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We propose a protein secondary structure prediction method based on position-specific scoring matrix (PSSM) profiles and four
physicochemical features including conformation parameters, net charges, hydrophobic, and side chain mass. First, the SVM with
the optimal window size and the optimal parameters of the kernel function is found.Then,we train the SVMusing the PSSMprofiles
generated fromPSI-BLAST and the physicochemical features extracted from theCB513 data set. Finally, we use the filter to refine the
predicted results from the trained SVM. For all the performance measures of our method, 𝑄

3
reaches 79.52, SOV94 reaches 86.10,

and SOV99 reaches 74.60; all the measures are higher than those of the SVMpsi method and the SVMfreq method. This validates
that considering these physicochemical features in predicting protein secondary structure would exhibit better performances.

1. Introduction

Many issues onmolecular biology have been addressed in the
past decades, including genetics, structural biology, and drug
design. A protein primary sequence is composed of amino
acids; as we know, totally 20 different kinds of amino acids
can be found in protein sequences. In this paper, we would
investigate protein secondary structures based on protein
sequences.

The secondary structure of a protein sequence comes
from different folding of amino acids, due to the differences
of their side chain sizes, shapes, reactivity, and the ability to
form hydrogen bonds. Furthermore, owing to the differences
of the side chain sizes, the number of electric charges, coupled
with the affinity for water, the tertiary structures of protein
sequences are not all the same. Thus, the exploration of
molecular structures on protein sequences is divided into
secondary, tertiary, and even quaternary structures. Given
a protein primary sequence, its corresponding secondary
structure can be revealed as follows:

Primary sequence:
MFKVYGYDSNIHKCVYCDNAKRLLTVKKQP-
FEFINIMPEKGV

Secondary structure:

CEEEEECCCCCCCCHHHHHHHHHHHHCCCC-
EEEEECCCCTTC.

A protein sequence affects the structure and function;
in other words, a protein sequence determines its structure,
and the structure determines functions. If amino acids in
a protein sequence are arranged in a different order in the
skeleton branch of the side chain R group, the nature of the
protein would reveal specific functions. Even for different
species of proteins, if they have a similar structure, their
functions would be also similar. Therefore, predicting the
protein structure is crucial to the function analysis. Besides,
the secondary structure refers to the relative position of the
space between the atoms of a certain backbone. Traditional
protein structure determination was done by protein X-
ray crystallography or nuclear magnetic resonance (NMR).
However, all experimental analysis costs much time. In order
to shorten the time to help biologists, protein structure
prediction by computers facilitates reaching this goal.

The prediction of protein secondary structure has been
studied for decades. Early, the statistical analysis of secondary
structure was done for a single amino acid. The most
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representative is the Chou and Fasman method [1], and
the accuracy is only 50%. Next, the statistical analysis for
amino acid segments was done further. A segment length
is usually with 9∼21 amino acids. Based on an amino acid
segment, predicting the structure of central residues enables
promoting the accuracy. The most representative is the GOR
method [2], and the accuracy increases more than 10%
(about 63%). At present, the prediction methods on protein
secondary structure have evolved into using the PSI-BLAST
program [3] to find the protein homology information, based
on PSSM (position-specific scoring matrices) profiles. The
accuracy of using PSSM to predict secondary structure has
reached between 70 and 80% [4–7]. However, we believe that
there still exists a great improvement in predicting protein
secondary structure.

The rest of this paper is organized as follows. In Section 2,
basic concepts used in the proposed methods are introduced
first. In Section 3, we propose the methods and relevant
features to predict the secondary structure of a protein
sequence. Then, we make use of window sizes and tune
parameters in the experiments in Section 4, in order to obtain
better experimental results. Finally, we make a conclusion in
Section 5.

2. Basic Concepts

2.1. Protein Secondary Structure. Protein secondary structure
derived from the experimentally determined 3D structure
has been defined using DSSP (Dictionary of Secondary
Structures of Proteins) [8], STRIDE (STRuctural IDEntifi-
cation) [9], and DEFINE (DEFINE structure) [10]. DSSP is
selected here so that our method can be compared with
most existing methods, based on the same protein secondary
structure definition. Eight secondary structure classes were
defined there, that is, H(𝛼-helix), G(310-helix), I(𝜋-helix),
E(𝛽-strand), B(isolated 𝛽-bridge), T(turn), S(bend), and
-(rest).The eight structure classes are usually reduced to three
classes of helix (H), sheet (E), and coil (C). Five reductions
could be performed as follows:

(1) H, G and I to H; E to E; the rest to C
(2) H, G to H; E, B to E; the rest to C
(3) H, G to H; E to E; the rest to C
(4) H to H; E, B to E; the rest to C
(5) H to H; E to E; the rest to C.

