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Mixture item response theory (IRT) models include a mixture of latent subpopulations
such that there are qualitative differences between subgroups but within each
subpopulation the measure model based on a continuous latent variable holds. Under
this modeling framework, students can be characterized by both their location on a
continuous latent variable and by their latent class membership according to Students’
responses. It is important to identify anchor items for constructing a common scale
between latent classes beforehand under the mixture IRT framework. Then, all model
parameters across latent classes can be estimated on the common scale. In the study,
we proposed Q-matrix anchored mixture Rasch model (QAMRM), including a Q-matrix
and the traditional mixture Rasch model. The Q-matrix in QAMRM can use class
invariant items to place all model parameter estimates from different latent classes on a
common scale regardless of the ability distribution. A simulation study was conducted,
and it was found that the estimated parameters of the QAMRM recovered fairly well.
A real dataset from the Certificate of Proficiency in English was analyzed with the
QAMRM, LCDM. It was found the QAMRM outperformed the LCDM in terms of model
fit indices.

Keywords: Q-matrix anchored mixture Rasch model, Q-matrix, anchor, mixture Rasch model, Rasch model

INTRODUCTION

Measurement invariance is a key assumption that enables score comparison across different groups
of respondents (Hambleton et al., 1991). In reality, the assumption may not hold and needs to be
checked empirically. In the context of Rasch measurement, different groups of respondents may
take different views on items, resulting in measurement non-invariance. Rost (1990) integrated
latent class analysis (LCA; Lazarsfeld and Henry, 1968) to the Rasch model (Rasch, 1960) and
derived the mixture Rasch model (MRM), which can be viewed as an extension of the Rasch model
that allows different groups (latent classes) of respondents to have different item parameters and
ability distributions. To the extent that these classes are substantively meaningful, the mixture
Rasch model provides a potentially important means to understanding how and why examinees
respond in different ways. It is assumed that a Rasch model holds in each class, but each class may
have different item and ability parameters. Specifically, the probability of a correct response in the
MRM can be given as:

P(Yij = 1) =

G∑
g=1

πg · P(Yijg = 1|g, θ) =

G∑
g=1

πg ·
exp(θig − bjg)

1+ exp(θig − bjg)
, (1)

where g is an index for the latent class, g = 1,..., G, i = 1,..., N examinees, πg is the proportion
of examinees for each class, θig is the latent ability of examinee i in latent class g, and bjg is the
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difficulty parameter of item j for latent class g. The MRM can
account for qualitative differences between latent classes and
quantitative differences within latent classes (Rost, 1990).

An important feature of the MRM or other mixture models
(von Davier and Yamamoto, 2007) is that the number of latent
classes must be explored from the data, which is an exploratory
approach. Usually, the Akaike information criterion (AIC),
Bayesian information criterion (BIC), or deviance information
criterion (DIC) are applied to determine the number of latent
classes but they do not always provide the same answer. Over-
or under-extraction of latent classes may occur, making the
interpretation problematic (Alexeev et al., 2011). It is desirable to
adopt a constrained approach to the identification of latent classes
when there are substantive theories or hypotheses.

Recent developments in the Q-matrix (Tatsuoka, 1983) for
diagnostic classification models (DCMs) may help with the
identification. Domain-specific assessment experts encode the
relationships that they believe exist between the diagnostic
assessment items and the latent variables that are used to classify
respondents into so-called Q-matrices. The attribute is a latent
characteristic of respondents in the Q-matrices.

Choi (2010) develop the diagnostic classification mixture
Rasch model (DCMixRM) which combines a Mixture Rasch
model with log-linear cognitive diagnostic model (LCDM;
Henson et al., 2009). In the DCMixRM, this model includes
mastery states of attributes as covariates. To be more specific,
in the measurement component, observed item responses are
jointly regressed on latent trait and attributes through the
Rasch model and the LCDM. Next, in the structural model,
ability is regressed on class membership, and class membership
is regressed on mastery profile to explain latent class as
covariates. Besides, Bradshaw and Templin (2014) develop the
Scaling Individuals and Classifying Misconceptions (SICM)
model which is presented as a combination of a unidimensional
IRT model and LCDM where the categorical latent variables
represent misconceptions instead of skills. In the SICM, IRT,
and LCDM assumed to be orthogonal as in the original
bifactor model (Gibbons and Hedeker, 1992). Theoretically,
SICM expected that subjects vary in ability even when they
possess the same misconception pattern, meaning a significant
correlation between ability and misconception pattern was not
expected or modeled.

