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Abstract: A loop-mediated isothermal amplification assay was evaluated as a surrogate marker
of treatment failure in Chagas disease (CD). A convenience series of 18 acute or reactivated CD
patients who received anti-parasitic treatment with benznidazole was selected—namely, nine orally
infected patients: three people living with HIV and CD reactivation, five chronic CD recipients
with reactivation after organ transplantation and one seronegative recipient of a kidney and liver
transplant from a CD donor. Fifty-four archival samples (venous blood treated with EDTA or
guanidinium hydrochloride-EDTA buffer and cerebrospinal fluid) were extracted using a Spin-
column manual kit and tested by T. cruzi Loopamp kit (Tc-LAMP, index test) and standardized
real-time PCR (qPCR, comparator test). Of them, 23 samples were also extracted using a novel
repurposed 3D printer designed for point-of-care DNA extraction (PrintrLab). The agreement
between methods was estimated by Cohen’s kappa index and Bland–Altman plot analysis. The
T. cruzi Loopamp kit was as sensitive as qPCR for detecting parasite DNA in samples with parasite
loads higher than 0.5 parasite equivalents/mL and infected with different discrete typing units. The
agreement between qPCR and Tc-LAMP (Spin-column) or Tc-LAMP (PrintrLab) was excellent, with a
mean difference of 0.02 [CI = −0.58–0.62] and −0.04 [CI = −0.45–0.37] and a Cohen’s kappa coefficient
of 0.78 [CI = 0.60–0.96] and 0.90 [CI = 0.71 to 1.00], respectively. These findings encourage prospective
field studies to validate the use of LAMP as a surrogate marker of treatment failure in CD.

Keywords: loop-mediated isothermal amplification; real-time PCR; Trypanosoma cruzi; Chagas-HIV;
orally transmitted Chagas disease; primary infection after transplant in seropositive donor-seronegative
recipients; Chagas disease reactivation

1. Introduction

Chagas disease (CD), a neglected tropical disease (NTD) caused by the protozoan
Trypanosoma cruzi, affects about 7 million people worldwide, mainly in endemic areas of
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Latin America [1]. Transmission may occur by different routes, such as vector-borne, oral,
congenital, transfusional or organ transplant and laboratory accidents. The disease evolves
from an acute to a chronic phase that may develop in up to 30% of cases to cardiac disease
and in 10% to digestive mega-syndromes, neurological and/or mixed complications [2,3].
A proportion of immunocompromised chronic CD patients associated with HIV, organ
transplantation, autoimmune disease or oncologic treatments may experience disease
reactivation, which usually develops in severe clinical forms with high parasitaemia [4,5].
Thus, early diagnosis of acute and reactivation infections is relevant because it allows
early trypanocidal treatment, avoiding severe clinical presentations. Indeed, monitoring
of parasitological response to treatment by means of surrogate markers may guarantee
more accurate follow-up and earlier detection of treatment failure. However, we still lack
sensitive surrogate markers of treatment failure that can be applied with simple laboratory
manipulations and inexpensive equipment [6,7]. Loop-mediated isothermal amplification
(LAMP) has a potential to become a tool for monitoring anti-parasitic treatment. To date,
no studies have tested LAMP for CD treatment follow-up [8,9]. In this context, we used
LAMP to analyse a series of archival clinical samples collected from CD patients who
received benznidazole to assess its ability to detect T. cruzi DNA, which indicates treatment
failure, and compared it with standardized qPCR, which is currently used in clinical trials
and in clinical practice [6]. Moreover, in a subset of samples, we used a novel repurposed
3D printer for a rapid automatic DNA extraction and purification for downstream LAMP
testing in low-resource settings.

2. Materials and Methods

Clinical groups.

