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Abstract

Disuse-induced bone loss is seen following spinal cord injury, prolonged bed rest, and expo-

sure to microgravity. We performed whole transcriptomic profiling of cortical bone using

RNA sequencing (RNAseq) and RNA molecular barcoding (NanoString) on a hindlimb

unloading (HLU) mouse model to identify genes whose mRNA transcript abundances

change in response to disuse. Eleven-week old female C57BL/6 mice were exposed to

ambulatory loading or HLU for 7 days (n = 8/group). Total RNA from marrow-flushed femoral

cortical bone was analyzed on HiSeq and NanoString platforms. The expression of several

previously reported genes associated with Wnt signaling and metabolism was altered by

HLU. Furthermore, the increased abundance of transcripts, such as Pfkfb3 and Mss51,

after HLU imply these genes also have roles in the cortical bone’s response to altered

mechanical loading. Our study demonstrates that an unbiased approach to assess the

whole transcriptomic profile of cortical bone can reveal previously unidentified mechanosen-

sitive genes and may eventually lead to novel targets to prevent disuse-induced

osteoporosis.

Introduction

Mechanical loading plays an important role during musculoskeletal development and mainte-

nance. Reduced mechanical loading from extended immobilization, spinal cord injury, or

spaceflight leads to decreased bone mass and mineral density in humans, which increases sus-

ceptibility to skeletal fractures. Biological mechanisms underlying skeletal deterioration due to

reduced mechanical loading have been studied using hindlimb unloading rodent models,

which demonstrated altered Wnt or IGF signaling or Rank/Rankl/Opg pathway [1–5]. These

studies led to several clinical studies that explored the usage of existing or newly developed

pharmacological therapies to counter immobilization or spaceflight induced bone loss [6,7].
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While prior studies in rodent models demonstrated signaling pathways that contribute to

skeletal loss from reduced mechanical loading, limited candidate gene approached precluded

exploration of other novel pathways that may also play an important role. Recent advances in

whole transcriptome RNA deep sequencing (RNAseq) allow comprehensive, quantitative, and

unbiased view of the complete RNA transcriptome. This high-throughput approach can allow

identification novel pathways that are altered in response to reduced mechanical loading in

rodent models. Prior studies in transgenic mice or mice that underwent increased mechanical

loading successfully demonstrated alterations in novel pathways in osteocytes using RNAseq

[8,9]. However, no studies to date examined whole transcriptome profile of osteocytes from

mice that underwent reduced mechanical loading.

Thus, we examined the complete RNA transcriptome in cortical bone from mice that

underwent hindlimb unloading for 7 days, with the goal of identifying novel mechanosensitive

pathways that respond to mechanical unloading. We validated our RNAseq results by a highly

sensitive RNA molecular barcoding technologies (NanoString) examining 60 panel genes.

Material and methods

Hindlimb unloading

Eleven-week old, female C57Bl/6J mice were randomly assigned to hindlimb unloading

(HLU) or normal weightbearing (Cont) (n = 8/group). The HLU group underwent hindlimb

unloading for 7 days according to the previously published studies [10–15]. In brief, under iso-

flurane anesthesia, the mouse tail was taped to a freely rotating harness connected to a wheel

that moved along the central axis of the custom-made cage. The harness was adjusted such

that the mouse could not touch its hind limbs to the floor or the walls of the cage. Mice were

maintained on a 12/12 hour light/dark cycle, had ad libitum access to standard laboratory

rodent chow and water, and were sacrificed by CO2 inhalation at the end of the experiment.

All animal procedures were approved by and performed in accordance with the guidelines of

the Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee.