On the other hand, we developed the Q-matrix anchor
mixture Rasch model (QAMRM) by incorporating the Q-matrix
into the MRM. The QAMRM is constrained because the number
of latent classes is specified by users rather than explored from
the data. The latent traits in the QAMRM can be compensatory
or non-compensatory. The Q-matrix contains a set of elements
qjk indicating whether attribute k is required to answer item j
correctly, and qjk = 1 if the attribute is required, otherwise it is
0. The total number of attributes and the value of qjk is assigned
by content experts. Similar Q-matrices have been adopted in IRT
to specify a priori which latent traits (components) have been
measured by which items, such as the linear logistic test model
(LLTM; Fischer, 1973), the multicomponent latent trait model
(Whitely, 1980), the loglinear multidimensional IRT model
for polytomously scored items (Kelderman and Rijkes, 1994),

the multidimensional random coefficients multinomial logic
model (Adams et al., 1997), the multidimensional componential
IRT model for polytomous items (Hoskens and De Boeck,
2001), and the multicomponent latent trait model for diagnosis
(Embretson and Yang, 2013).

The QAMRM uses the Q-matrix to check whether different
classes have different measurement characteristics. The utility of
this approach lies in the fact that the numbers of latent classes,
immediately observable through the Q-matrix, are defined in
advance and can be used to help explain item level performance
to discover how members in one class differ from another. It
is these Q-matrix differences in response propensities that help
explain the potential causes of these differential measurement
characteristics.

The approach proposed in this study provides the Q-matrix
by means of a design matrix describing the composition of
the different classes. We begin below by illustrating how the
QAMRM can be viewed as incorporating features from the
Q-matrix, and then through the Q-matrix to establish class
invariant items and allow all model parameter estimates across
latent classes to be on a common scale regardless of the
ability distribution.

THE Q-MATRIX ANCHOR MIXTURE
RASCH MODEL

We adapted Figure 1 from Wright and Stone (1979) about the
Rasch model to express the response difference between the
Rasch model, MRM, and QAMRM.

In the Rasch model diagram, person ability θi and item
difficulty bj jointly determine response P(yij). In the MRM
diagram, conditional on latent class g, person ability θig and item
difficulty bjg jointly determine response P(yijg). In the QAMRM
diagram, conditional on class g(α), person ability θig (α) and item
difficulty bjg (α) jointly determine response P(Yijg (α)). When there
is no Q-matrix, the number of classes is estimated from data, the
QAMRM simplifies to the MRM; when there is only single class,
the MRM simplifies to the Rasch model.

The QAMRM has multiple classes that follow the Q-matrix
design matrix. Like the MRM, it assumes that there may be
heterogeneity in response patterns at different classes which
should not be ignored (Mislevy and Verhelst, 1990; Rost, 1990),
but should consider the Q-matrix to form the number of classes
beforehand, rather than forming the number of classes during the
parameter estimation. Viewed in this way, the Q-matrix inside the
QAMRM captures the association between the items and classes.
The probability of getting a correct response in the QAMRM can
be given as follows:

P(Yij = 1) =

G∑
g(α)=1

πg(α) · P(Yijg(α) = 1|g(α), θ(α)) =

G∑
g(α)=1

πg(α) ·
exp(θig(α) − bjg(α))

1+ exp(θig(α) − bjg(α))
, (2)
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FIGURE 1 | Comparison among the Rasch model, MRM, and QAMRM.

where Yijg (α) is the score of examinee i (i = 1, . . ., N) on item
j (j = 1, . . ., J) in class g conditional on attribute profile α

(α = α1, . . ., αK)’, θig (α) is the latent ability of examinee i within
class g conditional on attribute α, and bjg (α) is the difficulty
parameter of item j for class g conditional on attribute α. Like
the exploratory MRM, there is only one mixing proportion/
structural parameter/latent class membership probability in the
QAMRM, πg (α), which is the probability of being in class g
conditional on attribute pattern α.

THE Q-MATRIX SETS CLASS INVARIANT
ITEMS A PRIORI IN QAMRM

Paek and Cho (2015) posit four scenarios to establish a common
scale across latent classes in MRM and suggest proposing the use
of class-invariant items, which was also suggested by von Davier
and Yamamoto (2004). Those invariant items have the same item
difficulties across latent classes. Once a set of class invariant items
are available, this ensures a common scale across latent classes.

