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Therapeutic Angiogenesis Using HGF Plasmid

Fumihiro Sanada, MD, PhD,1 Tatsuya Fujikawa, MS,1 Kana Shibata,1  
Yoshiaki Taniyama, MD, PhD,1 Hiromi Rakugi, MD, PhD,2 and Ryuichi Morishita, MD, PhD1

Hepatocyte growth factor (HGF) is secreted from stromal 
and mesenchymal cells, and its receptor cMet is expressed 
on various types of cells such as smooth muscle cells, fibro-
blast, and endothelial cells. HGF stimulates epithelial and 
endothelial cell proliferation, motility, and morphogenesis 
in a paracrine and autocrine manner, organizing multi-
step of angiogenesis in many organs. In addition, HGF is 
recognized as a potent anti-inflammatory and anti-fibrotic 
growth factor, which has been proved in several animal 
studies, including neointimal hyperplasia and acute myocar-
dial infarction model in rodent. Thus, as compared to other 
angiogenic growth factors, HGF exerts multiple effects on 
ischemic tissues, accompanied by the regression of tissue in-
flammation and fibrosis. These data suggest the therapeutic 
potential of the HGF for peripheral artery disease as it being 
accompanied with chronic tissue inflammation and fibrosis. 
In the present narrative review, the pleiotropic action of the 
HGF that differentiates it from other angiogenic growth 
factors is discussed first, and later, outcomes of the human 
clinical study with gene therapy are overviewed.
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Introduction
Innate regenerative capacity of human lower extremity 
against progressing artery disease has been reported.1) 
Narrowing of the major artery by atherosclerotic plaque 
leading to tissue hypoxia stimulates small collateral blood 
vessels sprouting from preexisting arteries to overcome 
restricted blood flow. This process is defined as angio-
genesis.2) Unfortunately, collateral circulation by innate 
angiogenesis is generally inadequate to fulfill oxygen de-
mand during exercise,3) thus limiting physical activity. To 
supply enough blood to peripheral tissue, interventional 
or surgical revascularization procedures and medications 
have been advanced. However, multiple stenotic lesions in 
the major artery or disease in small peripheral vessels limit 
repeated revascularization procedures, which remain pa-
tients symptomatic. Therefore, researchers and clinicians 
have long challenged to amplify the innate angiogenic.4,5) 
Cell therapy and gene therapy have been studied for more 
than 20 years. Cell therapy remains at the primitive stage 
and is provided marginally positive outcomes in clinical 
trial of peripheral artery disease (PAD).6) Gene therapy 
targeting angiogenesis for PAD is also at early phase. 
However, several clinical trials with angiogenic growth 
factor genes, including vascular endothelial growth factors 
(VEGF), fibroblast growth factors (FGF), and hepatocyte 
growth factor (HGF), are now showing some progress 
with positive and negative trials (Table 1). In the present 
review, the multifunctional aspects of HGF on inflam-
mation, fibrosis, and insulin resistance was intensively 
discussed first. Later, the therapeutic potential of the HGF 
for PAD with complicated risk factors for cardiovascular 
disease is deliberated.

