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Music perception depends on internal psychological models derived through exposure to a musical culture. It is
hypothesized that this musical enculturation depends on two cognitive processes: (1) statistical learning, in which
listeners acquire internal cognitive models of statistical regularities present in the music to which they are exposed;
and (2) probabilistic prediction based on these learned models that enables listeners to organize and process their
mental representations of music. To corroborate these hypotheses, I review research that uses a computational
model of probabilistic prediction based on statistical learning (the information dynamics of music (IDyOM) model)
to simulate data from empirical studies of human listeners. The results show that a broad range of psychological
processes involved in music perception—expectation, emotion, memory, similarity, segmentation, and meter—can
be understood in terms of a single, underlying process of probabilistic prediction using learned statistical models.
Furthermore, IDyOM simulations of listeners from different musical cultures demonstrate that statistical learning
can plausibly predict causal effects of differential cultural exposure to musical styles, providing a quantitative model
of cultural distance. Understanding the neural basis of musical enculturation will benefit from close coordination
between empirical neuroimaging and computational modeling of underlying mechanisms, as outlined here.

Keywords: music perception; enculturation; statistical learning; probabilistic prediction; IDyOM

Introduction

Musical styles comprise cultural constraints on
the compositional choices made by composers,
which can be distinguished both from constraints
reflecting universal laws (of nature and human
perception or production of sound) and specific
within-culture, nonstyle-defining compositional
strategies employed by particular (groups of) com-
posers in particular circumstances.1 As recognized
by Leonard Meyer in his early writing,2 these
constraints can be viewed as complex, probabilistic
grammars defining the syntax of a musical style,3,4

which are acquired as internal cognitive models of
the style by composers, performers, and listeners.
This enables successful communication of musical
meaning between composers and performers and
between performers and listeners.2,5–8

Unlike many other general theories of music
cognition,9–12 this approach elegantly encompasses

the idea that listeners exposed to different musical
styles will differ in their psychological processing
of music. It provides naturally for musical encul-
turation, the process by which listeners internalize
the regularities and constraints defining and distin-
guishing musical styles and cultures. My purpose
here is to elaborate Meyer’s proposals by putting
forward a computational model that is capable of
learning the probabilistic structure of musical styles
and examining whether the model successfully sim-
ulates the perception of mature, enculturated listen-
ers across a broad range of cognitive processes and
whether the model also simulates enculturation in
musical styles.

I propose two hypotheses about the psycholog-
ical and neural mechanisms involved in musical
enculturation. According to these hypotheses, lis-
teners use implicit statistical learning through pas-
sive exposure to acquire internal cognitive models of
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the regularities defining the syntax of a musical style;
furthermore, they use probabilistic prediction based
on the learned internal model to generate prob-
abilistic predictions that underlie their perception
and emotional experience of music. In other words,
while existing theoretical approaches propose sev-
eral distinct cognitive mechanisms underlying per-
ception and emotional experience of music,6,9,12

here probabilistic prediction is put forward as a
foundational mechanism underpinning other psy-
chological processes in music perception. To sub-
stantiate these rather bold proposals, I introduce
a computational model of probabilistic prediction
based on statistical learning and present empirical
results showing that the same model simulates a
wide range of key cognitive processes in music per-
ception (expectation, uncertainty, emotional expe-
rience, recognition memory, similarity perception,
phrase-boundary perception, and metrical infer-
ence). Finally, I demonstrate how the same model
can be used to simulate enculturation and generate
predictions about individual differences in percep-
tion resulting from enculturation in different musi-
cal styles.

Statistical learning and predictive
processing

Two hypotheses guide the present approach to
understanding music cognition. The statistical
learning hypothesis (SLH) states that musical
enculturation is a process of implicit statistical
learning in which listeners progressively acquire
internal models of the statistical and structural
regularities present in the musical styles to which
they are exposed, over short (e.g., an individual
piece of music) and long time scales (e.g., an entire
lifetime of listening). The probabilistic prediction
hypothesis (PPH) states that, while listening to
new music, an enculturated listener applies models
learned via the SLH to generate probabilistic
predictions that enable them to organize and
process their mental representations of the music
and generate culturally appropriate responses.

