighting this pathway for gene- and mutation-independent
therapeutic purposes [12,48]. The most likely targets for high cGMP levels in the photore-
ceptor are PKG and/or CNGC (Figure 1) [87]. cGMP-induced overactivation of CNGC,
presumably causing a dangerous inflow of Ca2+, has been proposed as a key event in
photoreceptor degeneration [91,113], but as we discussed above, singly inhibiting Ca2+

might not rescue photoreceptors [96,103,104,150], due to feedback of low-Ca2+ levels in-
creasing cGMP [24–26]. On the other hand, PKG appears as an essential mediator of
cGMP-dependent cell death [81,112]. Accordingly, an inhibitory cGMP analogue delivered
via a nanosized liposomal carrier to facilitate transport across the blood-retinal barrier was
highly effective at protecting photoreceptors in three different in vivo RD models [114].

Still, interfering with PKG activity would not per se reduce the high intracellular
cGMP levels caused by RD mutations. Thus, an alternative approach could be to target
the cGMP synthesis pathway. Here, the enzyme inosine monophosphate dehydrogenase
(IMPDH), which catalyzes the rate-limiting step of GTP production [151] stands out as an
exciting novel target. Yang et al. [82] demonstrated that mycophenolate mofetil, a prodrug
of mycophenolic acid that reversibly inhibits IMPDH [152], reduced photoreceptor cGMP
and preserved photoreceptors in Pde6b mouse mutants.

Altogether, these data make cGMP-signaling appear as a lovely pathway for RD
therapy development. As a note of caution, it is crucial to consider that cGMP-signaling
covers essential functions in many cells of the body. Thus, a prospective drug will need
to be either highly specific for its target in photoreceptors or delivered with a system that
supplies the drug specifically to the retina and the photoreceptors.

8. The Future Therapeutic Research in RD

Although many novel therapies have been discovered (Section 7), there are still
challenges in clinical translation. For instance, RD-type diseases show an enormous genetic
heterogeneity with disease-causing mutations in more than 270 genes [48]. Since each of
these disease genes can carry from several dozens to several hundred or more individual
mutations [153,154], we may, at present, estimate the total number of disease mutations to
amount to several tens of thousands. This situation severely hinders the design of clinical
trials as the numbers of patients carrying a specific disease-causing mutation will be small,
even in a best-case scenario. However, a careful choice of the patients to be included in a
clinical trial with precisely known genotypes is critical for success during clinical testing.

Another problem for clinical translation is a lack of in vivo biomarkers due to the
incomplete understanding of the underlying photoreceptor cell death mechanisms. Ideally,
the biomarker could be used for the rapid assessment of treatment efficacy and should be
allowed for live non-invasive visualization of cell death in the retina. Recent developments
in magnetic resonance imaging (MRI) suggest that it may be possible to non-invasively
observe oxidative stress or the production of free radicals in the retina of animals [155]. In
addition, cGMP, a potential blood-based parameter, is increased in blood from RP patients
compared to healthy counterparts [156,157]. This may be related to the excessive cGMP
levels in the photoreceptors of many RP types, i.e., the phenomenon discussed in several
sections above, especially since at least some of the patients had mutations in the PDE6A
gene [157].
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9. Concluding Remarks

The question as to what type of PCD mechanism governs cell death in RD-type
diseases has been investigated for at least three decades, and many findings have been
contentious for many years. It is thus worth noting that this review is neither exhaustive
nor unbiased. While the recent decade has yielded a large body of evidence pointing at
cGMP-dependent cell death and PARthanatos as likely causative mechanisms in RD, future
research will have to confirm this, hopefully delivering effective RD therapies to patients.
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60. Robinson, N.; Ganesan, R.; Hegedűs, C.; Kovács, K.; Kufer, T.A.; Virág, L. Programmed necrotic cell death of macrophages: Focus

on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019, 26, 101239. [CrossRef]
61. Krishnakumar, R.; Kraus, W.L. The PARP Side of the Nucleus: Molecular Actions, Physiological Outcomes, and Clinical Targets.