(i) Orally transmitted Chagas Disease (oCD): blood samples collected from nine patients
residing in Chichiriviche de la Costa, Vargas State, Venezuela, diagnosed with oCD
after consumption of T. cruzi-contaminated guava juice in March 2009 [10]. Parasito-
logical diagnosis was made either by microscopic search of trypomastigote forms in
peripheral blood or by parasite culture, and serological analysis by in-house assays
(ELISA and IHA) with a T. cruzi epimastigotes delipidized antigen for detection of
anti-human IgG and IgM [10]. Clinical examination included electrocardiogram (EKG)
and echocardiography (ECHO). For molecular diagnosis, 5 mL blood samples were
collected in 5 mL of guanidine hydrochloride 6 M-EDTA 0.2 M, pH 8.00 (GE), and
stored at 4 ◦C.

(ii) HIV-Reactivated Chagas Disease (HIV-RCD): EDTA-treated blood and/or cerebrospinal
fluid (CSF) samples were recovered from three T. cruzi patients with HIV coinfection
diagnosed by central nervous system (CNS) CD reactivation. The patients were admit-
ted and clinically monitored between 2014 and 2018. Diagnosis included microscopic
analysis of CSF specimens, Strout test and central nervous system imaging. The
samples were collected and stored at −20 ◦C.

(iii) Chronic Chagas disease transplanted recipients with reactivation (Tx-RCD). EDTA
blood samples from five chronic CD patients who underwent organ transplantation
and presented reactivation of T. cruzi infection due to immunosuppressive treatments.
All patients received standard etiological treatment (benznidazole 5 mg/kg/day for
60 days), except for Tx-RCD patient 4, who received a half-dose regime for 7 days to
avoid renal failure and, due to the persistence of the parasite load, continued with the
conventional treatment mentioned above.

(iv) Recipient of organs from an infected donor (Tx-RID). A seronegative recipient of
a kidney and liver transplant from a T. cruzi-infected donor who became infected
after transplant in 2016. This primary infection was diagnosed by qPCR as described
elsewhere [11]. The patient received supervised treatment with 5–7 mg/kg/day of
benznidazole for 60 days. Five millilitres of blood were collected in EDTA tubes and
stored at −20 ◦C until processing for qPCR and Tc-LAMP.
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DNA extraction from clinical specimens for qPCR and LAMP: Manual DNA extraction
was carried out from 200 µL EDTA blood or CSF samples, or 300 µL of GE blood using the
High Pure PCR Template Preparation Kit (Roche Diagnostics GmbH, Mannheim, Germany)
as recommended by the manufacturer [9]. In a set of 23 samples (19 EDTA blood and
4 GE blood), DNA was also purified using the MagMax Multi Sample Ultra 12.0 DNA
extraction kit (Thermo Fisher Scientific Inc, Waltham, MA, USA) in a repurposed 3D printer
(PrintrLab extraction device version 4.0, AI Biosciences, Inc., College Station, TX, USA)
designed for rapid and low-cost point-of-care molecular diagnostics (Figure 1) [12]. The
procedure was optimized for 200 µL of starting blood. Briefly, samples, lysis buffer and
magnetic particles were loaded in the first row. Subsequently, the DNA bound to the
magnetic particles was captured and transferred to successive rows for the washing steps
and the final DNA elution step (Figure 1).
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Figure 1. A plate-layout scheme for the PrintrLab DNA-extraction procedure. Blood samples, lysis
buffer and magnetic particles are loaded in row (A). Subsequently, the DNA bound to the magnetic
particles is captured and transferred to successive rows for the washing steps and the final DNA
elution step. All steps are performed with agitation and slow capture of the beads. (B) PrintrLab
extraction device.

Every DNA-extraction experiment included a negative DNA-extraction control, which
was a sample of peripheral blood from a T. cruzi-seronegative individual. The DNA extracts
were stored at −20 ◦C until their use for qPCR or LAMP.