Probabilistic prediction is the process by which the
brain estimates the likelihood with which an event
is likely to occur. With respect to musical listen-
ing, this corresponds to the probability of different
possible continuations of the music (e.g., the next
note or chord and its temporal position). But where

do the probabilities come from? Statistical learning
is the process by which individuals learn the sta-
tistical structure of the sensory environment and is
thought to proceed automatically and implicitly.13,14

This makes the theory general purpose in that it
can potentially apply to any musical style, but also
beyond music to other domains, such as language
or visual perception. It also means that the theory
can explicitly account for the effects of experience
on music perception, including differences between
listeners of different ages and different musical cul-
tures and with different levels of musical training
and stylistic exposure.

Research has established statistical learning and
predictive processing as important mechanisms in
many areas of cognitive science and cognitive neuro-
science,15–17 including language processing,13,18–21

visual perception,22–25 and motor sequencing.26 In
particular, predictive coding15,17,27–29 is a general the-
ory of the neural and cognitive processes involved
in perception, learning, and action. According to
the theory, an internal model of the sensory envi-
ronment compares top-down predictions about the
future with the actual events that transpire, and
error signals generated from the comparison drive
learning to improve future predictions by updating
the model to reduce error. These prediction errors
occur at a series of hierarchical levels, each reflect-
ing an integration of information over successively
larger temporal or spatial scales. Top-down predic-
tions are precision weighted such that more spe-
cific predictions (i.e., those more sharply focused
on a single outcome) generate greater predictions
errors. In the auditory modality, there is some evi-
dence supporting hierarchical predictive coding for
perception of nonmusical pitch sequences30,31 and
speech,32 though not all aspects of the theory have
been empirically substantiated.33 Vuust and col-
leagues have proposed a predictive coding theory
of rhythmic incongruity.34

As noted above, the idea that musical appreciation
depends on probabilistic expectations has a vener-
able history, going back at least to Meyer’s 1957
article.2 However, until relatively recently, empiri-
cal psychological research had been limited by the
lack of a plausible computational model that simu-
lates the psychological processes of statistical learn-
ing and probabilistic prediction. Recent research
using the information dynamics of music (IDyOM)
model35 has successfully implemented and extended
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Meyer’s proposals and subjected them to empirical
testing.

IDyOM

IDyOM35 is a computational model of auditory cog-
nition that uses statistical learning and probabilistic
prediction to acquire and process internal represen-
tations of the probabilistic structure of a musical
style. Given exposure to a corpus of music, IDyOM
learns the syntactic structure present in the corpus
in terms of sequential regularities determining the
likelihood of a particular event appearing in a par-
ticular context (e.g., the pitch or timing of a note at a
particular point in a melody). IDyOM is designed to
capture several intuitions about human predictive
processing of music.

First, expectations are dependent on knowledge
acquired during long-term exposure to a musical
style,36–38 but listeners are also sensitive to repeated
patterns within a piece of music.39–41 Therefore,
IDyOM acquires probabilistic knowledge about a
musical style through statistical learning from a
large corpus reflecting a listener’s long-term expo-
sure to a musical style (simulated by IDyOM’s long-
term model (LTM), which is exposed to a large cor-
pus of music in a given style). IDyOM also acquires
knowledge about the structure of the music it is cur-
rently processing through short-term incremental,
dynamic statistical learning of repeated structure
experienced during the current listening episode
(simulated by IDyOM’s short-term model, which
is emptied of any learned content before processing
each new piece of music). Second, expectations are
dependent on the preceding context, such that dif-
ferent expectations are generated when the context
changes.42 In modeling terms, the length of the con-
text used to make a prediction is called the order of
the model. For example, a model that predicts con-
tinuations based on the preceding two events is a
second-order model (sometimes referred to as a tri-
gram model). IDyOM is a variable-order Markov
model43–46 that adaptively varies the order used
for each context encountered during prediction.
IDyOM also combines higher order predictions,
which are structurally very specific to the context
but may be statistically unreliable (because longer
contexts appear less frequently, with fewer distinct
continuations, in the prior experience of the model),
with lower order predictions (based on shorter con-
texts) that are more structurally generic but also

more statistically robust (since they have appeared
more frequently with a wider range of continua-
tions). IDyOM computes a weighted mixture of the
predictions made by models of all orders lower than
the adaptively selected order for the context.