Anti-inflammatory and anti-fibrotic function of 
HGF
Several studies suggest that HGF inhibits both acute and 
chronic inflammation and reactive oxygen species (ROS) 
production in a variety of disease models; however, the 
underlying mechanism has been unclear. For instance, we 
previously demonstrated that the HGF-cMet system at-
tenuates angiotensin II-induced ROS production and fol-
lowing inflammation signaling by inhibiting the transacti-
vation of epithelial growth factor receptor (EGFR).7,8) The 
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protective effects of HGF against angiotensin II signaling 
through the activation of cMet receptor. As the HGF-cMet 
system inhibits the translocation of SH2 domain-contain-
ing inositol phosphate 5-phosphatase 2 (SHIP2) to EGFR, 
EGFR degradation is promoted through EGFR ubiquiti-
nation by C-Cbl, E3 ubiquitin ligase, which is normally in-
hibited to bind EGFR by SHIP2. Thus, HGF reduces Ang 
II-induced inflammation and ROS production. We further 
confirmed that ligand-dependent EGFR degradation by 
HGF is also functioned following the stimulation of trans-
forming growth factor beta (TGF-β), endothelin-1, and 
epithelial growth factor, which all trans-activate EGFR.7) 
In addition, by using a HGF transgenic mouse model 
(HGF-Tg mice) in which serum human HGF is overex-
pressed from the heart, we have documented that HGF-Tg 
mice restricted lipopolysaccharide (LPS)-induced vascular 
oxidative stress and inflammation in the aortic wall.9) 
The protective action of HGF against the LPS was also 
through the ligand-dependent EGFR degradation mecha-
nism. Hence, HGF can exert its anti-inflammatory and 
anti-oxidant effects in various pathological conditions, 
such as diabetes, atherosclerosis, chronic heart failure, and 
chronic kidney disease (CKD).10–13) In contrast, VEGF and 
basic fibroblast growth factor (bFGF) have been shown to 
initiate tissue inflammation and edema via an activation 
of nuclear factor-kappa B (NFκB) and its downstream 
inflammation-related cytokines, such as monocyte chemo-
tactic protein 1 (MCP-1), interleukin-1 (IL-1)β, IL-6, and 
IL-8 in vascular endothelial and smooth muscle cells.14,15) 
After vascular injury, the elevated expression of VEGF 
recruits monocyte macrophage-lineage cells and exacer-
bates neointimal formation,16) while HGF expression is 
decreased in injured vessels and administration of HGF in-

hibits the inflammation and the formation of neointima.17) 
Intriguingly, Min et al. have documented that HGF con-
siderably increases VEGF expression in endothelial cells 
(ECs) with decreasing VEGF-induced NFκB activation 
and leaky vessels or edema in a skin inflammation mouse 
model. HGF has a synergistic effect with VEGF on neovas-
cularization.18) Therefore, co-administration of HGF and 
VEGF could be a better treatment than either factor alone 
for augmenting therapeutic angiogenesis while avoiding 
tissue inflammation, which constitute the main pathol-
ogy of PAD. Of note, HGF can also resolve tissue fibrosis, 
another complication of PAD. HGF has been repeatedly 
reported to encounter TGF-β signaling reducing tissue 
fibrosis in several acute and chronic ischemic models of 
the heart and kidney. Furthermore, HGF attenuates the 
process of epithelial to mesenchymal cell transition, EMT, 
which is considered to be an underlying mechanism of 
perivascular fibrosis. Considering its strong anti-fibrotic 
action, HGF gene transfer might lead to better tissue oxy-
genation, although there is no direct evidence.

Insulin resistance and HGF
A growing body of evidence has demonstrated a correla-
tion between insulin resistance and chronic inflamma-
tion.19) In animal study, chronic inflammation has negative 
effects on the insulin signaling pathway in adipocytes, 
hepatocytes, and myocytes.20) The accumulation of mac-
rophages in the liver and white adipose tissue is known 
to promote insulin resistance.21) Thus, the hypothesis that 
HGF is involved in the mechanism of insulin resistance 
was tested.22) In the study, we first demonstrated that HGF 
inhibits angiotensin II-induced NFκB signaling in mouse 
macrophages (RAW264 cell), as well as in co-culture 

Table 1 Summary of clinical trials using angiogenic growth factor genes for patients with PAD

Trials or author name 
[reference]

Vector and promoter Delivery route Phase Enrollment Outcomes

Baumgartner et al. [34] phVEGF165/ MIEhCMV Intra-muscular I 9 Tolerated
Mäkinen et al. [35] phVEGF165/ MIEhCMV Intra-arterial II 54 Tolerated, increase vascularity

AdVEGF165/ MIEhCMV
RAVE [36] AdVEGF121/ MIEhCMV Intra-muscular II 95 No improvement of exercise performance or QOL
Groningen [37] phVEGF165/ not reported Intra-muscular II 54 No reduction in amputation rate
Comerota et al. [45] phFGF-1/MIEhCMV Intra-muscular I 107 Tolerated
TALISMAN [46] phFGF-1/MIEhCMV Intra-muscular II 125 Reduction in amputation rate
TAMARIS [47] phFGF-1/ MIEhCMV Intra-muscular III 525 No improvement of QOL or ABI, no reduction in 