Mol. Cell 2010, 39, 8–24. [CrossRef]
62. Murata, M.M.; Kong, X.; Moncada, E.; Chen, Y.; Imamura, H.; Wang, P.; Berns, M.W.; Yokomori, K.; Digman, M.A. NAD+

consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol. Biol. Cell
2019, 30, 2584–2597. [CrossRef]

63. Chambon, P.; Weill, J.D.; Mandel, P. Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid
synthesizing nuclear enzyme. Biochem. Biophys. Res. Commun. 1963, 11, 39–43. [CrossRef]

64. Bai, P. Biology of Poly(ADP-Ribose) Polymerases: The Factotums of Cell Maintenance. Mol. Cell 2015, 58, 947–958. [CrossRef]
[PubMed]

65. Kraus, W.L. PARPs and ADP-Ribosylation: 50 . . . Years and Counting. Mol. Cell 2015, 58, 902–910. [CrossRef] [PubMed]
66. Kondratova, A.A.; Cheon, H.; Dong, B.; Holvey-Bates, E.G.; Hasipek, M.; Taran, I.; Gaughan, C.; Jha, B.K.; Silverman, R.H.; Stark,

G.R. Suppressing PAR ylation by 2′,5′-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death. EMBO J. 2020, 39,
e101573. [CrossRef] [PubMed]

67. Andrabi, S.A.; Kim, N.S.; Yu, S.-W.; Wang, H.; Koh, D.W.; Sasaki, M.; Klaus, J.A.; Otsuka, T.; Zhang, Z.; Koehler, R.C.; et al.
Poly(ADP-ribose) (PAR) polymer is a death signal. PNAS 2006, 103, 18308–18313. [CrossRef]

68. De Murcia, G.; de Murcia, J.M. Poly(ADP-ribose) polymerase: A molecular nick-sensor. Trends Biochem. Sci. 1994, 19, 172–176.
[CrossRef]

69. Barkauskaite, E.; Jankevicius, G.; Ahel, I. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of
PARP-Dependent Protein ADP-Ribosylation. Mol. Cell 2015, 58, 935–946. [CrossRef]

70. D’Amours, D.; Desnoyers, S.; D’Silva, I.; Poirier, G.G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.
Biochem. J. 1999, 342, 249–268. [CrossRef]

71. Bano, D.; Prehn, J.H. Apoptosis-Inducing Factor (AIF) in Physiology and Disease: The Tale of a Repented Natural Born Killer.
EBioMedicine 2018, 30, 29–37. [CrossRef]

http://doi.org/10.1016/j.exer.2021.108641
http://doi.org/10.1038/s41392-020-00311-7
http://www.ncbi.nlm.nih.gov/pubmed/33028824
http://doi.org/10.1007/978-3-030-27378-1_53
http://doi.org/10.1038/nrm1150
http://www.ncbi.nlm.nih.gov/pubmed/12838338
http://doi.org/10.1016/j.str.2013.02.024
http://doi.org/10.1016/j.preteyeres.2019.07.005
http://doi.org/10.1152/physrev.00011.2017
http://doi.org/10.1038/nrm.2016.149
http://doi.org/10.1073/pnas.91.3.974
http://doi.org/10.1006/exer.2002.2063
http://doi.org/10.1615/CritRevEukaryotGeneExpr.2013006875
http://www.ncbi.nlm.nih.gov/pubmed/24579667
http://doi.org/10.1093/nar/gkv1383
http://doi.org/10.1002/bies.20085
http://www.ncbi.nlm.nih.gov/pubmed/15273990
http://doi.org/10.3390/biom2040524
http://www.ncbi.nlm.nih.gov/pubmed/24970148
http://doi.org/10.1016/S0027-5107(01)00078-1
http://doi.org/10.1186/s12964-019-0498-0
http://doi.org/10.1196/annals.1427.014
http://doi.org/10.1016/j.redox.2019.101239
http://doi.org/10.1016/j.molcel.2010.06.017
http://doi.org/10.1091/mbc.E18-10-0650
http://doi.org/10.1016/0006-291X(63)90024-X
http://doi.org/10.1016/j.molcel.2015.01.034
http://www.ncbi.nlm.nih.gov/pubmed/26091343
http://doi.org/10.1016/j.molcel.2015.06.006
http://www.ncbi.nlm.nih.gov/pubmed/26091339
http://doi.org/10.15252/embj.2020106593
http://www.ncbi.nlm.nih.gov/pubmed/33058249
http://doi.org/10.1073/pnas.0606526103
http://doi.org/10.1016/0968-0004(94)90280-1
http://doi.org/10.1016/j.molcel.2015.05.007
http://doi.org/10.1042/bj3420249
http://doi.org/10.1016/j.ebiom.2018.03.016