The first reduction was used in the PHD (Profile network
from HeiDelberg) method [7] which is the early secondary
structure prediction method using multiple sequence align-
ments of proteins homologouswith a query protein sequence.
We also use the first reduction in order to provide a fair
comparison with other prediction methods.

2.2. SVM (Support Vector Machine). SVM was first investi-
gated by Boser et al. in 1992 [11]. It solves linearly insepa-
rable problems by nonlinearly mapping the vector in a low
dimensional space to a higher dimensional feature space and
constructs an optimal hyper-plane in the higher dimensional

space. Therefore, SVM has high performances in data clas-
sification. A classification task usually involves with training
and testing data which consist of some data instances. Each
instance in the training set contains one “target value” (i.e.,
class label) and several “attributes” (i.e., features). The goal of
SVM is to produce amodel which can predict the target value
of data instances in the testing set by using the attributes.

3. Methods and Features

3.1. System Architecture. The system architecture of predict-
ing protein secondary structure is divided into three steps, as
illustrated in Figure 1. The first step is to determine/extract
the relevant features in/from protein sequences. Then, in the
second step, we feed the features into SVM, respectively, in
the training and test phases. Finally, we use a filter method
to refine the predicted results from the trained SVM. During
the SVM training phase, we not only train the SVM using the
training data, but also, in advance, find the optimal sliding
window size and the cost and gamma parameters of SVM
kernel function, using the entire data set. The details about
each module in the system architecture are depicted in the
following subsections.

3.2. Feature Extraction. Five relevant kinds of features are
extracted from protein sequences to predict protein sec-
ondary structure, that is, (1) conformation parameters, (2)
position specific scoring matrix (PSSM) profiles, (3) net
charge, (4) hydrophobic, and (5) side chainmass.The process
of feature extraction is shown in Figure 2.

3.2.1. Extracting Sequences. First, we extract amino acid
and secondary structure sequences from the PDB website
(http://www.rcsb.org/pdb/home/home.do), using the PDB
codes of CB513 [12].Then, we can further extract five different
features from amino acid sequences as follows.

3.2.2. Conformation Parameters. Conformation parameters
are the proportions that residues (or amino acids) tend to
secondary structure. In general, protein secondary structure
is divided into three types: 𝛼-helix (H), 𝛽-sheet (E), and coil
(C), so that there are three values for each amino acid. In
the feature extraction, all the conformation parameters are
calculated from a data set. The conformation parameters for
each amino acid 𝑆

𝑖𝑗
are defined as follows:

𝑆
𝑖𝑗
=
𝑎
𝑖𝑗

𝑎
𝑖

, where 𝑖 = 1, . . . , 20, 𝑗 = 1, 2, 3. (1)

In this formula, 𝑖 indicates the 20 amino acids, and𝑗 indicates
the 3 types of secondary structure: H, E, and C. Here, 𝑎

𝑖
is

the amount of the 𝑖th amino acid in a data set whereas 𝑎
𝑖𝑗

is the amount of the 𝑖th amino acids with the 𝑗th secondary
structure. The conformation parameters for each amino acid
in a data set are shown in Table 1. The reason of using
conformation parameters as features is that the folding of
each residue has some correlation with forming a specific
structure.

http://www.rcsb.org/pdb/home/home.do
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Figure 2: Process of feature extraction.

3.2.3. PSSM Profiles. PSSM profiles are generated by PSI-
BLAST (Position Specific Iterative-Basic Local Alignment
Search Tool) program. Since PSSM profiles are involved with
biological evolution, we consider them as features in our
work. A PSSM profile has L × 20 elements, where L is the
length of a query sequence.These profiles are then used as the
input features to feed an SVM, employing a sliding window
method.