Third, research has demonstrated that listeners
process music using multiple psychological repre-
sentations of pitch37,47,48 (e.g., pitch height, pitch
chroma, pitch interval, and pitch contour scale
degree) and time49 (e.g., absolute duration-based
and relative beat-based representations). Accord-
ingly, IDyOM is able to create models for multi-
ple attributes of the musical surface and combine
the predictions made by these models. For exam-
ple, it can be configured to predict pitch with a
combination of two models for pitch interval and
scale degree (see pi and sd in the third panel of
Fig. 1). Alternatively, it can be configured to predict
note onsets with a combination of two models for
interonset interval and sequential interonset inter-
val ratios (see ioi and ioi-ratio in the second panel
of Fig. 1).35,50 Each of the models generates predic-
tive distributions for a single property of the next
note (e.g., pitch or onset time), which are combined
separately for the long-term and short-term models
before being combined into the final pitch distri-
bution. Finally, listeners generate expectations for
both the pitch37 and the timing of notes.36 There-
fore, IDyOM applies the same process of probabilis-
tic prediction described above in parallel to predict
the pitch and onset time of the next note and com-
putes the final probability of the note as the joint
likelihood of its pitch and onset time. Given evi-
dence that pitch structure and temporal structure
are processed by listeners independently in some
situations but interactively in others,51–53 IDyOM
can process pitch and temporal attribute indepen-
dently (using separate models whose probabilis-
tic output is subsequently combined) or interac-
tively using a single model of an attribute that links
the two domains (e.g., by representing notes as a
pair of scale degree and interonset interval ratio, see
sd ⊗ ioi-ratio in the lower panel of Fig. 1).

IDyOM acquires knowledge about the structure
of music through statistical learning of variable-
length sequential dependencies between events in
the music to which it is exposed and, while process-
ing music event by event, generates expectations
for the next event (e.g., the note that continues a
melody) in the form of a probability distribution

380 Ann. N.Y. Acad. Sci. 1423 (2018) 378–395 C© 2018 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.



Pearce Enculturation: statistical learning and prediction

Figure 1. A chorale harmonized by J. S. Bach (BWV 379) showing examples of the input representations used by IDyOM. The
first vertical panel shows the basic event space in which musical events are represented in terms of their chromatic pitch (pitch as an
MIDI note number, where 60 = middle C) and onset time (onset, where 24 corresponds to a crotchet duration in this example). The
second panel shows attributes derived from onset, including the interonset interval (ioi) and the ratio between successive interonset
intervals (ioi-ratio). Note that ioi is undefined (denoted by ⊥) for the first note in a melody, while ioi-ratio is undefined for the first
two notes. The third panel shows attributes derived from pitch, including the pitch interval in semitones formed between a note
and its immediate predecessor (pi) and chromatic scale degree (sd) or distance in semitones from the tonic pitch (G or 67 in this
example). The final panel shows two examples of linked attributes: first, linking pitch interval with scale degree (pi ⊗ sd) affording
learning of combined melodic and tonal structure (the IDyOM models used Figs. 2–4 to use this linked attribute); second, linking
pitch and temporal attributes (sd ⊗ ioi-ratio), affording learning of combined tonal and rhythmic structure.

(P ) that assigns a probability to each possible next
event, conditioned upon the preceding musical con-
text and the prior musical experience of the model.
The information-theoretic quantity entropy (H =
−∑

p∈P p log p) reflects the uncertainty of the pre-
diction before the next event is heard—if every con-
tinuation is equiprobable, entropy will be maximum
and the prediction highly uncertain, while if one
continuation has very high probability, entropy will
be low and the prediction very certain.54,55 When
the next event actually arrives, it may have a high
probability, making it expected, or a low probability,
making it unexpected. Rather than dealing with raw
probabilities, information content (h = −log10 p)
provides a measure that is more numerically stable
and has a meaningful information-theoretic inter-
pretation in terms of compressibility.44,54 Informa-
tion content (IC) reflects how unexpected the model
finds an event in a particular context. Compression
involves removing redundant information from a
signal, which has been proposed as a central part
of perceptual pattern recognition, and it has been
argued that compression provides a measure of the
strength of evidence for psychological interpreta-
tions of perceptual data (see also below).56–58