amputation rate or death
Morishita et al. [50] phHGF/ MIEhCMV Intra-muscular I/IIa 22 Tolerated
Makino et al. [53] phHGF/ MIEhCMV Intra-muscular I/IIa 22 Improvement of ABI, reduction in rest pain and 

ulcer size up to 2 years
HGF-STAT [51] phHGF/ MIEhCMV Intra-muscular II 104 Improvement in TcPO2
TREAT-HGF [52] phHGF/ MIEhCMV Intra-muscular III 40 Improvement in rest pain and ABI, reduction in 

ulcer size

ABI: ankle-brachial index; TcPO2: transcutaneous oxygen tension; MIEhCMV: major immediate-early enhancer/promoter from human 
cytomegalovirus
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with 3T3-L1 adipocytes, resulting in the reduction of 
inflammatory cytokine expression including MCP-1, IL-6, 
IL-1β, and TNF-α in vitro. To prove this in vitro finding 
in vivo, ApoE KO mice were crossed with HGF-Tg mice. 
The chronic inflammation in adipose tissue and the liver 
with macrophage infiltration, adipocyte hypertrophy, and 
fatty liver observed in ApoE KO mice was significantly 
ameliorated in the ApoE KO/HGF-Tg mice. Notably, the 
ApoE KO/HGF-Tg mice increased serum adiponectin 
levels compared to the ApoE KO mice. These observa-
tions indicated that HGF suppresses the pro-inflammatory 
cytokine from adipocytes, liver, and macrophages and, 
contrary, increases serum adiponectin, thus inhibiting the 
vicious cycle of macrophage-adipocyte inflammation. Pre-
viously, it was demonstrated that circulating serum HGF 
levels were associated with existence of type 2 diabetes 
and obesity.23) However, its role in obesity-related pathol-
ogy was unclear. Thus, insulin sensitivity was evaluated 
in HGF-Tg mice fed with a high-fat diet (HFD).9) While 
HFD induced body weight gain in wild-type mice ac-
companied with insulin resistance, both were prevented 
in HGF-Tg mice. As compared to wild-type mice, macro-
phage accumulation in adipose tissue and inflammatory 
cytokine levels at 14 weeks after HFD was significantly 
attenuated in HGF-Tg mice. Administration of neutral-
izing antibody against HGF in wild-type mice with HFD 
significantly aggravated response to the glucose tolerance 
test. All together, these studies reinforce the protective 
role of HGF on glucose metabolism in obesity that has 
already been presented. Apart from our study, Perdomo 
et al. have showed that HGF enhances glucose transport 
and metabolism in myotubes through the PI3K/Akt-
mediated increased GLUT-1 and GLUT-4 transporter 
expression.24,25) In addition, Flaquer et al. demonstrated 
that administration of the HGF gene to kidney of a type II 
diabetic mice (db/db mice) significantly decreased circulat-
ing levels of IL-6 and MCP-1 and increased the number of 
M2 macrophages leading to an improvement in glomeruli 
inflammation and diabetic nephropathy.26) Thus, HGF 
ameliorates obesity- or diabetes-related pathology by 
preventing the inflammation and insulin resistance in the 
adipose tissue, liver, skeletal muscle, and even β-cells, fur-
ther supporting the compensatory mechanism of HGF in 
insulin resistance. In clinical, peroxisome proliferator ac-
tivated receptor‐γ (PPAR-γ) agonists, such as pioglitazone, 
irbesartan, and telmisartan, bind to the HGF promoter 
and increased its expression in several organs.10,12) Fur-
thermore, our previous experiment demonstrated that a 
PDE-3 inhibitor, cilostazol, ameliorates insulin resistance 
and induces HGF expression through the PPAR-γ and the 
cyclic adenosine monophosphate (cAMP) pathway. It is 
noteworthy that these drugs have anti-inflammatory and 
anti-oxidative action in addition to their own pharmaco-

logical targets in metabolic syndrome.27) Basic and clinical 
evidence show that PPAR-γ agonists could ameliorate 
renal fibrosis in both diabetic and nondiabetic CKD.28) 
Both HGF and PPAR-γ agonists attenuate Smad nuclear 
translocation by TGF-β1 in renal fibroblasts. Again, these 
data indicate that HGF might act as a downstream effec-
tor of PPAR-γ agonists, improving fibrosis in the heart and 
kidney.

