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Abstract: Hydrogen peroxide (H2O2)-sensitive layer-by-layer films were prepared based on
combining phenyl boronic acid (PBA)-modified poly(allylamine) (PAH) with shikimic acid
(SA)-modified-PAH through boronate ester bonds. These PBA-PAH/SA-PAH multilayer films could
be prepared in aqueous solutions at pH 7.4 and 9.0 in the presence of NaCl. It is believed that the
electrostatic repulsion between the SA-PAH and PBA-PAH was diminished and the formation of
ester bonds between the SA and PBA was promoted in the presence of NaCl. These films readily
decomposed in the presence of H2O2 because the boronate ester bonds were cleaved by an oxidation
reaction. In addition, SA-PAH/PBA-PAH multilayer films combined with glucose oxidase (GOx) were
decomposed in the presence of glucose because GOx catalyzes the oxidation of D-glucose to generate
H2O2. The surfaces of CaCO3 microparticles were coated with PAH/GOx/(SA-PAH/PBA-PAH)5

films that absorbed insulin. A 1 mg quantity of these particles released up to 10 µg insulin in the
presence 10 mM glucose under physiological conditions.

Keywords: phenyl boronic acid; hydrogen peroxide; drug delivery system; insulin; LbL film;
glucose response

1. Introduction

Stimuli-sensitive drug release devices such as microchips [1], gels [2,3] and microcapsules [4,5]
have been widely studied with regard to biomedical applications. Glucose-sensitive insulin release has
attracted particular attention, since the development of insulin delivery systems for the self-regulation
of blood glucose levels would be helpful for diabetes mellitus patients. Glucose-sensitive materials
such as lectins [6], glucose oxidase [7,8] and phenyl boronic acid (PBA) [9–11] have been employed for
this purpose. Because the glucose-sensitive release of insulin could mimic the function of the pancreas,
this technology might eliminate repetitive insulin injections.

Layer-by-layer (LbL) multilayer films can be prepared by the alternating and repeated deposition
of polymeric materials on the surface of a solid substrate [12]. The polymers are deposited on the
substrate by attractive forces that include electrostatic interaction [13–15], hydrogen bonds [16,17],
avidin-biotin binding [18] and sugar-lectin binding [19]. Thus, both synthetic polymers and biological
materials can be used to produce LbL films, with applications in sensors [20,21], separation and
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purification [22,23], microcapsules [24–26], drug delivery systems (DDSs) [27–29] and stimuli-sensitive
devices [30,31]. There have been many studies devoted to stimuli-sensitive LbL films that decompose
in response to environmental stimuli such as pH [32], ionic strength [33], biological molecules [34] and
electrical signals [35]. If such films can incorporate glucose-sensitive materials, a release process based
on physiological conditions could be realized. Therefore, it has been suggested that glucose-sensitive
multilayer films could be used to develop insulin delivery systems.

Our own groups have previously developed pH- and sugar-sensitive LbL films composed of
PBA-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA) [36]. PBA
derivatives are of particular interest because they selectively bind 1,2- and 1,3-diol compounds such
as sugars [37,38]; Figure 1 shows the binding of a diol compound to a boronate ester. For this
reason, the use of PBA derivatives in the development of sugar-sensitive drug delivery systems
has been suggested [39–42]. It is difficult to decompose these PBA-PAH/PVA LbL films under
physiological conditions, but PBA and boronate esters are sensitive to reactive oxygen species (ROS).
As an example, these compounds can be irreversibly decomposed as the result of the oxidative
scission of the carbon-boron bond by hydrogen peroxide (H2O2) [43]. We have previously reported
the H2O2-induced decomposition of LbL films consisting of PBA-PAH and PVA [44], as well as the
glucose-induced decomposition of multilayer PBA-PAH/PVA films by glucose oxidase (GOx) [45].
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Figure 1. Sequential equilibrium and oxidation reactions of phenyl boronic acid with a diol and
H2O2, respectively.