PSI-BLAST is based on BLASTwhich has been published
by Altschul et al. in 1997 [3]. Since PSI-BLAST program
is more sensitive than other methods, we can find a lot of
low similarity sequences and similarity structure function
of protein sequences. First, a database containing all known
sequences (or nonredundant database) is selected. Then, low
complexity regions are removed from the nr database. Finally,
PSI-BLAST program is used to query each sequence in CB513
and generates PSSM profiles after three iterations. Here,
multiple sequence alignment (MSA) and BLOSUM62 matrix
[13] are used in this process.

The reason of using the sliding window method is to
get more surrounding information of residues. We consider
a sliding window of size 7∼19 at which a predicted residue
is centered to extract input features. The optimal window
size yielding favorable predictive performances would be
obtained experimentally. For the 𝑖th residue centered at

the sliding window of size 7, we can get 7 × 20 features 𝐹
𝑖+𝑛,𝑗

where 𝑛 is in the range [−3, 3] and 𝑗 is the PSSM column from
1 to 20.

3.2.4. Net Charges. There are five amino acids with charges,
that is, R, D, E, H, and K. Since residues with similar electric
charges repel each other and interrupt the hydrogen bond of
main chain, they are adverse to 𝛼-helix formation. Besides,
the continuous residues of 𝛽-sheet cannot be with similar
charges.This information facilitates predicting the secondary
structure. The net charge of amino acids can be taken from
Amino Acid index database (or AAindex) [14–18], as shown
in Table 2. A plus sign represents a positive charge and a
minus sign represents a negative charge.

3.2.5. Hydrophobic. For protein folding, polar residues prefer
to stay outside of protein to prevent non-polar (hydrophobic)
residues from exposing to polar solvent, like water.Therefore,
hydrophobic residues appearing periodically can be used
for predicting protein secondary structure. In general, the
residues in 𝛼-helix structure are made up of one segment of
hydrophobic and one segment of hydrophilic. However, 𝛽-
sheet structure is usually influenced by the environment, so
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Table 1: Conformation parameters for each amino acid in a data set.

Amino acids H E C
A 0.49 0.16 0.35
R 0.42 0.19 0.39
N 0.27 0.13 0.6
D 0.31 0.11 0.58
C 0.26 0.29 0.45
E 0.49 0.15 0.36
Q 0.46 0.16 0.38
G 0.16 0.14 0.7
H 0.3 0.22 0.48
I 0.35 0.37 0.28
L 0.45 0.24 0.31
K 0.4 0.17 0.43
M 0.44 0.23 0.33
F 0.35 0.3 0.35
P 0.18 0.09 0.74
S 0.28 0.19 0.54
T 0.25 0.27 0.48
W 0.37 0.29 0.35
Y 0.34 0.3 0.36
V 0.3 0.41 0.29

Table 2: Net charge of amino acids.

Amino acids Mass
A 0
R +1
N 0
D −1
C 0
E −1
Q 0
G 0
H +1
I 0
L 0
K +1
M 0
F 0
P 0
S 0
T 0
W 0
Y 0
V 0

this phenomenon is not obvious. In other words, hydropho-
bic affects the stability of secondary structure.The hydropho-
bic values of amino acids can also be obtained from Amino
Acid index database (or AAindex) [14–18], as shown in
Table 3. The more positive values are, the more hydrophobic
is.

Table 3: Hydrophobic values of amino acids.

Amino acids Mass
A 1.8
R −4.5
N −3.5
D −3.5
C 2.5
E −3.5
Q −3.5
G −0.4
H −3.2
I 4.5
L 3.8
K −3.9
M 1.9
F 2.8
P −1.6
S −0.8
T −0.7
W −0.9
Y −1.3
V 4.2

R

H2N CH

O

C𝛼

Figure 3: Basic structure of amino acids.

3.2.6. Side Chain Mass. Although the basic structure as
shown in Figure 3 is the same for 20 amino acids, the size
of the side chain R group still influences structure folding.
Here, we explain the influences as follows. First, the side chain
R group is distributed in the outside of the main chain of
𝛼-helix structure, but the continuous large R groups canmake
𝛼-helix structure unstable, thereby disabling amino acids
from forming 𝛼-helix structure. Next, the R group with ring
structure like proline (P) is not easy to form 𝛼-helix structure.
Proline is composed of 5 atoms in a ring, which is not easy
to reverse and is also not easy to generate a hydrogen bond.
Finally, we observe that the R group of 𝛽-sheet structure is
smaller than those of other structures, in general. Therefore,
we include the side chain mass as a feature, as shown in
Table 4.