Trypanosoma cruzi Loopamp kit: Tc-LAMP (Eiken Chemical Co., Ltd., Tokyo, Japan)
targets the repetitive satellite DNA sequence of T. cruzi [8]. The LAMP reaction used 30 µL
of DNA eluates that were incubated at 65 ◦C for 40 min, followed by a step at 80 ◦C for
five minutes for enzyme inactivation, as reported in [9]. Results were observed by the
naked eye or by UV visualization using a P51TM molecular fluorescence viewer with yellow
filter [8,9] and expressed as positive or negative (Figure 2). Two LAMP replicates were
carried out per DNA extract. Sample panels were masked, and a series of six samples each
were randomly chosen to perform a LAMP round that included a non-template control
provided by the manufacturer and a positive control (PC: 30 µL of 1fg/µL CL-Brener stock
DNA, not provided). The LAMP operator read amplification results blinded to qPCR
findings and clinical data.

Multiplex real-time quantitative PCR (qPCR): Duplex qPCR using TaqMan probes
targeted to T. cruzi satellite DNA plus an internal amplification control (IAC) was carried out
in duplicates in a Rotor Q thermocycler (Qiagen) following standardized conditions [7,11].
In the series of oCD and Tx-RCD samples, human RNAse P gene-based amplification was
used as internal control of DNA integrity. All the samples were checked for qPCR inhibitors
using the criterion of Tukey, and quantification of parasite loads was performed using
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standard curves as reported in [11]. Laboratory operators of the qPCR assay were blinded
to index test results. The research evaluator had no access to Tc-LAMP results or to clinical
information before the end of sample processing and reporting.
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after amplification. Panel C: Visualization using the P51TM molecular fluorescence viewer with
yellow filter. Wells 1 and 2: duplicate Tc-LAMP from sample collected the day treatment was initiated
(Tx-RCD 5.1). 3 and 4: duplicate Tc-LAMP from sample collected 8 days after treatment initiation
(Tx-RCD 5.2). 5 and 6: duplicate Tc-LAMP from sample collected 24 days after treatment initiation
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Statistical analysis: T. cruzi Loopamp kit (Tc-LAMP) was compared with standardized
qPCR using panels of archival clinical specimens collected from the above-mentioned
groups of patients.

The Cohen’s kappa coefficient (K) and the Bland–Altman plot were used to measure
the agreement between Tc-LAMP (Spin-column and PrintrLab DNA extractions) and qPCR
results obtained in paired samples. All the analyses were performed with the RStudio Team
software [13]. A p-value of <0.05 was considered statistically significant.

3. Results

Tc-LAMP results were observed by the naked eye or by UV visualization, as shown
in Figure 2. Both visualization methods were considered for reporting the results. There
were no disagreements between them in the samples tested. Moreover, there was no
disagreement between duplicate amplifications from a same DNA extract.

oCD: 24 GEB samples from nine patients with oCD (eight paediatric patients and one
adult) were included. All of them were infected with Tc I parasite populations, and qPCR
monitoring at 12, 36, 60 or 108 months after treatment indicated treatment failure in most
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patients (oCD group (Table 1). These 24 samples were tested by Tc-LAMP (Spin-column),
and 4 of them also underwent Tc-LAMP (PrintrLab) testing. The results of the Tc-LAMP
(PrintrLab) were concordant with those of qPCR. For Tc-LAMP (Spin-column) testing, the
results were concordant with qPCR in 22 cases, and 2 cases were qPCR positive and LAMP
negative. One of the Tc-LAMP (Spin-column) negative samples was positive by Tc-LAMP
(PrintrLab) (oCD6, Table 1).

HIV-RCD: A total of nine samples were tested by Tc-LAMP (Spin-column) and qPCR
in peripheral blood and/or CSF samples and only two samples were available for PrintrLab
DNA extraction. At the time CD reactivation was diagnosed, the corresponding samples
(EDTA blood and CSF) tested by Tc-LAMP (Spin-column) and qPCR had concordant
results (HIV-RCD group, Table 1). Eight post-treatment samples were tested, and treatment
response detected by qPCR and Tc-LAMP (Spin-column) was similar (Table 1). A discordant
finding (Tc-LAMP-positive, qPCR-negative) was detected in the blood sample from case
HIV-RCD 3, collected 38 days after treatment had started. Interestingly, a CSF sample
collected 7 days after initiation of therapy had a high parasite load. Whereas 1 day after,
no parasite loads were detected in the blood and remained undetected in the last sample
available, which was collected 14 days after treatment initiation and 2 days before the
patient died.