The challenge in MRM is to identify class invariant items,
because selecting the best measurement model regarding the
numbers of item parameters, latent groups, and dimensions are
mainly decided by statistical procedure post hoc. Some studies
exist in the MRM literature (e.g., Cho et al., 2016), where a
statistical procedure was applied as an attempt to locate class
invariant items in real data analyses, but how to find class
invariant items in the context of MRM until now remains unclear.

Paek and Cho (2015) suggest the use of class invariant items to
recover the parameter differences correctly in both item profiles
and ability distributions for latent classes when those differences
exist simultaneously in MRM; in QAMRM we do not need to
find class invariant items by statistical procedure post hoc to
let all model parameter estimates across latent classes be on
a common scale because the Q-matrix has already done that
a prior. The invariant items in MRM are data driven, but in
QAMRM, even though the latent classes follow different ability
distributions in terms of their means, we still can easily set
invariant items in QAMRM through the Q-matrix a priori.
Even though there are no ability distributions in the latent
class model, through the Q-matrix being set beforehand, the

invariance parameters of the DINA model (de la Torre and Lee,
2010) and LCDM model (Bradshaw and Madison, 2016) still hold
when the model fit the data.

LCDM is a flexible model that allows the relationships
between categorical variables to be modeled using a latent
class model, because most cognitive diagnosis models are
typically parameterized to define the probability of a correct
response, LCDM is re-expressed in terms of the log-odds of
a correct response for each item. In addition, von Davier
(2005) discusses the General Diagnostic Model (GDM) as a
general approach to log-linear models with latent variables,
where the latent variables are both continuous and discrete
in addition to focusing on ordered responses for items. As a
special case, the GDM general definition easily incorporates
LCDM with dichotomous latent variables for dichotomous (von
Davier, 2014). Besides, Hong et al., 2015 combines DINA model
and non-compensatory item response theory to form DINA-
NIRT model, which tries to combine continuous and discrete
latent variables in cognitive diagnosis. In contrast, the DINA-
NIRT is a special case of LCDM because it does not have
compensatory attributes. The QAMRM combines continuous
and discrete latent variables in the same framework, which
includes compensatory (disjunctive) and non-compensatory
(conjunctive) models.

In compensatory QAMRM, a low value on one latent variable
can be compensated for by a high value on another latent variable,
so it is not necessary to master all attributes that are required
by an item to produce a correct response within a class. On the
contrary, in non-compensatory QAMRM, a low value on one
latent variable cannot be compensated for by a high value on
another latent variable, so it is necessary to master all attributes
that are required by an item to produce a correct response within
a class. In the QAMRM, the relationship among latent variables,
either compensatory or non-compensatory, is assumed to be
identical across classes.

Substantive theories can help decide the numbers of attributes
and classes prior to parameter estimation, as done in the
Q-matrix. As an example, let there be 14 items measuring three
binary attributes in the QAMRM. In total, there will be eight
(23) attribute profiles, which are called classes g1-g8 as shown in
column 1 in Table 1.
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TABLE 1 | Class, Q-matrix and item difficulty for 14-item 3 attributes QAMRM.

Class Q-matrix Non-compensatory Compensatory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