Microparticles coated with LbL films are extremely useful in DDS applications, although such
materials made with PBA-PAH/PVA multilayer films have a tendency to aggregate. In the present
work, LbL films capable of undergoing H2O2- and glucose-induced decomposition were applied as
coatings to fine particles, with the aim of developing a system for glucose-induced insulin release
under physiological conditions (Figure 2)
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Figure 2. A schematic illustration of the functioning of a glucose-induced insulin release microparticle.
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2. Experimental

2.1. Materials

PAH (molecular weight: 150,000) and insulin (human, recombinant) were obtained from
Nittobo Co. (Tokyo, Japan) and Wako Pure Chemical Ind. (Osaka, Japan), respectively. GOx
(activity: 100 units mg−1 solid) was obtained from Toyobo Co., Ltd. (Osaka, Japan) and
H2O2 (30% aqueous solution) was obtained from Santoku Chemical Industries Co., Ltd. (Tokyo,
Japan). Shikimic acid (SA), 4-carboxyphenyl boronic acid and 4-(N,N-dimethylaminosulfonyl)-7-
(2-aminoethylamino)-2,1,3-benzoxadiazole (DBD-ED) were purchased from Tokyo Chemical Industry
Co., Ltd. (Tokyo, Japan) while 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)
and N-hydroxysuccinimide (NHS) were obtained from Nacalai Tesque Co. (Kyoto, Japan). All other
reagents were of the highest possible grade and were used as received without further purification.

PBA-PAH was synthesized according to a literature procedure [36]. The PAH contained
approximately 15% PBA residues (based on the molar ratio of PBA to primary amine groups)
as calculated from the proportions of nitrogen and carbon determined by elemental analysis.
The calculated elemental composition of the PBA-PAH was C = 39.99%, H = 7.55% and N = 11.53%,
and the experimental results showed C = 42.29%, H = 6.2% and N = 11.42%.

SA-modified PAH (SA-PAH) was synthesized by reacting SA and PAH in water in the presence
of NHS and EDC. In this process, EDC (109 mg) was added to a solution of SA (100 mg), PAH
(100 mg) and NHS (66 mg) in water (30 mL) and the reaction mixture was stirred for 1 h at 0 ◦C
and then for 12 h at room temperature. The resulting SA-PAH was purified by dialysis in water
using a dialysis membrane (molecular weight cut-off of 12,000–14,000, Fast Gene, Nippon Genetics).
The PAH contained approximately 26% SA residues (based on the molar ratio of SA to primary amine
groups) as calculated from the proportions of nitrogen and carbon determined by elemental analysis.
The calculated elemental composition of the SA-PAH was C = 47.00%, H = 7.81% and N = 11.32%.
The C /N ratio based on these data is 4.15, and so SA-PAH bearing 26% SA was obtained.

DBD-labeled insulin (DBD-insulin) was synthesized by reacting DBD-ED and insulin in water
in the presence of NHS and EDC. EDC (3.30 mg) was added to a solution of DBD-ED (4.91 mg) in a
mixture of DMF (0.5 mL), insulin (100 mg) and NHS (1.98 mg) in water. The reaction mixture was
stirred for 1 h at 0 ◦C and then for 12 h at room temperature. The resulting DBD-insulin was purified by
dialysis in water using a dialysis membrane, after which it was freeze-dried. The chemical structures
of the PBA-PAH, SA-PAH and DBD-ED are shown in Figure 3.
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2.2. Apparatus

A quartz crystal microbalance (QCM, QCA 917 system, Seiko EG & G, Tokyo, Japan) and a flow
cell were used for gravimetric analysis of the LbL films. A 9 MHz AT-cut quartz resonator coated
with a thin Au layer (surface area: 0.2 cm2) was used as a probe, such that the adsorption of 1 ng of a
substance induced a−0.91 Hz change in the resonance frequency. UV-vis and fluorescence spectra were
acquired using a 3100PC spectrophotometer (Shimadzu, Kyoto, Japan) and an FP-6500 fluorescence
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spectrophotometer (JASCO, Tokyo, Japan), respectively. Optical microscopy and fluorescence
microscopy images were obtained with an LSM510 instrument (ZEISS, Oberkochen, Germany).