Tx-RCD: Five Tx-RCD patients were included. Patients Tx-RCD 1 and Tx-RCD 4
exhibited a two-log increase in parasite burden at days 25 and 14 after orthotopic kidney
transplantation, respectively. In the first case, the patient received standard etiological
treatment (benznidazole 5 mg/kg/day for 60 days), and parasite load reduction was
observed seven days after treatment was initiated. In the second case, treatment with
benznidazole was initiated based on a positive Strout test, which is the gold standard
parasitological method for the diagnosis of CDR. However, qPCR was positive thirteen
days earlier than the Strout test. To avoid renal failure, this patient received half the standard
dose for 7 days. However, this dose was not sufficient since qPCR showed an increase in
parasitaemia, and thus, the patient was treated with a higher dose, showing a therapeutic
response with a non-detectable qPCR result 21 days after the high dose treatment. Patient
Tx-RCD 2 underwent orthotopic heart transplantation to treat end-stage chronic Chagas
heart disease. Nine months after transplantation, a parasite load of 24.41 par.eq/mL
was estimated by qPCR. The patient received anti-trypanosomal chemotherapy and after
completing 60 days of treatment, the parasite load measured by qPCR was below the limit
of detection, suggesting therapeutical response. Patient Tx-RCD 3 received orthotopic liver
transplant and was monitored by Strout test and qPCR. The qPCR-based follow-up after
transplantation showed parasite loads between 1.09 and 12.11 par.eq/mL, whereas Strout
test detected patent parasitaemia 78 days after transplant (Tx). The latter finding supported
the initiation of anti-parasitic treatment. Two weeks after treatment started, both Strout
test and qPCR became non-detectable, suggesting a favourable parasitological response.
Patient Tx-RCD 5 presented multiple myeloma and CD reactivation due to chemotherapy
before undergoing autologous stem cell transplantation. The sample withdrawn two days
before Tx gave a mean parasite load of 54.25 par.eq/mL. After Tx, the patient received
anti-parasitic treatment, and parasitaemia decreased to 2.41 par.eq/mL one week later,
reaching non-detectable levels in the sample tested 22 days after the autograft.

In these five patients, the presence of T. cruzi DNA was also tested by Tc-LAMP
(Spin-column) and LAMP (PrintrLab) in 12 EDTA blood samples. Five samples were
tested after Tx and seven samples once treatment was initiated (Table 2). The results of
pre-treatment samples were all positive for qPCR and Tc-LAMP (both DNA extraction
methods), whereas, five of seven post-treatment samples had concordant results, one was
only positive by Tc-LAMP (PrintrLab) (Tx-RCD 1.5) and another one was only positive by
Tc-LAMP (Spin-column) (Tx-RCD 3.5).
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Table 1. Follow-up of oCD and HIV-RCD clinical groups by qPCR and Tc-LAMP.

Clinical
Group

ID
Patient

Gender
(F/M)

Age
(years) Pathology/Laboratory/CNS Imaging Findings at Diagnosis Sample

Type Sample ID
Time from
Treatment
Initiation

# Mean Parasite
Load

(par.eq/mL)

§ qPCR
Result

Tc-LAMP
Spin-

Column

Tc-LAMP
PrintrLab

O
ra

L
C

ha
ga

s
di

se
as

e

oCD1 M 16
At the time of confirming the case (2009), IgM and IgG serology postive and no

evidence of cardiac abnormality due to acute phase. Treatment with benznidazole
7 mg/kg/day for 60 days

GEB
oCD1.1 0 5.13 Positive Positive NP
oCD1.2 12 m 1.97 Positive Positive NP
oCD1.3 24 m NAR Negative Negative NP

oCD2 M 8
At the time of confirming the case (2009), IgM and IgG serology postive. abnormal