α1 α2 α3 Item α1 α2 α3 Item g1 g2 g3 g4 g5 g6 g7 g8 Item g1 g2 g3 g4 g5 g6 g7 g8

g1 0 0 0 1 1 0 0 1 2a 2 2 2 1 1 1 1 1 2 2 2 2 1 1 1 1

g2 0 0 1 2 0 1 0 2 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 1 1

g3 0 1 0 3 0 0 1 3 2 1 2 1 2 1 2 1 3 2 1 2 1 2 1 2 1

g4 0 1 1 4 1 1 0 4 2 2 2 2 2 2 1 1 4 3 3 2 2 2 2 1 1

g5 1 0 0 5 1 0 1 5 2 2 2 2 2 1 2 1 5 3 2 3 2 2 1 2 1

g6 1 0 1 6 0 1 1 6 2 2 2 1 2 2 2 1 6 3 2 2 1 3 2 2 1

g7 1 1 0 7 1 1 1 7 2 2 2 2 2 2 2 1 7 4 3 3 2 3 2 2 1

g8 1 1 1 8 1 0 0 8 2 2 2 2 1 1 1 1 8 2 2 2 2 1 1 1 1

9 0 1 0 9 2 2 1 1 2 2 1 1 9 2 2 1 1 2 2 1 1

10 0 0 1 10 2 1 2 1 2 1 2 1 10 2 1 2 1 2 1 2 1

11 1 1 0 11 2 2 2 2 2 2 1 1 11 3 3 2 2 2 2 1 1

12 1 0 1 12 2 2 2 2 2 1 2 1 12 3 2 3 2 2 1 2 1

13 0 1 1 13 2 2 2 1 2 2 2 1 13 3 2 2 1 3 2 2 1

14 1 1 1 14 2 2 2 2 2 2 2 1 14 4 3 3 2 3 2 2 1

aThe 2 represents the label we are using for the threshold in Item 1. Therefore, the whole line to label the first threshold of Item 1 is 2. More importantly, each parameter
with a label of 2 in Item 1 will be equated, thus providing the same value for the estimated threshold. The label 2 between each item is different; the 2 is the label, not the
number.

Columns 2–4 give the attribute profiles for g1-g8. Persons in g1
(0,0,0) have not mastered any of the three attributes; persons in g2
(0,0,1) have mastered α3 but have not mastered α1 and α2; and so
on for the other classes. Note that we follow substantive theories
to set g classes conditional on Q-matrix (2K) when saturated by
QAMRM a priori, if the class has almost no examinees in practice
(de la Torre and Lee, 2010; Templin and Bradshaw, 2014), and we
can thus cancel out the class.

Columns 6–8 show the Q-matrix for the 14 items. For
example, item 1 measures α1, item 4 measures α1 and α2, item
14 measures α1, α2, and α3.

Columns 10–17 list hypothetical difficulties of the 14 items
for the eight classes when the attributes are non-compensatory.
For example, the difficulty of item 1 is 2 for g1-g4 but 1 for
g5-g8. Because persons in g1-g4 have not mastered the attribute
that item 1 measures (α1), the item difficulty for them would be
equally high. On the contrary, persons in g5-g8 have mastered
α1, so the item difficulty for them would be equally low. That is,
although there are eight classes, item 1 has only two difficulties,
one for g1-g4 and the other for g5-g8. Likewise, item 4 have
difficulty of 2 for g1-g6 but 1 for g7-g8. Persons in g1-g6 have
not mastered all attributes that are measured by item 4 (α1 and
α2) so the item difficulty for them would be equally high; on the
contrary, persons in g7-g8 have mastered both α1 and α2 so the
item difficulty for them would be equally low. The other items
can be interpreted similarity.

Columns 19–26 list hypothetical difficulties of the 14 items
for the eight classes when the attributes are compensatory. Item
4 have difficulty of 3 for g1 and g2, and 2 for g3-g6, and 1 for
g7 and g8. Persons in g1 and g2 have not mastered any of the
attributes that item 4 measures (α1 and α2) so the item difficulty
for them would be equally high; persons in g3-g6 have mastered

one of α1 and α2 so the item difficulty for them would be equally
median; persons in g7 and g8 have mastered both α1 and α2 so
the item difficulty for them would be equally low. In other words,
although there are eight class, item 4 has three difficulties, one
for g1 and g2, one for g3-g6, and the other for g7 and g8, and the
three difficulties are expected to be ordered. The other items can
be interpreted similarity.

The 14 item parameters were specified according to the
Q-matrix. The Q-matrix is like a bridge to connect different
latent classes together and sets item parameter constraints across
different latent classes a priori, like anchor items in different
latent classes, hence the Q-matrix in QAMRM can be considered
as the “anchor attribute.”

For illustrative purposes, the item difficulties in the Table 1
are set as integers, when in reality, they can be real numbers.
However, the ordinal nature of 4 > 3 > 2 > 1 is expected. If
the Q-matrix was not adopted, there are 112 item parameters
(assuming there were eight latent classes and 14 item parameters
in each latent class), while according to the Q-matrix, in the
non-compensatory model, each of the 14 items has two difficult
parameters for the eight classes, so the total number of difficulty
parameters is 28, in the compensatory model, six, six, and
two items have two, three, and four difficult parameters for
the eight classes, respectively, so the total number of difficulty
parameters is 38.

SIMULATION STUDY

The primary goal of this section is to demonstrate that when the
QAMRM fits the item responses, through the Q-matrix setting
invariant items, all model parameter estimates across latent
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classes are on a common scale and will be invariant regardless of
the nature of the latent ability distributions across latent classes.