2.3. Preparation of SA-PAH/PBA-PAH Multilayer Films

SA-PAH/PBA-PAH multilayer films were prepared on solid substrates. Each substrate
was initially immersed in an SA-PAH solution (0.1 mg/mL) for 15 min to deposit the first
SA-PAH layer. After rinsing in a working buffer for 5 min to remove any weakly adsorbed
SA-PAH, the substrate was immersed in a PBA-PHA solution (0.1 mg/mL) for 15 min to deposit
PBA-PHA. The second SA-PAH and PBA-PHA layers were deposited using the same technique
and this deposition process was repeated to build an (SA-PAH/PBA-PAH)10 multilayer film.
The working buffers consisted of 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer (pH 5.0),
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.4) or 10 mM
N-Cyclohexyl-2-aminoethanesulfonic acid (CHES) buffer (pH 9.0). The effect of ionic strength on the
SA-PAH/PBA-PAH multilayer films was investigated by adding NaCl to the buffers.

SA-PAH/PBA-PAH films containing GOx was prepared by building (SA-PAH/PBA-PAH)10

multilayer films on PAH/GOx films at ambient temperature (approximately 20 ◦C). A solid substrate
was coated in advance with a PAH/GOx film by immersing the slide alternately in 0.1 mg mL−1

PAH and 0.1 mg mL−1 GOx solutions [39]. The glucose response was studied in a series of 10 mM
HEPES buffers (pH 7.4, 150 mM or 1 M NaCl) and 10 mM CHES buffer (pH 9.0, 1 M NaCl). A 9 MHz
Au-coated quartz resonator and a quartz slide (4.5 × 0.9 × 0.1 cm) were used for QCM analysis and
UV-vis absorption measurements, respectively.

2.4. H2O2- and Glucose-Induced Decomposition of LbL Films

The H2O2- and glucose-induced decompositions of various films were studied by UV-vis
absorption spectroscopy. To determine the kinetics of film decomposition, one side of a quartz
slide was coated with an LbL film and the slide was placed in a quartz cuvette (optical path length:
10 mm) filled with a buffer solution. The slide was placed near the sidewall of the cuvette, parallel
to the light path, in order to avoid blocking the incident light. The absorbance of the solution at
255 nm was monitored with gentle stirring of the buffer to estimate the extent of film decomposition at
different pH values in the absence and presence of H2O2 and glucose.

2.5. Preparation of Microparticles Coated with SA-PAH/PBA-PAH Multilayer Films

In this procedure, 10 mL of a Ca(NO3)2 (472 mg) solution was combined with 10 mL of a Na2CO3

(210 mg) solution and the mixture was stirred for 30 min, after which the precipitated CaCO3 particles
were collected by centrifugation and washed with water [46]. The surfaces of these particles was coated
with multilayer films by immersing them alternately in 0.1 mg/mL SA-PAH and 0.1 mg/mL PBA-PAH
solutions (both in a pH 9.0 10 mM CHES buffer) for 15 min. After each deposition, the CaCO3 particles
were collected by centrifugation and rinsed in the working buffer for 5 min. The alternating deposition
of SA-PAH and PBA-PAH was repeated in this manner to prepare (SA-PAH/PBA-PAH)5 multilayer
films on the CaCO3 particles.

Glucose-sensitive microparticles coated with SA-PAH/PBA-PAH multilayer films were prepared
by building (SA-PAH/PBA-PAH)5 multilayer films on PAH/GOx film-coated CaCO3 particles.
The CaCO3 particles were initially coated with a PAH/GOx film by immersing them alternately
in 0.1 mg mL−1 PAH and 0.1 mg mL−1 GOx solutions. Microparticles containing DBD-insulin were
prepared using a PBA-PAH solution with 0.1 mg/mL DBD-insulin added. These glucose-sensitive
films were prepared in a 10 mM HEPES buffer (pH 7.4, 150 mM NaCl) and were freeze-dried after
being prepared.
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2.6. H2O2- and Glucose-Induced Decomposition of Microparticles Coated with LbL Films

H2O2-sensitive microparticles coated with SA-PAH/PBA-PAH multilayer films were assessed
using UV-vis absorption spectroscopy (UV-3100PC, Shimazu Co., Kyoto, Japan). The freeze dried
microparticles (20 mg) were immersed in solutions containing from 0.1 to 10 mM H2O2 and stirred.
After a specific time period, the microparticles were removed by centrifugation and the supernatant
was collected. The H2O2 in the supernatant was decomposed by adding 1.0 mg/mL catalase (100 µL)
and the absorbance of the supernatant at 255 nm was monitored to determine the amount of PBA in
solution due to decomposition of the SA-PAH/PBA-PAH multilayer films.