RNAseq

After cutting the ends of bones and flushing marrow with 10 ml phosphate-buffered saline, the

cortical bone was placed in an Eppendorf tube and immediately snap-frozen in liquid nitro-

gen. Subsequently, Trizol was added while the bone is maintained frozen in an eppendorf tube

placed in a liquid nitrogen bath, homogenized in the same eppendorf tube with the Fastprep24

machine (MP Biomdicals), and subsequently total RNA was isolated and purified using manu-

facture recommendations for the PureLink RNA kit (Life Technologies). Using this isolation

technique, we routinely obtain 3–6 ug per sample total RNA that has high quality RNA integ-

rity numbers (RIN, Aigilent Technologies) > 7.5 [9]. RNA sequencing libraries were prepared

using TruSeq RNA Sample Preparation Kit (v2, Illumina, San Diego, CA) per manufacturer

recommendations using 500 ng/sample total RNA [8]. Samples were multiplexed (n = 8 per

lane) for sequencing on a HiSeq (Illumina) platform and reads were aligned to reference

genome (Tophat2). Differential gene expression was analyzed by DESeq2 and relevant biologi-

cal processes associated with differentially expressed genes were analyzed by Gene Set Enrich-

ment Analysis according to studies by Subramanian et al. [8,16–18].

Nanostring

To validate our set of differentially regulated genes identified by RNASeq. and to perform tar-

geted gene discovery in our unloading model using the limiting amount of total RNA (3–6 ug/
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sample) we isolated from murine femurs, we used a NanoString nCounter codeset of sixty dif-

ferentially expressed genes (Table 1) with 6 housekeeping genes (Actb, Abcf1, B2m, Gapdh,

Pol42A, Sirt4). In brief, the nCounter gene codeset contains a matched pair 30 biotinylated cap-

ture probe and a 50reporter probe tagged with a fluorescent barcode, for each of 236 tran-

scripts. Probes are hybridized to 100 ng of total RNA for 19 h at 65˚C, after which excess

capture and reporter probes are removed and transcript-specific ternary complexes are immo-

bilized on a streptavidin-coated cartridge. Subsequently, all solution manipulations are carried

out using the NanoString preparation station robotic fluids handling platform. Data collection

is carried out with the nCounter Digital Analyzer to count individual fluorescent barcodes and

quantify target RNA molecules present in each sample. Normalization was carried based on a

standard curve constructed using spike in exogenous control constructs and the 6 housekeep-

ing genes included in the codeset [19].

Results

Hindlimb unloading did not alter the quality of RNAseq data. For both groups, individual

specimens yielded ~22 million reads with high unique mapping rates (79% for controls and

81% for HLU). RNAseq analysis of cortical bone mRNA from control and HLU mice, without

correcting for multiple hypothesis testing, identified 723 genes whose transcript abundances

increased� 1.2-fold and 610 genes whose transcript abundances decreased� 1.2-fold. After

considering genes whose transcript abundances changed by 1.2-fold and correcting for multi-

ple hypothesis testing (p< 0.1), 8 genes demonstrated increased transcript abundance and 5

genes demonstrated decreased transcript abundance following HLU. Gene set enrichment

analysis using these 13 differentially expressed genes pointed to several metabolic processes,

monosaccharide metabolism (Pfkfb3, Igfbp5, p< 0.01), peptidase inhibition (Stfa1, Stfa2,

p< 0.01), and cellular protein metabolism (Stfa2, Stfa1, Igfbp5, p< 0.01). Wnt signaling was

also implicated (Fig 1).

Transcript abundances measured by RNAseq and Nanostring were similar in control mice

(Pearson’s R = 0.90, p< 0.0001, Fig 2A). Changes in transcript abundance between control

Table 1. Differentially expressed genes in the control and hindlimb unloaded (HLU) mouse cortical bone assessed by NanoString.

Molecular Pathways Selected Genes Differentially

Expressed Genes

HLU vs. Control

(Fold Change)

p-

value

Mesenchymal stem cell (MSC) fate

determination and differentiation

Abi3bp, Fabp4, Apod

Osteoblast function and

differentiation

Aspn, Alpl, Bmpr1a, Dkk1, Fzd4, Tgfb1-3, Runx2, Tob1, Opg, Spp1, Sp7,

Sparc, Bglap, Myoc, Col1a1, Col1a2, Col3a1, Den, Serpinfl, Sfrp2, Sfrp4,

Wnt16, Wnt9a, Wnt5a, Wnt4, Wisp2, Zfyve9, Snca, Bmp4

Fzd4

Sfrp2

Sfrp4

Spp1

Bmp4

1.6

1.7

1.7

1.5

1.4

0.03

0.05

0.009

0.02

0.02

Osteocyte function and

differentiation

Sost, Mef2C, Mepe, Postn, Phex, Npy Npy 1.2 0.04

Osteoclast function and

differentiation

Ctsk, Tnfsfl1(Rankl), Trap (Acp5)