In the mixture Rasch model for binary data as described by
Rost (1990) who used the model constraint ∑

δig=0 in MRM,
where δig the item difficulty of the ith item is in the gth latent
class and the summation is over items at a given g, indicating
the summation of group specific item difficulty parameters over
items is 0 within a latent group, and compared item profiles
to characterize latent groups. The constraint can be used for
scale comparability only when there is no mean difference in
a continuous latent variable. Because we do not know the
“true” mean difference in real data sets, the constraint cannot
be sufficient for all empirical data sets (Cho et al., 2016). An
alternative to identifying a common scale is by making the mean
of the item parameters on latent ability zero (Wu et al., 1998), and
when calculating every item difficulty parameter in latent classes
conditional on Q-matrix, the QAMRM uses this setting.

Several aspects of the simulated data were held constant:
the number of attributes was fixed to K = 3, test length to
J = 14; the item parameters were generated as follows. For non-
compensatory QAMRM (in Table 1 columns 10–17), each item
had two levels of difficulty and the item parameter was set at
either −2 or 2. For compensatory QAMRM (in Table 1 columns
19–26), an item could have 2–4 levels of difficulty. When there
were two levels (items 1–3, 8–10), the item parameter was set at
−2 or 2; When there were three levels (items 4–6, 11–13), the
item parameter was set at−2, 1, or 2. When there were four levels
(items 7, 14), the item parameter was set at −2, −1, 1, or 2. The
eight classes were uniformly distributed, meaning that the mixing
proportion for each class was 12.5%. There were three sample
sizes (1,000, 2,000, and 4,000) for the latent ability distributions
that involve the QAMRM model, with ability distributions with
means µθ=0.0 and a common standard deviation σθ=1.0 been
used. Note that the mixture Rasch model is employed here for
discussion, where the slope parameters of items in the item
response function is unity. Therefore, the difference in σ2

g
does

not pose a problem in establishing a common scale between latent
classes (Paek and Cho, 2015).

A total of 1,000 replications were generated under each
condition. The item parameters were estimated via an EM
implementation of the marginal maximum likelihood estimation
(MMLE/EM) that was implemented using the computer program
Mplus (Muthén and Muthén, 2021). In the EM estimation,

TABLE 2 | Bias and 95% coverage rate for the item parameters in the
simulation study.

Sample size Non-compensatory Compensatory

Bias Coverage Bias Coverage

1,000 0.01 0.95 0.00 0.96

2,000 0.00 0.95 0.00 0.95

4,000 0.00 0.95 0.00 0.95

The detail simulation results about bias and coverage rate for individual parameters
can be found through the link: https://www.dropbox.com/sh/b3sb3ju4swk1pmi/
AABpbXMRLXFji52PfHmNbi0Za?dl=0.

maximum likelihood optimization was done in two stages. In
the initial stage, 20 random sets of initial values were generated.
An optimization was carried out for 10 iterations using each of
the 20 random sets of initial values. The final values from the
four optimizations with the highest log-likelihoods were used
as the starting values in the final stage optimizations (Muthén
and Muthén, 2021). The problems with the local maximum in
the QAMRM did not occur because the number of classes was

TABLE 3 | ECPE Q-Matrix and the skill profile.

Skill profile (α1, α2, α3) Q-matrix

Class α1 α2 α3 Item α1 α2 α3

g1 0 0 0 1 1 1 0

g2 0 0 1 2 0 1 0

g3 0 1 0 3 1 0 1

g4 0 1 1 4 0 0 1

g5 1 0 0 5 0 0 1

g6 1 0 1 6 0 0 1

g7 1 1 0 7 1 0 1

g8 1 1 1 8 0 1 0

9 0 0 1

10 1 0 0

11 1 0 1

12 1 0 1

13 1 0 0

14 1 0 0

15 0 0 1

16 1 0 1

17 0 1 1

18 0 0 1

19 0 0 1

20 1 0 1

21 1 0 1

22 0 0 1

23 0 1 0

24 0 1 0

25 1 0 0

26 0 0 1

27 1 0 0

28 0 0 1

α1, Morphosyntactic rules; α2, Cohesive rules; α3, Lexical rules.

TABLE 4 | Comparisons of model-data fit among the QAMRM, LCDM.