Angiogenic potential of HGF for PAD
For the treatment of PAD patients, first potential of VEGF 
and FGF gene therapy has been studied. Later, the angio-
genic potential of HGF has been studied by our group 
and others. Table 1 summarizes the clinical trials for PAD 
using angiogenic growth factor gene transfer.

VEGF
The VEGF ligand is a family of six secreted glycoproteins, 
VEGF-A to VEGF -E, that activate three receptor tyrosine 
kinases, VEGFR-1 to VEGFR-3. VEGF-A controls an-
giogenesis and vascular permeability. On the other hand, 
VEGF-C and VEGF-D largely regulate lymphangiogen-
esis.29) VEGF-A is characterized by alternatively spliced 
variants that generate three principal isoforms, VEGF121, 
VEGF165, and VEGF189. Among them, VEGF165 is the best 
studied and most abundant. In preclinical study, delivery 
of VEGF165 by plasmid or virus vector substantially in-
creased vascular density and tissue oxygenation in hind 
limb ischemia model.30,31) VEGF-A is known to stimulate 
EC mitogenesis and migration, bone marrow-derived 
endothelial progenitor cell recruitment to the site of vas-
culogenesis.32,33) However, VEGF gene therapy for PAD 
patients so far demonstrated inconsistent data. In initial 
clinical trial, intra-muscular administration of naked plas-
mid VEGF165 gene significantly promoted collateral artery 
growth in patients with critical limb ischemia (CLI).34) 
Mäkinen et al. also demonstrated that intra-arterial injec-
tion of adenovirus vector encoding VEGF165 (Ad-VEGF165) 
remarkably enhanced vascular density compared with 
placebo-controlled group.35) Unlike VEGF165, VEGF121 
isoform, which is known to be stronger mitogenic alterna-
tive splicing isoform than VEGF165 or VEGF189, has shown 
no improvement in ankle-brachial index (ABI), intermit-
tent claudication, and quality of life (QOL) in a phase II 
clinical trial.36) In addition, VEGF165 plasmid shows no 
improvement in amputation rate in phase II trial.37) To 
date, VEGF gene therapy in PAD patients has failed to 
show evidence of benefit in phase III clinical trial. Notably, 
VEGF induces vascular permeability through Rac 1-me-
diated ROS generation.38) In clinical trials, VEGF gene 
therapy affects approximately 60% of patients developing 
dose-dependent leg edema. Recently, it is reported that a 
new delivery system (α2PI1-8-VEGF121) that can release 
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low-dose VEGF for long term induces non-leaky vessels 
and ameliorates vascular formation more effectively than 
native VEGF121 gene therapy.39) Another recent advance 
is the use of FGF4, which is able to activate VEGFs and 
orchestrate the downstream cascades involved in angio-
genesis more potently than VEGF alone.40,41) Using a regu-
latory gene, such as FGF4, seems to be more fruitful than 
comparing individual angiogenic factor or seeking growth 
factor combination more suitable for the gene therapy.

FGF
In humans, there are 22 mammalian FGF members, all of 
which can bind to 4 receptor tyrosine kinase receptors, 
FGFR1 to FGFR4. FGF signals through these recep-
tors act in a number of embryonic development, such as 
branching morphogenesis, limb development, and brain 
patterning. Angiogenic therapeutic potential of FGFs is 
intensively investigated. Among FGF receptors, FGFR1 is 
the most abundant in the endothelium.42) It has demon-
strated that endothelial-specific FGFR1 deletion has little 
influence on vascular development and however impairs 
vasculogenesis responsive to tissue injury.43) Among FGFs, 
FGF-1 (aFGF), FGF-2 (bFGF), and FGF-4 have higher an-
giogenic potential. Based on the basic research, non-viral 
naked plasmid (NV1FGF) containing human FGF-1 has 
been established for angiogenic gene therapy. Preclini-
cal hind limb ischemia models in rodents and following 
early clinical studies showed its positive effect to induce 
a functional artery in the ischemic region.44) A phase I 
clinical trial conducted by Comerota et al. included 51 
no-optional CLI patients with tissue necrosis and rest pain 
underwent treatment with intra-muscular NV1FGF injec-
tion. NV1FGF is well tolerated and significantly improved 
in ABI, claudication, transcutaneous tissue oxygen, and 
ulcer size. Thus, NV1FGF is potentially effective for the 
treatment of patients with end-stage limb ischemia.45) The 
following phase II clinical trial (TALISMAN) was carried 
out enrolling 125 PAD patients in whom revascularization 
was not considered to be a suitable option. Patients were 
randomized to receive eight intra-muscular injections 
of NV1FGF or placebo on days 1, 15, 30, and 45 (total 
16 mg: 4×4 mg). Improvements in ulcer healing were 
comparable for NV1FGF group (19.6%) and placebo-
controlled group (14.3%). However, the use of NV1FGF 
significantly decreased the risk of all amputations 
(P=0.015) and major amputations (P=0.015). More-
over, tendency for reduced risk of death with the use of 
NV1FGF was observed.46) The safety and effectiveness of 
NV1FGF observed in this study prompted further inves-
tigation with a placebo-controlled, double-blind clinical 
trial. A phase III clinical trial (TAMARIS) was conducted 
including 525 CLI patients who were not candidate for 
surgical and catheter-based revascularization.47) The pri-