EKG. Treatment with benznidazole 7 mg/kg/day for 60 days. GEB
oCD2.1 0 14.87 Positive Positive Positive
oCD2.2 36 m 1.75 Positive Positive NP
oCD2.3 108 m 1.6 Positive Positive NP

oCD3 F 9
At the time of confirming the case (2009), IgM positive and IgG negative.
abnormal EKG. Treatment with benznidazole 7 mg/kg/day for 60 days GEB

oCD3.1 0 4586.77 Positive Positive NP
oCD3.2 6 m 3521.09 Positive Positive NP
oCD3.3 24 m 2258.83 Positive Positive NP

oCD4 M 36
At the time of confirming the case (2009), IgM and IgG serology postive. abnormal

EKG. Treatment with benznidazole 7 mg/kg/day for 60 days. GEB
oCD4.1 0 1733.56 Positive Positive NP
oCD4.2 36 m 1842.84 Positive Positive NP
oCD4.3 108 m 1172.27 Positive Positive NP

OCD5 F 7
At the time of confirming the case (2009), IgM and IgG serology postive. abnormal

EKG. Treatment with benznidazole 7 mg/kg/day for 60 days. GEB
oCD5.1 0 0.35 Positive Negative NP
oCD5.2 36 m NAR Negative Negative NP
oCD5.3 60 m 5 Positive Positive NP

OCD6 F 9
At the time of confirming the case (2009), IgM aad IgG serology postive. abnormal

EKG. Strout positive Treatment with benznidazole 7 mg/kg/day for 60 days. GEB
oCD6.1 0 0.35 Positive Positive NP
oCD6.2 36 m 5.56 Positive Positive Positive
oCD6.3 60 m 14.99 Positive Negative Positive

oCD7 F 10
At the time of confirming the case (2009), IgM and IgG serology postive. abnormal

EKG. Treatment with benznidazole 7 mg/kg/day for 60 days GEB
oCD7.1 12 m 1.75 Positive Positive Positive
oCD7.2 108 m 2.93 Positive Positive NP

oCD8 F 11
At the time of confirming the case (2009), IgM and IgG serology postive. abnormal

EKG. Treatment with benznidazole 7 mg/kg/day for 60 days GEB
oCD8.1 60 m 2697.31 Positive Positive NP
oCD8.2 108 m 1126.81 Positive Positive NP

oCD9 F 8
At the time of confirming the case (2009), IgM and IgG serology postive aNP no

evidence of cardiac abnormality due to acute phase. Treatment with benznidazole
7 mg/kg/day/day for 60 days

GEB oCD9.1
oCD9.2

24 m
60 m

2404.02
NAR

Positive
Negative

Positive
Negative

NP
NP

A
ID

S-
C

ha
ga

s
R

ea
ct

iv
at

io
n

HIV-
RCD1 M 42

Seizures/encephalitis with two space-occupying lesions CD4 7 cells/mL,
Trypomastigotes in CSF EB

HIV-RCD1.1 0 107 Positive Positive Positive
HIV-RCD1.2 5 d 2 Positive Positive NP
HIV-RCD1.3 14 d NAR Negative Negative NP

HIV-
RCD2 M 55

Sensory impairment/marked cerebral cortex atrophy; encephalitis with two space-
occupying lesion CD4 10 cells/mL. Trypomastigotes in CSF

CSF HIV-RCD2.1 0 3511.5 Positive Positive NP
CSF HIV-RCD2.2 7 d 13556 Positive Positive NP
EB HIV-RCD2.3 14 d NAR Negative Negative Negative

HIV-
RCD3 F 39 Right Hemiparesis, faciobrachiocrural/encephalytis with large space occupying

lesion aNP brain midline shift CD4 10 cells/mL Strout Positive EB
HIV-RCD3.1 0 677 Positive Positive NP
HIV-RCD3.2 24 d 12,7 Positive Positive NP
HIV-RCD3.3 38 d NAR Negative Positive NP

Grey boxes indicate the samples collected since initiation of treatment. No samples at initiation of treatment were available for oCD7-9. Tx: transplant, F: female; M: male; d, days; m,
months; GEB: guanidine-EDTA Blood; EB: EDTA blood; CSF: cerebrospinal fluid; par.eq./mL: parasite equivalents per millilitre of sample; NA: not applicable; NAR: no amplification
reaction, NP: not performed. # Parasite loads were measured in the original samples during the patients’ follow-up. §: Qualitative qPCR results correspond to the archival paired sample
retested by qPCR at the time Tc-LAMP was carried out in archival samples.
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Table 2. Follow-up of Tx-RCD and Tc-RID clinical groups by qPCR and Tc-LAMP.