Model AIC BIC ABIC

LCDMa 85641.43 86125.81 85868.44

QAMRM 85131.55 85568.09 85336.14

Hierarchical LCDMb 85638.63 86045.08 85829.21

Hierarchical QAMRM 85125.80 85538.42 85319.18

aLCDM = log-linear cognitive diagnostic model; More details on these models can
be found in Templin and Hoffman (2013).
bHierarchical LCDM; More details on these models can be found in Templin and
Bradshaw (2014).
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TABLE 5 | Skill profile distributions obtained for the QAMRM, LCMD.

Skill profile QAMRM LCDMa Skill profile Hierarchical LCDMb Hierarchical QAMRM

(0,0,0) 0.44 0.30 (0,0,0) 0.34 0.44

(0,0,1) 0.11 0.13 (0,0,1) 0.11 0.08

(0,1,0) 0.00 0.01 (0,1,1) 0.18 0.13

(0,1,1) 0.10 0.18 (1,1,1) 0.38 0.34

(1,0,0) 0.00 0.01

(1,0,1) 0.01 0.02

(1,1,0) 0.00 0.01

(1,1,1) 0.33 0.35

aTemplin and Hoffman (2013).
bTemplin and Bradshaw (2014).

TABLE 6 | ECPE Q-matrix and hierarchical QAMRM item difficulty parameter estimates.

Item Skill Skill profile (α1, α2, α3)

α1 α2 α3 (0,0,0) (0,0,1) (0,1,1) (1,1,1)

1 1 1 0 −1.98 −1.98 −2.04 −3.99

2 0 1 0 −2.30 −2.30 −3.42 −3.42

3 1 0 1 −0.01 −0.01 −0.01 −2.08

4 0 0 1 −0.31 −2.54 −2.54 −2.54

5 0 0 1 −2.27 −5.14 −5.14 −5.14

6 0 0 1 −1.95 −4.18 −4.18 −4.18

7 1 0 1 −0.43 −1.58 −1.58 −4.98

8 0 1 0 −3.09 −3.09 −4.93 −4.93

9 0 0 1 −0.68 −2.14 −2.14 −2.14

10 1 0 0 −0.42 −0.42 −0.42 −3.73

11 1 0 1 −0.42 −1.86 −1.86 −4.10

12 1 0 1 2.68 0.30 0.30 −1.98

13 1 0 0 −1.45 −1.45 −1.45 −3.73

14 1 0 0 −0.68 −0.68 −0.68 −2.26

15 0 0 1 −2.20 −5.01 −5.01 −5.01

16 1 0 1 −0.37 −1.62 −1.62 −3.77

17 0 1 1 −2.94 −2.94 −4.54 −4.54

18 0 0 1 −2.11 −3.70 −3.70 −3.70

19 0 0 1 −0.14 −2.83 −2.83 −2.83

20 1 0 1 1.88 0.49 0.49 −2.16

21 1 0 1 −0.83 −2.46 −2.46 −3.69

22 0 0 1 1.06 −2.56 −2.56 −2.56

23 0 1 0 −1.62 −1.62 −4.31 −4.31

24 0 1 0 0.46 0.46 −1.12 −1.12

25 1 0 0 −0.50 −0.50 −0.50 −1.79

26 0 0 1 −0.86 −1.98 −1.98 −1.98

27 1 0 0 1.09 1.09 1.09 −1.34

28 0 0 1 −1.35 −3.97 −3.97 −3.97

The syntax and detail analysis results can be found in: https://www.dropbox.com/sh/b3sb3ju4swk1pmi/AABpbXMRLXFji52PfHmNbi0Za?dl=0.
For items 1, 3, 11–12, 16–17, and 20–21, by means of the Q-matrix we can see all of these items measuring two attributes, with those inside QAMRM compensatory.
Take item 1 for example; item 1 measures attributes α1 and α2; if the examiner masters attribute α1 and α2, he will have a high probability to answer the item 1 correctly,
with the item difficulty in item 1 being−3.99, while if the examiner does not master attributes α1 and α2 at the same time, and just masters attribute α2 compensatorily, he
will have a moderate probability to answer the item correctly, with the item difficulty becoming−2.04. However, if the examiner does not master attributes α1 and α2, he
will have a low probability of answering the item correctly, with the item difficulty becoming−1.98. The other items can be interpreted similarly.
If the examiner doesn’t master any skill, he will fall into latent class (α1, α2, α3) = (0, 0, 0) and will have the lowest probability of correctly answering all the items. If the
examiner just masters the α3 skill, but does not master the α1 and α2 skills, the examiner will fall into (α1, α2, α3) = (0, 0, 1), and the examine will have a higher probability
of correctly answering items 4–6, 9, 15, 18–19, 22, 26, 28 than the examiner who hasn’t mastered the α3 skill. The details can be seen in Table 6. The other items can
be interpreted similarly.
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specified by the user rather than explored from the data as in
finite mixture models.