3.3. SVM (Finding the Optimal Window Size and Parame-
ters). The SVM used in the experiments is a classifier for
predicting the secondary structure H, E, and C. Threefold
cross-validation is employed on the CB513 data set to find
(1) the optimal window size in the range [7, 19] and (2) the
optimal parameters of the kernel function, such as cost C
and gamma 𝛾. Here, the kernel function used in the SVM
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Table 4: Side chain mass of amino acids.

Amino acids Mass
A 15.0347
R 100.1431
N 58.0597
D 59.0445
C 47.0947
E 73.0713
Q 72.0865
G 1.0079
H 81.0969
I 57.1151
L 57.1151
K 72.1297
M 75.1483
F 91.1323
P 41.0725
S 31.0341
T 45.0609
W 130.1689
Y 107.1317
V 43.0883

is RBF (i.e., Radial Basis Function). To solve the multiclass
problem confronted in thework, we employ the “one-against-
one” approach. For 3 classes, we need 3 binary classifiers and
set the labels of the secondary structure (H, E, C) to (−1, +1,
+2). Then, we use the max-wins voting strategy to determine
the class; in other words, each binary classifier casts a vote,
and the winning class is with the highest number of votes.
In the experiments, the LIBSVM tool kit proposed by Chang
and Lin [19] would be used to implement the program. After
the optimal window size and parameters are found, we would
use the SVM for training and test.

3.4. Filter. A single residue in its natural state cannot be alone
folded into 𝛼-helix or 𝛽-sheet. Thus, setting thresholds on
the length of consensus secondary structure can be used to
filter out incorrect predicted results. For example, at least
three contiguous residues are for 𝛼-helix and at least two
contiguous residues are for 𝛽-sheet. For the current scanning
window (𝑖 − 1, 𝑖, 𝑖 + 1) in the predicted secondary structure,
two possible structures could happen at position 𝑖:

Case H: if str(𝑖 − 1) and str(𝑖 + 1) are H, then str(𝑖) is not
changed; otherwise, extend the examined segment to
(𝑖 − 3, 𝑖 − 2, 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3) and replace str(𝑖)
with the majority structure in the examined segment.

Case E: if str(𝑖 − 1) or str(𝑖 + 1) is E, then str(𝑖) is not changed;
otherwise, extend the examined segment to (𝑖−3, 𝑖−2,
𝑖 − 1, 𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3) and replace str(𝑖) with the
majority structure in the examined segment.

For the example as shown in Figure 4, after the filtering,
𝑄
3
for 9INSb is improved from 76.7 to 80 and SOV99 is

Schematic diagram
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Figure 4: Schematic diagram for filtering 9INSb.

Table 5: Structures of the CB513 data set.

Structures H E C Total
Residues 29090 17950 37053 84093

improved from 77.8 to 93.3 where 𝑄
3
and SOV99 will be

described in Section 4.2.

4. Experiments

4.1. Data Set. In the previous work, some typical data sets
were frequently used in protein secondary structure predic-
tion, such as RS126 [7], CB513 [12], CASP [20], and EVA [21].
Here, we consider the selected data set should be with low
similarity; that is, the protein sequences within the data set
are not similar to each other. Thus, the protein secondary
structure prediction we develop would enable predicting an
unknown protein sequence more accurately.

In our work, the data set we choose is nonhomol-
ogous CB513 data set constructed by Cuff and Barton
and contains 513 protein chains. Almost all the sequences
in the RS126 data set are also included in the CB513
data set. The CB513 data set contains 16 chains of ≦30
residues. Although very short chains would slightly decrease
the accuracy for the hard definition of secondary struc-
tures, we still include them in the set for comprehen-
sive study. We retrieve the CB513 data set from the web-
site: http://paraschopra.com/projects/evoca prot/index.php,
which contains 84,093 residues where 34.59% of the residues
is for helix, 21.35% for sheet, and 44.06% for coil, as shown in
Table 5.