Extracellular matrix proteases Mmp2, Mmp3, Mmp10, Mmp13, Mmp14, Mmp15 Mmp3

Mmp13

1.8

1.6

0.007

0.01

Protease inhibitors Timp1, Timp2 Timp1 1.5 0.02

Cell cycle control, mitochondria,

energy balance

Mss51, Scd1, Pfkfb3 Scd1

Pfkfb3

2.0

1.8

0.01

0.004

Housekeeping genes Actb, Abcf1, B2m, Gapdh, Pol42A, Sirt4

https://doi.org/10.1371/journal.pone.0250715.t001
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and HLU mice also correlated significantly between the RNAseq and Nanostring datasets

(Pearson’s R = 0.76, p< 0.0001, Fig 2B). Importantly, Nanostring confirmed alterations seen

with RNAseq in transcripts associated with Wnt signaling and cell metabolism (Table 1, Fig 3).

Scd1 (2-fold, p = 0.01), Pfkfb3 (1.8-fold, p = 0.003), and Fzd4 (1.6-fold, p = 0.03) were all upre-

gulated in cortical bone isolated from hindlimb unloaded mouse. In addition to these genes,

we identified Mmp3 (1.8-fold, p = 0.007), Sfrp2 (1.7-fold, p = 0.05), Sfrp4 (1.7-fold, p = 0.009),

Mmp13 (1.6-fold, p = 0.01), Bmp4 (1.4-fold, p = 0.02), Timp1 (1.5-fold, p = 0.02), Npy

(1.2-fold, p = 0.04), and Spp1 (1.5-fold, p = 0.02) genes to be upregulated in the hindlimb

unloaded mouse cortical bone. No downregulated genes were detected.

Discussion

Our RNAseq dataset provides an unbiased approach for identifying genes whose transcripts

change in response to mechanical unloading of cortical bone. We identified novel genes (e.g.,

Fig 1. Selected KEGG pathway and gene ontology of biological process altered in cortical bone from hindlimb unloaded mice and the effects of

HLU on Wnt signaling and Pfkfb3.

https://doi.org/10.1371/journal.pone.0250715.g001
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Mss51, Pfkfb3) related to cell cycle, mitochondria, and cellular energy balance that were differ-

entially regulated by HLU.

While mitochondria are typically reduced in size as osteoblasts transition to osteocytes, his-

topathological studies demonstrate enlarged mitochondria in osteocytes from rats immobi-

lized for ten days [20]. Further, in mice with impaired osteocyte autophagy, enlarged

mitochondria are observed as well, and associated with decreased trabecular and cortical bone

[21]. Imbalance in osteocyte mitochondrial redox can disrupt the canalicular network and lead

to bone loss [22]. Further studies are needed to determine whether the genes we identified

may sense altered mechanical loading through a similar mechanism that regulates cellular

energy balance in bone.

Prior studies have also demonstrated that microgravity causes alterations to glycolysis path-

ways in a variety of cells, including osteoblasts [23,24]. Importantly, our data show that Pfkfb3,

Fig 2. Correlation between Nanostring and RNAseq transcript abundance in controls (A) and changes in abundance between control and HLU

mice (B) with 95% confidence bands of the best-fit line.

https://doi.org/10.1371/journal.pone.0250715.g002

Fig 3. Cell metabolism and Wnt signaling associated transcripts whose abundance changed between control and HLU mice, as

assessed by RNAseq and Nanostring analysis.

https://doi.org/10.1371/journal.pone.0250715.g003
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which controls the concentration of fructose 2,6-bisphosphate, a potent allosteric activator of

PFK1, is significantly upregulated after HLU. Recent evidence supports the concept that

Pfkfb3 provides a signaling mechanism for Wnt3A, altering osteoblast differentiation [25].