Int. J. Mol. Sci. 2021, 22, 10567 13 of 16

72. Wang, Y.; Kim, N.S.; Haince, J.-F.; Kang, H.C.; David, K.K.; Andrabi, S.A.; Poirier, G.G.; Dawson, V.L.; Dawson, T.M. Poly(ADP-
Ribose) (PAR) Binding to Apoptosis-Inducing Factor Is Critical for PAR Polymerase-1-Dependent Cell Death (Parthanatos). Sci.
Signal. 2011, 4, ra20. [CrossRef]

73. Park, H.; Kam, T.-I.; Dawson, T.M.; Dawson, V.L. Poly (ADP-ribose) (PAR)-dependent cell death in neurodegenerative diseases.
Int. Rev. Cell Mol. Biol. 2020, 353, 1–29. [CrossRef]

74. Wang, Y.; Dawson, V.L.; Dawson, T.M. Poly(ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos. Exp. Neurol.
2009, 218, 193–202. [CrossRef]

75. Cheung, E.C.; Melanson-Drapeau, L.; Cregan, S.P.; Vanderluit, J.L.; Ferguson, K.L.; McIntosh, W.C.; Park, D.S.; Bennett, S.A.; Slack,
R.S. Apoptosis-Inducing Factor Is a Key Factor in Neuronal Cell Death Propagated by BAX-Dependent and BAX-Independent
Mechanisms. J. Neurosci. 2005, 25, 1324–1334. [CrossRef]

76. Berger, N.; Sims, J.; Catino, D.; Berger, S. Poly(ADP-ribose) Polymerase Mediates the Suicide Response to Massive DNA Damage:
Studies in Normal and DNA-repair Defective Cells. In ADP-Ribosylation, DNA Repair and Cancer; CRC Press: Boka Raton, FL,
USA, 2020; pp. 219–226.

77. Ozaki, T.; Yamashita, T.; Ishiguro, S.-I. Mitochondrial m-calpain plays a role in the release of truncated apoptosis-inducing factor
from the mitochondria. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1793, 1848–1859. [CrossRef]

78. Wang, Y.; Kim, N.S.; Li, X.; Greer, P.A.; Koehler, R.C.; Dawson, V.L.; Dawson, T.M. Calpain activation is not required for AIF
translocation in PARP-1-dependent cell death (parthanatos). J. Neurochem. 2009, 110, 687–696. [CrossRef] [PubMed]

79. Zhong, H.; Song, R.; Pang, Q.; Liu, Y.; Zhuang, J.; Chen, Y.; Hu, J.; Hu, J.; Liu, Y.; Liu, Z.; et al. Propofol inhibits parthanatos via
ROS–ER–calcium–mitochondria signal pathway in vivo and vitro. Cell Death Dis. 2018, 9, 1–14. [CrossRef] [PubMed]

80. Paul, S.; Jakhar, R.; Bhardwaj, M.; Chauhan, A.K.; Kang, S.C. Fumonisin B1 induces poly (ADP-ribose) (PAR) polymer-mediated
cell death (parthanatos) in neuroblastoma. Food Chem. Toxicol. 2021, 154, 112326. [CrossRef] [PubMed]

81. Paquet-Durand, F.; Hauck, S.M.; Van Veen, T.; Ueffing, M.; Ekström, P. PKG activity causes photoreceptor cell death in two
retinitis pigmentosa models. J. Neurochem. 2009, 108, 796–810. [CrossRef]

82. Yang, P.; Lockard, R.; Titus, H.; Hiblar, J.; Weller, K.; Wafai, D.; Weleber, R.G.; Duvoisin, R.M.; Morgans, C.W.; Pennesi, M.E.
Suppression of cGMP-Dependent Photoreceptor Cytotoxicity with Mycophenolate Is Neuroprotective in Murine Models of
Retinitis Pigmentosa. Investig. Opthalmol. Vis. Sci. 2020, 61, 25. [CrossRef]

83. Kulkarni, M.; Trifunovic, D.; Schubert, T.; Euler, T.; Paquet-Durand, F. Calcium dynamics change in degenerating cone photore-
ceptors. Hum. Mol. Genet. 2016, 25, 3729–3740. [CrossRef]

84. Paquet-Durand, F.; Beck, S.; Michalakis, S.; Goldmann, T.; Huber, G.; Mühlfriedel, R.; Trifunović, D.; Fischer, M.D.; Fahl, E.;
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