The parameters in QAMRM included the mixing proportion,
latent class membership conditional on the attribute profile
specific item parameters, and the population parameters of latent
class conditional on the attribute profile specific continuous
latent variable. In the QAMRM, the Q-matrix was adopted
to constrain the item parameters to be invariant across latent
classes, which could reduce a large number of item parameters
and improve parameter estimation (see Table 1). Take non-
compensatory QAMRM in the simulation as an example, the
total parameters to be estimated were 36, including seven mixing
proportion parameters (the mixing proportion parameters
should add up to 1, so only seven parameters could be estimated
when there were three latent attributes and eight latent profiles),
one variance parameter, and 28 item parameters for the 14
items which were specified according to the Q-matrix. If the
Q-matrix was not adopted, the model became the MRM,
which would estimate 120 parameters, including 112 item
parameters (assuming there were eight latent classes and 14
item parameters in each latent class), seven mixing proportion
parameters, and one variance parameter. Such a large number of
parameters would require a large sample size, which would be a
practical constraint.

To evaluate the parameter recovery, we computed the bias, the
95% coverage rate for the item parameter estimates in Table 2.
Due to enhance readability, we do not report bias and coverage
rate for individual parameters; rather, we show the mean bias and
mean coverage rate across all parameters in Table 2.

The EM estimation method yielded very small bias. Besides,
the mean coverage was very close to 95%. The results of the
simulated data analysis indicate that the invariance property of
the QAMRM model is absolute in that the parameter estimates
were obtained using different calibration samples. By means
of the Q-matrix setting invariant items a priori in QAMRM,
all model parameter estimates across latent classes to be on a
common scale, which does not require any transformation for
them to be comparable.

REAL DATA ANALYSIS

We used the Certificate of Proficiency in English (ECPE) data,
which is available in the R package CDM (Robitzsch et al., 2011–
2014), to demonstrate the advantages of the QAMRM over the
LCDM. The ECPE data consist of responses from 2,922 test-
takers to 28 items, with each item measuring one or two out
of three skills. The data has been analyzed with the LCDM
by Templin and Hoffman (2013) and Templin and Bradshaw
(2014) and with the GDM by von Davier (2014). As shown
previously, when analyze the ECPE data, the LCDM and GDM
are mathematically equivalent (von Davier, 2014), hence we fit
the QAMRM to the data using Mplus and compared the results
with those under the LCDM (Templin and Hoffman, 2013;
Templin and Bradshaw, 2014).

The Q-matrix used in ECPE example was the result of
psychometric analyses on the ECPE by Buck and Tatsuoka (1998).

The analyses showed that items of the test were likely to measure
three distinct skills. The left side of Table 3 shows the skill profile
and the right side of Table 3 shows Q-matrix that maps each item
to the three skills. As shown, eight items measure only one skill,
seven items measure two skills, and zero items measure three
skills. The morphosyntactic (α1), cohesive (α2), and lexical (α3)
skills were each measured by 13, 6, and 18 items, respectively.

Therefore, we only report the skill distributions with latent
class pattern and model fit results with the values published
by Templin and Hoffman (2013) and Templin and Bradshaw
(2014) which agree with those obtained from the CDM R-package
(Robitzsch et al., 2011–2014).

We use AIC, BIC, and sample-size adjusted BIC (ABIC)
to select the best model (Templin and Bradshaw, 2014), the
information criteria selected the best model by small value.
Table 4 presents AIC, BIC, and ABIC for the QAMRM,
LCDM. It appears that the QAMRM had lower AIC (85131.55–
85641.43), BIC (85568.09–86125.81), and ABIC (85336.14–
85868.44). Table 5 shows the distributions of the eight skill
profiles (classes) obtained from the QAMRM, LCDM. The
distributions were very similar across models and only four skill
profiles were substantial: (0,0,0), (1,0,0), (1,1,0), and (1,1,1).