mary endpoint was time to major amputation or death at 
1 year. Unfortunately, neither the primary endpoint nor 
components of the primary differed between treatment 
groups. TAMARIS provided no evidence that NV1FGF is 
effective in reduction of amputation or death in patients 
with CLI. So far, further human trials using NV1FGF 
gene transfer have not been conducted. As mentioned 
above, FGF and VEGF initiate a fundamental transcrip-
tion factor for inflammation, NFκB, and its downstream 
inflammation-related cytokine expression in vascular cells 
with vascular permeability.13,14) Inflammation-induced 
angiogenesis might not last long due to the premature cell 
senescence.8)

HGF
While HGF is generated and secreted mostly from mes-
enchymal cells, its targets are cells of both epithelial and 
mesenchymal origin. Its receptor, cmet, is identified on 
ECs,8) endothelial progenitor cells (EPCs),48) and smooth 
muscle cells (SMCs)7) and fibroblasts.49) The HGF gene 
therapy using naked human HGF plasmid DNA for PAD 
patients is particularly interesting, because till now, three 
randomized placebo-controlled trials confirmed its benefit 
in rest pain, ulcer healing, and increase in transcutaneous 
oxygen tension.50–52) In addition, its long-term efficacy 
with a reduction of rest pain, an increase in ABI, and ulcer 
size at 2 years after gene therapy has been reported.53) 
Notably, unlike VEGF and FGF, no edema and any ad-
verse side effect by HGF gene therapy was documented. 
Recently, a biopharmaceutical company obtained condi-
tional approval for HGF gene therapy to treat CLI pa-
tients in Japan. HGF is now the first gene therapy product 
to be approved in Japan for improving ulcers in patients 
with arteriosclerosis obliterans or Buerger’s disease who 
have had no option for undergoing revascularization. As 
mentioned, among HGF’s multifunction, anti-fibrotic and 
anti-inflammatory actions differentiate HGF from other 
angiogenic growth factors. HGF stimulates angiogenesis 
with reducing inflammation, tissue fibrosis, edema, and 
cellular senescence and following insulin resistance which 
are the main pathology of PAD, especially CLI.54–61) These 
beneficial functions of HGF might resolve complication of 
CLI, leading to better tissue oxygenation.

Conclusion
It has been nearly three decades since human HGF comple-
mentary DNA (cDNA) was successfully cloned. Since that 
time, the biological functions of the HGF/cMet axis have 
been extensively investigated by several groups, including 
us. The results have provided convincing evidence for the 
essential physiological functions of HGF, as well as for its 
therapeutic potential. HGF was originally identified as a 
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hepatokine; later, its angiogenic, anti-inflammatory, anti-
senescence, and anti-fibrotic potential was discovered. Re-
cently, the capacity of the HGF/cMet axis to interfere with 
energy metabolism has been reported. Similar to what 
was observed with adipokines and myokines, HGF can 
ameliorate insulin resistance in basic experiments. Several 
drugs enhancing HGF production are now available in 
clinics for the treatment of diabetes. These multifunctional 
aspects of HGF might result in a different outcome from 
VEGF and FGF in clinical trial for the treatment of PAD.
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