The DBD-insulin release from glucose-sensitive PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated-
microparticles were studied by fluorescence emission spectroscopy. The freeze-dried microparticles
(10 mg) were immersed in solutions containing 1 to 100 mM glucose and stirred for 60 min.
The microparticles were subsequently removed by centrifugation and the supernatant was collected.
The supernatant was passed through a filter (pore size 0.45 µm, RC-membrane, Sartorius Stedim,
Germany) and the fluorescence intensity of the filtrate was recorded at 505 nm (excitation: 488 nm) to
estimate the amount of DBD-insulin released.

3. Results and Discussion

3.1. SA-PAH/PBA-PAH Multilayer Films Characterization

In a previous study, we attempted to prepare H2O2- and glucose-responsive multilayer films
composed of microparticles coated with PBA-PAH and PVA [36]. However, microparticles coated with
PBA-PAH/PVA multilayer films were found to aggregate. Multilayer films composed of PBA-PAH
were found to accumulate positive charges, while the PVA films had low charge densities. Therefore,
aggregation of the particles was attributed to a reduction in the repulsive force between them. In the
present study, H2O2-responsive multilayer films composed of SA-PAH and PBA-PAH were prepared
via the formation of boronate ester bonds between the boronic acid moieties in the PBA-PAH and
the diol units in the SA. However, the deposition of SA-PAH/PBA-PAH multilayer films could
potentially be hindered by the electrostatic repulsion between the SA-PAH and PBA-PAH. For this
reason, increasing the ionic strength of the associated solutions was assessed as a means of promoting
film formation. The effect of ionic strength (as reflected by changes in the NaCl concentration) during
the preparation of SA-PAH/PBA-PAH multilayer films was investigated using QCM (Figure 4).
Variations in the resonance frequency (∆F) were monitored after rinsing with the working buffer,
and −∆F was found to increase when the quartz resonator was exposed to the SA-PAH and PBA-PAH
solutions in the presence of NaCl, indicating that SA-PAH/PBA-PAH multilayer films were successfully
formed on the surface of the quartz resonator. In contrast, SA-PAH/PBA-PAH multilayers could not
be prepared in the absence of NaCl. The deposition densities of the (SA-PAH/PBA-PAH)10 film were
calculated to be 2.80 and 5.45 µg cm−2 when using the 150 mM and 1 M NaCl solutions, respectively.
Thus, as expected, higher NaCl concentrations increased the amount of SA-PAH/PBA-PAH multilayer
film that was deposited. This likely occurred because the electrostatic repulsion between the SA-PAH
and PBA-PAH was diminished, promoting the formation of ester bonds between the shikimic and
boronic acid moieties. A high ionic strength in the buffer also causes the polyelectrolyte to contract so
as to increase the amount of polymer deposited per layer [47].

Figure 5 shows the UV-vis absorption spectra of SA-PAH/PBA-PAH multilayer films prepared
on quartz slides. These spectra exhibit adsorption maxima at approximately 242 nm, originating from
the PBA units in the PBA-PAH. The intensity of these peaks increased with increasing number of
depositions, suggesting that SA-PAH/PBA-PAH multilayer films were successfully prepared on the
slides. In agreement with the QCM results, increasing the NaCl concentration of the solution increased
the amount of PBA-PAH deposited.
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Figure 4. QCM resonator frequency changes during the preparation of (SA-PAH/PBA-PAH)n films in
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Figure 5. UV-vis absorption spectra during the preparation of (SA-PAH/PBA-PAH)n films in a 10 mM
CHES buffer (pH 9.0) in the presence of 1 M NaCl (a) or 150 mM NaCl (b).