Pfkfb3 was also identified de-novo in a gene enrichment analysis of circulating monocytes in

patients with osteoporosis, further suggesting a possible role in modulating the bone microen-

vironment in the setting of low bone density [26]. Our study adds to the evidence that Pfkfb3

may influence bone metabolism in the context of microgravity, disuse-induced bone loss and

osteoporosis.

Mss51 has not been demonstrated to be involved during skeletal development or homeosta-

sis, but recently published study suggests that Mss51 may be involved in bone adaptation fol-

lowing mechanical loading [27]. The alteration in Mss51 appears to be mediated by focal

adhesion kinase, which has been shown to be responsive to mechanical loading via fluid flow

shear stress in osteoblasts [28,29]. Mechanical loading likely alters cell-matrix environment,

thereby allowing integrins to initiate intracellular signaling to promote bone adaptation. Hin-

dlimb unloading in rats also decreases focal adhesions in mesenchymal stromal cells [30],

which will have resulted in increased Mss51 [27]. These studies demonstrate that while Mss51

is conventionally known to be involved during cell metabolism and energy balance, the gene

may also be responsive to mechanical loading/unloading via changes in cell-matrix

environment.

Prior studies of hindlimb unloading in rodents have reported that several signaling path-

ways such as Wnt and Rankl/Opg are altered in osteoblasts and osteocytes following mechani-

cal unloading [31–34]. While our study demonstrated that Wnt signaling is implicated to be

involved, we did not find that sclerostin or Rankl/Opg to be altered following hindlimb

unloading. There are several possible factors that may have contributed to differences in study

findings. First, it is possible that methodological differences (RNAseq vs. RT-qPCR) used to

assess transcript levels contributed to different outcomes. Second, while we carefully removed

bone marrow, surrounding soft tissues, and both ends of bone, the cortical bone lining cells

may have contributed to heterogeneity of cell population, leading to blunted effects on several

signaling pathways known to be altered by hindlimb unloading in osteocytes or osteoblasts. In

addition, whereas we examined day 7 of unloading, earlier time points may be needed to

observe robust differences in gene expression due to unloading. Prior studies have demon-

strated that bones from 6 to 9 months old rats are more responsive to hindlimb unloading

than 28 to 32 months old rats, likely due to increased Bmp2 and Igf1 in younger animals

[35,36]. Finally, hindlimb unloading has been shown to affect other physiologic systems in

female 11-week-old mice, such as loss of muscle and increased corticosterone metabolites [37],

which has been shown to inhibit bone formation [38]. Altogether, a variety of factors can con-

tribute to inconsistencies in gene expression across studies. Additional suitably powered and

well-controlled studies are needed to resolve reported discrepancies among studies.

We used only female mice, thus precluding analysis of possible sexual dimorphism in

mechanosensitive genes. We selected the 7-day timepoint based on our prior studies, but rec-

ognize the limitation of this approach which precludes determining the time-course of gene-

expression changes. This early timepoint may have led to minimal changes in osteogenic genes

in our studies. However, our ability to identify novel genes that may initiate osteogenic

responses later, not previously associated with disuse-induced bone loss provides rationale for

future studies with multiple timepoints to expand upon the current findings. While there was

excellent correlation between the measurements performed with two methods (Fig 2), Nano-

string detected more differentially expressed genes than RNAseq (Fig 3). Therefore, although

Nanostring can sample a limited, pre-determined portion of cortical bone transcriptome, it
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can serve as a powerful approach towards identifying mild changes (<2-fold) in transcript

abundance.

Our gene expression approach comparing cortical bone gene expression in HLU and nor-

mally loaded mice successfully revealed previously known and unknown genes. Future mecha-

nistic studies examining the functional role of metabolic genes revealed from our study may

identify novel mechanosensitive pathways responsible for microgravity- and disuse-induced

bone loss. Elucidating these pathways may lead to therapeutic interventions to treat bone loss

and prevent fracture risk associated with microgravity, spinal cord injury, or extended bed

rest.
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