4.2. Performance Measures. Two kinds of performance mea-
sures are frequently used in protein secondary structure

http://paraschopra.com/projects/evoca_prot/index.php
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prediction; that is, 𝑄
3
or accuracy (three-state overall per-

residue accuracy) and SOV99 [22] (or SOV94 [23]) (Segment
Overlap measure). 𝑄

3
is a residue-based measure of three-

structure overall percentage of correctly classified residues,
which can be represented as

𝑄
3
=
Hpre + Epre + Cpre

𝑁total
, (2)

where𝑁total is the total number of predicted residues, Hpre is
the correctly classified secondary structure for helix, Epre for
sheet, and Cpre for coil.

SOV99 is a segment-based measure of three structures,
whose value is within the range [0, 100], as shown in Formula
(3). SOV99 differs from 𝑄

3
in the prediction unit such that

SOV99 would penalize wrong predictions; for example, a
single helix predicted as a multiply-split helix is unrealistic
prediction

SOV = 100 × [
1

𝑁
∑

𝑖∈{H,E,C}
∑

𝑆(𝑖)

min 𝑜V (𝑠
1
, 𝑠
2
) + 𝛿 (𝑠

1
, 𝑠
2
)

max 𝑜V (𝑠
1
, 𝑠
2
)

× len (𝑠
1
) ] ,

(3)

where 𝑠
1
and 𝑠

2
denote segments of secondary structure 𝑖

(H, E, or C), 𝑆(𝑖) = {(𝑠
1
, 𝑠
2
) : 𝑠
1
∩𝑠
2
̸= ⌀, 𝑠
1
and 𝑠
2
are both

in structure 𝑖}, 𝑁 is a normalization value, min 𝑜V (𝑠
1
, 𝑠
2
) is

the length of actual overlap of 𝑠
1
and 𝑠

2
, max 𝑜V (𝑠

1
, 𝑠
2
) is

the length of total extent for 𝑠
1
and 𝑠
2
, and 𝛿(𝑠

1
, 𝑠
2
) can be

represented as

𝛿 (𝑠
1
, 𝑠
2
) = min

{{{{{{{{{{{{

{{{{{{{{{{{{

{

max 𝑜V (𝑠
1
, 𝑠
2
) −min 𝑜V (𝑠

1
, 𝑠
2
)

min 𝑜V (𝑠
1
, 𝑠
2
)

int(
len (𝑠
1
)

2
)

int(
len (𝑠
2
)

2
) .

}}}}}}}}}}}}

}}}}}}}}}}}}

}

. (4)

The definition of 𝛿 and the normalization value N are
different for SOV99 and SOV94.

4.3. Optimal Parameters and Window Sizes. As introduced
in Section 2.2, we adopt the well-known LIBSVM developed
by Chang and Lin [19] as an SVM classifier. The kernel
function used here is RBF (Radial Basis Function) since it
is more accurate and effective than the other kernel ones.
The parameters C and 𝛾 are determined by the optimum
performance of 6 × 6 combinations between [20, . . . , 25] and
[2
−6
, . . . , 2

−1
] for each window size. Moreover, the feature

vector is normalized in the range [0, 1] and the number of
features in a larger window size would become more. The
optimal parameters and classification accuracy are evaluated
in threefold cross-validation, as shown in Table 6.

According to the experimental results, we found the
optimal parameters and window size are C = 21, 𝛾 = 2−4, and
WS = 13. Then, we use these parameters and window size to
conduct the further experiments.

Table 6: Optimal parameters for different window sizes.

Window sizes Features Best 𝐶 Best 𝛾 Accuracy (%)
7 146 20 2−3 76.3203
9 186 21 2−4 76.7935
11 226 20 2−4 77.4464
13 266 21 2−4 78.0029
15 306 21 2−4 77.7806
17 346 21 2−5 77.6549
19 386 21 2−4 77.5796

Table 7: Confusion matrix without filtering.

Actual Predicted
H E C Recall (%)

H 22976 931 5183 78.98
E 1044 11569 5337 64.45
C 3451 3059 30543 82.43
Precision (%) 83.64 74.36 74.38 77.40

Table 8: Confusion matrix with filtering.