The bonding of PBA to diols is known to be unstable at neutral and acidic pH values [31,32].
Therefore, we evaluated the stability of the SA-PAH/PBA-PAH multilayer films in aqueous solutions
with different pH values. Figure 6 presents the −∆F values determined for SA-PAH/PBA-PAH
multilayer films at various pH values. Films were successfully prepared at pH values of 7.4 and 9.0
but not at pH 5. Under low pH conditions, bonding between the PBA and diols decreased and the
formation of multilayer film was made more difficult [37,38] as a result of the electrostatic repulsion
between the SA-PAH and PBA-PAH.

Figure 7 summarizes the kinetics of the decomposition of the (SA-PAH/PBA-PAH)10 films in
solutions with pH values of 5.0, 7.4 and 9.0. The percentage decomposition was estimated from
the changes in the absorption intensity at 255 nm. The films evidently decomposed rapidly at pH
5.0, presumably because the bonding between the PBA and diols decomposed under weakly acidic
conditions. In contrast, the films were stable at pH 9.0 for 3 h, and only 10% decomposition was
observed at pH 7.4 over 3 h. It should be noted that the evident stability at pH 7.4 suggests that such
films have potential applications in biomedical devices. Similar pH-dependent stability has been
reported for PVA/PBA-poly(amidoamine) dendrimer films [48].
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Figure 6. The effect of the pH value during the preparation of SA-PAH/PBA-PAH multilayer films in a
10 mM MES (pH 5.0), 10 mM HEPES (pH 7.4) or 10 mM CHES buffer (pH 9.0). All buffer solutions
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Figure 7. Decomposition kinetics of (SA-PAH/PBA-PAH)10 films in 10 mM MES (pH 5.0), 10 mM
HEPES (pH 7.4) or 10 mM CHES (pH 9.0) buffers. The films were prepared using a 10 mM CHES buffer
(pH 9.0). All buffer solutions contained 1 M NaCl.

Figure 8 presents the UV-vis absorption spectra of (SA-PAH/PBA-PAH)10 films before and after
60 min immersion in 1 mM H2O2. Due to PBA, the absorption intensity at 242 nm decreased markedly
over time during this process. As shown in Figure 1, the carbon-boron bonds in PBA and boronate
esters are oxidatively cleaved by H2O2, suggesting that the H2O2 induced the decomposition of the
(SA-PAH/PBA-PAH)10 films. The absorption at 290 nm also increases slightly over time in these
spectra, due to the formation of phenol resulting from the oxidation of PBA.

The decomposition kinetics of the (SA-PAH/PBA-PAH)10 films in the presence of H2O2 was
assessed by monitoring the adsorption intensity at 255 nm (Figure 9). This wavelength represents
an isosbestic point for a combination of PBA-PAH and PBA-PAH during oxidation by H2O2.
The (SA-PAH/PBA-PAH)10 film was found to decompose markedly in the presence of H2O2 and
the rate of decomposition increased with increases in the H2O2 concentration. As an example,
the decomposition percentages of films were determined to be 13%, 81% and 94% after 60, 60 and
20 min in the presence of 0.1, 1 and 10 mM H2O2, respectively.
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H2O2 in a 10 mM CHES buffer (pH 9.0). The films were prepared in a 10 mM CHES buffer (pH 9.0).
All buffer solutions contained 1 M NaCl.

A (SA-PAH/PBA-PAH)10 film was prepared on a quartz resonator modified with GOx to develop
a glucose-responsive unit. GOx was adsorbed into the PAH layer and PBA-PAH layer via electrostatic
interactions due to the negative charges present on the GOx at neutral pH (as a result of an isoelectric
point of pH 4.2) [49]. The QCM data confirmed that an LbL film could be prepared on a GOx
film (see Appendix A Figure A1). Table 1 summarizes the data related to the decomposition of
PAH/GOx/(SA-PAH/PBA-PAH)10 films after immersion for 60 min in glucose solutions, based on ∆F
values obtained by QCM. These data demonstrate that the decomposition of the multilayer films was
affected by the glucose concentration. The PAH/GOx/(SA-PAH/PBA-PAH)10 films were decomposed
because GOx catalyzed the oxidation of D-glucose to generate H2O2 (Equation (1)).

D-glucose + O2 → D-glucono-δ-lactose + H2O2 (1)
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Table 1. The decomposition of PAH/GOx/(SA-PAH/PBA-PAH)10 films after immersion for 60 min in
glucose solutions.