Clinical
Group ID Patient Gender

(F/M)
Age

(Years) Tx organ/Strout Sample ID
Days before

or after
Transplant

Days from
initial CD
Treatment

# Mean
Parasite Load
(par.eq/mL)

§ qPCR Result
Tc-LAMP

Spin-Column
Tc-LAMP
PrintrLab

C
ha

ga
s

D
is

ea
se

R
ea

ct
iv

at
io

n

Tx-RCD1 M 71 Kidney/No Strout
available.

Tx-RCD1.1 6 NA 1.86 Positive NP NP
Tx-RCD1.2 14 NA 5.14 Positive NP NP
Tx-RCD1.3 25 NA 13.65 Positive Positive Positive
Tx-RCD1.4 28 0 59.14 Positive Positive Positive
Tx-RCD1.5 35 7 NAR Negative Negative Positive

Tx-RCD2 M 61 Heart/No Strout
available

Tx-RCD2.1 -54 NA NAR Negative NP NP
Tx-RCD2.2 15 NA 0.17 Positive NP NP
Tx-RCD2.3 286 NA 2.27 Positive Positive Positive
Tx-RCD2.4 295 0 20.99 Positive Positive Positive
Tx-RCD2.5 356 61 NAR Negative Negative Negative

Tx-RCD3 M 57
Liver/Positive Strout
result 78 days after

transplant

Tx-RCD3.1 7 NA NAR Negative NP NP
Tx-RCD3.2 29 NA 12.11 Positive NP NP
Tx-RCD3.3 33 NA 1.09 Positive NP NP
Tx-RCD3.4 71 -7 0.81 Positive Positive Positive
Tx-RCD3.5 92 14 NAR Negative Positive Negative

Tx-RCD4 M 57
Kidney/Positive

Strout result 27 days
after transplant

Tx-RCD4.1 6 NA 1.11 Positive Positive Positive
Tx-RCD4.2 14 NA 82.16 Positive Positive Positive
Tx-RCD4.3 34 7 269.97 Positive Positive Positive
Tx-RCD4.4 55 28 NAR Negative Negative Negative

Tx-RCD5 F 66 Bone Marrow/No
Strout available

Tx-RCD5.1 -2 0 16.78 Positive Positive Positive
Tx-RCD5.2 6 8 NAR Negative Negative Negative
Tx-RCD5.3 22 24 NAR Negative Negative Negative
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Tx-RID F 63
Liver and

Kidney/No Strout
available

Tx-RID.1 40 NA 0.49 Positive Negative NP
Tx-RID.2 61 0 39.7 Positive Positive Positive
Tx-RID.3 69 8 NAR Negative Negative NP
Tx-RID.4 141 80 NAR Negative Negative Negative
Tx-RID.5 155 94 NAR Negative Negative NP
Tx-RID.6 244 183 NAR Negative Negative NP