Actual Predicted
H E C Recall (%)

H 22372 818 5900 76.91
E 432 11776 5742 65.60
C 1514 2819 32720 88.31
Precision (%) 92.00 76.40 73.76 79.52

4.4. Experimental Results. In this section, we compare the
experimental results without filtering and with filtering. For
the classification results, a confusion matrix is employed
to present the correct and false predictions based on the
precision and recall, as shown in Tables 7 and 8.The precision
and recall are expressed as follows:

Precision (𝑖)

=
The number of correctly classified structure 𝑖
The number of total predicted structure 𝑖

,

for 𝑖 = H,E,C,

Recall (𝑖)

=
The number of correctly classified structure 𝑖

The number of total actual structure 𝑖
,

for 𝑖 = H,E,C.
(5)

Obviously, the classification accuracy with filtering (i.e.,
79.52%) is higher than that without filtering (i.e., 77.40%).
The precision for H and the recall for C especially are
improved from 83.64 to 92.00 (with filtering) and from 82.43
to 88.31 (with filtering), respectively.Therefore, the filter rules
are required to improve the accuracy in predicting protein
secondary structure.
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Table 9: Comparisons between ours and other methods.

Methods 𝑄
3

SOV94 SOV99 R(H) R(E) R(C)
PHD (RS126) [7] 70.8 73.5 — 72.0 66.0 72.0
SVMfreq (RS126) [5] 71.2 74.6 — 73.0 58.0 73.0
SVMfreq (CB513) [5] 73.5 76.2 — 75.0 60.0 79.0
PMSVM (CB513) [4] 75.2 80.0 — 80.4 71.5 72.8
SVMpsi (RS126) [6] 76.1 79.6 72.0 77.2 63.9 81.5
SVMpsi (CB513) [6] 76.6 80.1 73.5 78.1 65.6 81.1
Ours without filtering (CB513) 77.40 90.20 71.10 78.98 64.45 82.43
Ours with filtering (CB513) 79.52 86.10 74.60 76.91 65.60 88.31

4.5. Comparing with Other Methods. Here, we compare our
methods with other four methods; that is, PHD, SVMfreq,
PMSVM, and SVMpsi as shown inTable 9. Both the PHDand
SVMfreq methods are based on the frequency profiles with
multiple sequence alignment; however, the classifier used in
the PHD method is a neural network (or NN) whereas the
classifier used in the SVMfreq method is a support vector
machine (or SVM). Similarly, both the PMSVM and SVMpsi
methods are based on the PSSM profiles generated from PSI-
BLAST. Although they use the same-type classifier (or SVM),
the former adopts one-versus-one classifier (i.e., H/E, E/C,
C/H) and the latter adopts the one-versus-rest classifier (i.e.,
H/∼H, E/∼E, C/∼C).

As shown in Table 9, we found that all the performance
measures of our method (i.e., the version with filtering),
including 𝑄

3
, SOV94, and SOV99, are higher than those

of the other four methods, regardless using the CB513 or
RS126 data sets. 𝑄

3
for the version with filtering (or without

filtering) is improved by 2.92 (or 0.8), SOV94 for the version
with filtering (or without filtering) is improved by 6 (or 10.1),
and SOV99 for the version with filtering is improved by 1.1,
compared with the results of the SVMpsi method for CB513
(i.e., the next best one).

However, our method (i.e., the version with filtering)
has lower R(H) than the SVMpsi method (i.e., 76.91 versus
78.1). One of the possible reasons is that the threshold on
the length of consensus secondary structure (i.e., at least
three contiguous residues for H) is set in the filter. Although
the recall for H is decreased, the predicted structures are
more structurally meaningful. Besides, we found that two
SOV measures in the SVMpsi and our methods vary greatly.
Although SOV94 is decreased (i.e., from 90.20 to 86.10) after
applying the filter in our method, the latest definition (i.e.,
SOV99) is still the highest.

5. Conclusions

In this paper, we propose a protein secondary structure
prediction method using PSSM profiles and four physico-
chemical features, including conformation parameters, net
charges, hydrophobic, and side chain mass. In the exper-
iments, the SVM with the optimal window size and the
optimal parameters of the kernel function is found first.
Then, we train the SVM using the PSSM profiles and
physicochemical features extracted from the CB513 data set.

Finally, we use the filter to refine the predicted results from
the trained SVM. For the experimental results, 𝑄

3
, SOV94,

SOV99, and recall of our method are higher than those of
the SVMpsi method based on the PSI-BLAST profiles as
well as the SVMfreq method based on the frequency profiles
with multiple sequence alignment for the CB513 data set.
In summary, considering these physicochemical features in
predicting protein secondary structure would exhibit better
performances.
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