Glucose
pH 7.4 pH 7.4 pH 9.0

NaCl 150 mM NaCl 1 M NaCl 1 M

1 mM 16.9 Hz −2.9 Hz −18.9 Hz
10 mM 34.6 Hz −8.6 Hz −25.8 Hz
100 mM 43.8 Hz 31.7 Hz −26.8 Hz

In contrast, two negative decomposition values were obtained in the presence of 1 M NaCl and the
values were all negative when using pH 9.0 and 1 mM NaCl. These values are attributed to decreases
in the GOx activity due to changes in the ionic strength and basicity of the solutions. Also, glucose
was evidently adsorbed on the PBA in the films, thus actually increasing the film masses.

3.2. Preparation of Microparticles Coated with SA-PAH/PBA-PAH Multilayer Films

Microparticles coated with LbL films were obtained via the deposition of polymers on
CaCO3 microparticles [46]. Figure 10 shows optical and fluorescence microscopy images of
PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles in which the PBA-PAH and
GOx units have been labeled with fluorescein isothiocyanate (FITC) and tetramethylrhodamine
isothiocyanate (TRITC). It is evident that there was no aggregation of the particles during the film
deposition process, and that it was possible to apply multilayer films to the particles. The fluorescence
images confirm that both PBA-PAH and GOx were deposited on the CaCO3.Polymers 2018, 10, x FOR PEER REVIEW  9 of 13 

 

 
Figure 10. Optical microscopy (a) and fluorescence microscopy ((b), excitation: 488 nm) and ((c) 
excitation: 543 nm) images of PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles in 
which PBA-PAH and GOx have been labeled with FITC and TRITC, respectively. The scale bar is 5 
μm. 

Figure 11 plots the absorbance at 255 nm following the H2O2-induced decomposition of (SA-
PAH/PBA-PAH)5 film-coated CaCO3 microparticles. This wavelength represents the isosbestic point 
of PBA-PAH and PBA-PAH oxidized by H2O2. The absorbance values increased significantly in the 
presence of H2O2, with absorbance values of 0.027, 0.082 and 0.091 in conjunction with exposure to 
H2O2 concentrations of 0.1, 1 and 10 mM for 1 h. The increase in absorbance is derived from PBA-
PAH oxidized by H2O2, which is a decomposition component of the (SA-PAH/PBA-PAH)5 film on 
the CaCO3 microparticles. On the other hand, the multilayer films were not decomposed in the 
absence of H2O2. It was found that the SA-PAH/PBA-PAH multilayer film on CaCO3 microparticles 
decomposed in the presence of H2O2. 

 
Figure 11. Absorbance at 255 nm resulting from the H2O2-induced decomposition of (SA-PAH/PBA-
PAH)5 films on CaCO3 microparticles in a 10 mM CHES buffer (pH 9.0) containing 1 M NaCl in the 
presence of 0, 0.1, 1 or 10 mM H2O2. 

This work also developed microparticles capable of the glucose-induced release of insulin via 
the catalytic reaction of GOx under physiological conditions. Glucose-sensitive microparticles 
containing insulin were prepared by adsorbing DBD-insulin on multilayer films. Because insulin has 
a net negative charge at pH 7.4 (as the isoelectric point of insulin is 5.4 [50]), it will be adsorbed on 
the PAH layer of the LbL film [51,52]. The glucose-induced decomposition of SA-PAH/PBA-PAH 
films would therefore be expected to release the insulin adsorbed on the microparticles. Figure 12 
shows the DBD-insulin release from 1 mg of PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 
microparticles in glucose solutions of varying concentrations, as calculated from fluorescence 
intensities of DBD. The amounts of DBD-insulin released were determined to be 0.40, 0.85 and 2.32 
μg following the exposure of CaCO3 microparticles coated with PAH/GOx/(SA-PAH/PBA-PAH)5 
films to 1, 10 and 100 mM glucose solutions for 1 h at pH 7.4. DBD-insulin was also found to be 
released from PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles in glucose 

0

0.02

0.04

0.06

0.08

0.10

0 50 100 150 200 250

Ab
so

rb
an

ce
at

25
5

nm

Time / min

0 mM

0.1 mM

1 mM

10 mM

Figure 10. Optical microscopy (a) and fluorescence microscopy ((b), excitation: 488 nm) and
((c) excitation: 543 nm) images of PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles
in which PBA-PAH and GOx have been labeled with FITC and TRITC, respectively. The scale bar is
5 µm.