Templin and Hoffman (2013) analyzed a sample of 2,922
examinees who took the ECPE with the non-hierarchical LCDM.
But in the ECPE example, the data and results suggest a
linear attribute hierarchy: Examinees must master Attribute
3 (lexical rules) before mastering Attribute 2 (cohesive rules)
before mastering Attribute 1 (morphosyntactic rules). Gierl et al.
(2007) call this structure a linear hierarchy, where mastery of
each attribute follows a linear progression. Therefore, Templin
and Bradshaw (2014) introduce the hierarchical LCDM where
attribute hierarchies are present, the model fit of hierarchical
LCDM shown at the bottom of Table 4, the hierarchical LCDM
is used to test for the presence of a suspected attribute hierarchy
in ECPE, through model fit which confirming the data is more
adequately represented by hierarchical attribute structure when
compared to a crossed, or non-hierarchical structure.

We reanalyzed the data with hierarchical QAMRM, and
compare the model fit with hierarchical LCDM. Right column
of Table 5 shows the distributions of the four hierarchical
skill profiles (classes) obtained from the hierarchical QAMRM,
hierarchical LCDM. It also appears that the hierarchical QAMRM
had lower AIC (85125.80–85638.63), BIC (85538.42–86045.08),
and ABIC (85319.18–85829.21).

Table 6 presents Q-matrix in ECPE and hierarchical QAMRM
item difficulty parameter estimates. In items 4–10,13–15, 18–19,
22–28 only one attribute is measured, with all of these items
inside hierarchical QAMRM non-compensatory, having only two
different kinds of item difficulty; take item 4 for example; if the
examiner masters attribute α3, he will have a high probability
to answer item 4 correctly, with the item difficulty being −2.54,
while, on the other hand, if the examiner does not master
attribute α3, he will have a low probability to answer the item
correct, with the item difficulty becoming −0.31, and the other
items can be interpreted similarity.

If we only use the LCDM or Hierarchical LCDM for analysis,
a second calculation is still needed to find the probability
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of a correct response for each item, which may not easy
for practitioners.

CONCLUSION AND DISCUSSION

The QAMRM was used to describe for modeling the Q-matrix at
the mixture Rasch model. The model developed in this study used
features of a Rasch model, a restricted latent class model, and a
Q-matrix. The Q-matrix of the model provides an opportunity
to determine the number of latent class in advance through
substantive theory and not through model fitness or parameter
estimation post hoc. Information in the Q-matrix can be used
to reveal possible differences that might be due to differences
among latent classes.

A simulation study through the EM algorithm estimation was
presented to investigate the performance of the model. Generated
parameters were well recovered for the conditions considered.
The QAMRM makes it possible to describe the differential
item performance of target attributes using descriptions of
Q-matrix characteristics associated with the items compared with
characteristics associated with other items not in the same latent
classes. This description can then be used to provide the Q-matrix
with a framework within which to compare the results in their
latent classes and in the other latent classes. Examiners in each
of the latent class can be characterized by differences in attribute,
as well as by differences in response strategies, particularly at the
end of the test.

The real data comparison performed between the QAMRM,
LCDM, by means of the ECPE data, shows that when a Rasch
model is included inside the diagnostic classification models,
QAMRM achieves a more desirable result and has better fit
indices than the LCDM variants.

If we want to provide a single, continuous estimate of overall
ability and classify the subjects at the same time, we should
consider the QAMRM rather than mixture Rasch model or DCM.
In QAMRM, the Q-matrix sets class invariant items a priori,
if the Q-matrix design is not correct, then the analysis in the

QAMRM will be wrong. Kopf et al. (2015) who have discussed
anchoring strategies in details which can help to correct the
Q-matrix design. Future research can focus on the misspecify
Q-matrix design with the model unfit of the QAMRM.

On the other hand, future research can focus on the
estimation limitations of the QAMRM. Specifically, as the
number of attributes included in the Q-matrix increases and as
its complexity increases, the number of parameters estimated
by this model will also increase. In these cases, expectations
of its performance in estimated attribute mastery and item
parameters must be explored. In addition, model comparisons
using common indices such as the AIC, BIC, and ABIC must
continue to be explored, which could result to clear guidelines for
model identification. Finally, possible expansions of this model
such as the addition of a continuous ability measure to imply an
incomplete Q-matrix (much like what is used in the testlet IRT)
will be explored.
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