Grey boxes indicate the samples collected since initiation of treatment. EB, EDTA-treated blood; d, days; m, months; NA, not applicable, NAR; No amplification reaction; NP: not
performed; F: female, M: male; p.eq/mL, parasite equivalents per ml of sample. # Parasite loads were measured in the original samples during the patients’ follow-up. §: Qualitative
qPCR results correspond to the archival paired sample retested by qPCR at the time Tc-LAMP was carried out in archival samples.
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Tx-RID: This case corresponds to a non-infected patient who received liver and kidney
transplantation and was followed-up by qPCR. After detecting an increase in parasite load
from 0.49 to 39.68 par.eq/mL, the patient was diagnosed with primary T. cruzi infection.
Consequently, he received anti-parasitic therapy for three weeks. Six EDTA blood samples
(two pre-treatment and four post-treatment) were tested by Tc-LAMP (Spin-column). Two
samples (one pre-treatment and one post-treatment) were also tested by Tc-LAMP (Printr-
Lab) (Table 2). Tc-LAMP (Spin-column) was negative in the sample with 0.49 par.eq/mL
and became positive in the sample obtained 61 days after Tx, in agreement with Tc-LAMP
(PrintrLab). After treatment was initiated, the patient became qPCR negative in the sample
tested eight days later and persisted negative during follow-up for 183 days after treatment,
suggesting a favourable response, in agreement with Tc-LAMP results.

Overall agreement between qPCR and Tc-LAMP (Spin-column, n = 54) or Tc-LAMP (Print-
rLab, n = 23) in paired samples showed a Cohen’s kappa coefficient of 0.78 [CI = 0.60–0.96]
and 0.90 [CI = 0.71 to 1.00], respectively. The agreement between Tc-LAMP (Spin-column)
and Tc-LAMP (PrintrLab) in 23 paired samples was 0.704 [0.39 to 1.00]. Additionally, the
mean difference for both Tc-LAMP data groups compared with the comparator qPCR assay
was 0.02 [CI = −0.58–0.62] and −0.04 [CI = −0.45–0.37], respectively, demonstrating the
high concordance of the diagnostic methods evaluated (Bland–Altman analysis, Figure 3).
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4. Discussion

Very few studies of NTDs have evaluated LAMP for monitoring the effectiveness of
chemotherapy, such as Schistosoma japonicum infection [14]. To our knowledge, this is the
first report that evaluates LAMP for assessment of treatment efficacy in CD patients [15].
Our interest in evaluating LAMP for monitoring CD treatment is based on the fact that this
NTD is highly endemic and that most patients live in resource-limited settings with poor
investment in public health policies. Noteworthily, the T. cruzi Loopamp assay showed
excellent agreement with the comparator qPCR test. This LAMP assay could detect samples
infected with different discrete typing units, such as Tc I in oCD patients from Venezuela [16]
and Tc V and Tc VI in immunosuppressed patients [17,18]. Moreover, it performed well
in DNA samples obtained in different supports and stabilizing agents, such as frozen blood
treated with EDTA or GE buffer, as well as in CSF specimens. Tc-LAMP detected samples
with more than 0.5 par.eq/mL, which is the approximate limit of detection of the comparator
standardized qPCR test (0.69 par.eq/mL for Tc VI CL-Brener clone) [11]. Discordant Tc-LAMP-
negative/qPCR-positive findings were detected in samples with loads around that limit of
detection, while there were three post-treatment samples with non-detectable amplification
by qPCR and positive Tc-LAMP results (HIV-RCD 3, Table 1 and Tx-RCD 1 and 3, Table 2),
suggesting that Tc-LAMP could be a very sensitive indicator of treatment failure. This high
sensitivity makes it potentially useful for monitoring chronic CD patients receiving treatment
and for early diagnosis of congenital Chagas disease in infants [19–21].
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A novel procedure was optimized, using the 3D PrintrLab extractor device [12] (Figure 1)
coupled to Tc-LAMP, with high agreement with Tc-LAMP starting from Spin-column
extracted DNA and qPCR. Its advantage includes the possibility of rapid results: DNA
extraction may take about 40 min, and amplification takes another 40 min, followed by
immediate naked-eye or UV-light-mediated visualization (Figure 2). The approximate cost
of the PrintrLab device is approximately ten times lower than that of most automatic DNA
extraction robots, while the cost of Tc-LAMP is at least 50% lower than that of qPCR.

In summary, this report promotes future prospective studies for validating Tc-LAMP
in the field for early assessment of treatment response in CD using point-of-care DNA
extraction and amplification techniques that may expand the implementation of molecular
diagnostics and monitoring of CD to low-resource settings in endemic areas.
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