Figure 11 plots the absorbance at 255 nm following the H2O2-induced decomposition of
(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles. This wavelength represents the isosbestic
point of PBA-PAH and PBA-PAH oxidized by H2O2. The absorbance values increased significantly in
the presence of H2O2, with absorbance values of 0.027, 0.082 and 0.091 in conjunction with exposure to
H2O2 concentrations of 0.1, 1 and 10 mM for 1 h. The increase in absorbance is derived from PBA-PAH
oxidized by H2O2, which is a decomposition component of the (SA-PAH/PBA-PAH)5 film on the
CaCO3 microparticles. On the other hand, the multilayer films were not decomposed in the absence of
H2O2. It was found that the SA-PAH/PBA-PAH multilayer film on CaCO3 microparticles decomposed
in the presence of H2O2.

This work also developed microparticles capable of the glucose-induced release of insulin via the
catalytic reaction of GOx under physiological conditions. Glucose-sensitive microparticles containing
insulin were prepared by adsorbing DBD-insulin on multilayer films. Because insulin has a net
negative charge at pH 7.4 (as the isoelectric point of insulin is 5.4 [50]), it will be adsorbed on
the PAH layer of the LbL film [51,52]. The glucose-induced decomposition of SA-PAH/PBA-PAH
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films would therefore be expected to release the insulin adsorbed on the microparticles. Figure 12
shows the DBD-insulin release from 1 mg of PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3

microparticles in glucose solutions of varying concentrations, as calculated from fluorescence intensities
of DBD. The amounts of DBD-insulin released were determined to be 0.40, 0.85 and 2.32 µg following
the exposure of CaCO3 microparticles coated with PAH/GOx/(SA-PAH/PBA-PAH)5 films to 1,
10 and 100 mM glucose solutions for 1 h at pH 7.4. DBD-insulin was also found to be released from
PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles in glucose solution, suggesting
that the SA-PAH/PBA-PAH multilayer films on the CaCO3 were decomposed because GOx catalyzed
the oxidation of D-glucose to generate H2O2. Once again, the amount of DBD-insulin released from
the PAH/GOx/(SA-PAH/PBA-PAH)5 film-coated CaCO3 microparticles increased with increasing
glucose concentration. This process was superior in reactivity to the decomposition of the film under
physiological conditions as compared with the method of glucose bound to PBA-PAH/PVA film to
cleave the boronate ester bonds [36].
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4. Conclusions

This work demonstrated that multilayer films can be constructed by the alternating deposition
of SA-PBA and PBA-PAH, via the formation of boronate ester bonds. SA-PBA/PBA-PAH films
were prepared at pH 7.4 and pH 9 in the presence of NaCl. PAH/GOx/(SA-PBA/PBA-PAH)n

films were found to decompose in the presence of glucose due to oxidative scission of
the carbon-boron bond of PBA-PAH by enzymatically-generated H2O2. All steps of the
preparation and decomposition of PAH/GOx/(SA-PBA/PBA-PAH)n films could be performed
under physiological conditions. In addition, glucose-sensitive microparticles were fabricated by
coating CaCO3 particles with PAH/GOx/(SA-PBA/PBA-PAH)5 films. Insulin pre-absorbed in the
PAH/GOx/(SA-PAH/PBA-PAH)5 films was released following the addition of glucose, and the extent
of release was dependent on the glucose concentration. Again, all steps of this process could be
carried out under physiological conditions. These results demonstrate the potential application of
microparticles that undergo glucose-induced decomposition in the development of insulin delivery
systems. In insulin delivery systems, insulin loading microparticles remain stable at normal levels of
blood glucose (~5 mM), and glucose-induced delivery microparticles that release insulin only when
the blood glucose is higher than the diabetic level (>10 mM) under physiological conditions are highly
desirable [53]. Insulin release system depending on blood glucose will be realized by improving the
suitable design of the film composition and the chemical structures of PBA-polymers.
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