Figure 2 applies IDyOM to excerpts from Schu-
bert’s Octet for Strings and Winds, which is discussed
in detail by Leonard Meyer in his book Explaining
Music (p. 219, example 121).59 Since Meyer’s analy-
sis pertains to pitch structure, IDyOM is configured

only to predict pitch in this example. Referring to
the penultimate note in the second bar (Fig. 2A),
Meyer writes, “The continuation is triadic–to G–
but in the wrong register. The realization therefore
is only provisional.” IDyOM reflects this analysis,
estimating a lower probability for the G4 that actu-
ally follows than for the G5 that is anticipated (0.015
versus 0.186). When the theme returns in bars 21–
22 (Fig. 2B), Meyer writes that “The triadic implica-
tions of the motive are satisfactorily realized . . . But
instead of the probable G, A follows—as part of the
dominant of D minor (V/II).” IDyOM reflects this
analysis, estimating a lower probability for the A5

that actually follows than for the G5 that is, again,
anticipated (0.013 versus 0.186). The relatively high
probability (0.344) assigned by IDyOM to the D5

can be attributed to another melodic process dis-
cussed by Meyer called gap-fill in which a larger
interval that spans more than one adjacent scale
degree (the gap, C5–E5 in this case) creates an impli-
cation for the subsequent melodic movement to fill
in the intervening scale degrees skipped over (here
D5). The relatively high probability (0.189) assigned
by IDyOM to the E5 reflects a general implication
for small intervals (here a unison, the smallest inter-
val possible).10 Meyer adds that “The poignancy of
the A is the result not only of its deviant charac-
ter and its harmonic context, but of the fact that
the larger interval—a sixth rather than a fifth–acts
both as a triadic continuation and as a gap implying
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Figure 2. Three excerpts from the fourth movement of Schubert’s Octet in F Major (D.803) taken from bars 1–2 (A), 21–22 (B),
and 23–24 (C). (A and B) Probabilities and corresponding information content (IC) and entropy generated by IDyOM for the
penultimate and final notes in each excerpt. At each point in processing, IDyOM estimates a probability distribution for the 37
chromatic pitches from B2 (47) to B5 (83), most of which have very low probabilities. For purposes of illustration, only the diatonic
pitches between G4 and A5 are shown, including those that actually appear in the octet (highlighted in bold font). The entropy of
the prediction is computed over the full 37-pitch alphabet. (C) The probability and IC for each note appearing in the final two bars
of the theme. In all cases, IDyOM was configured to predict pitch with an attribute linking melodic pitch interval and chromatic
scale degree (pi ⊗ sd, see Fig. 1) using both the short-term and long-term models, the latter trained on 903 folk songs and chorales
(data sets 1, 2, and 9 from table 4.1 in Ref. 35 comprising 50,867 notes).

descending motion toward closure.” Again, IDyOM
reflects Meyer’s analysis: the penultimate A5 in bar
22 allows IDyOM to predict the continuation with
greater certainty than it could following the G4 in bar
2 (reflected in the lower entropy of 2.15 compared
with 2.81), making the subsequent descent to the G5

(finally making its appearance, resolving the tension
introduced by the preceding deviations from antic-
ipated continuation) much more probable than it
would have been following the penultimate G4 in
bar 2 (0.535 versus 0.016) and indeed more proba-
ble than the C5 that actually followed in bar 2 (0.535

versus 0.134). As shown in Figure 2C, IDyOM also
strongly anticipates the restatement of the G5 on the
downbeat of bar 23, while the cadence toward tonal
closure in the final two bars is characterized over-
all by high probability in IDyOM analysis (average
probability = 0.3).

The features described above make IDyOM capa-
ble of simulating human cognitive processing of
music to an extent that was simply not possible
when Meyer was writing in the 1950s. Nonetheless,
there are limits to the kinds of music (and musi-
cal structure) that IDyOM can process. To date,
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research has focused on modeling melodic music,
generating predictions for the pitch and timing of
individual notes based on the preceding melodic
context (Figs. 1 and 2). However, recent research has
extended IDyOM to modeling expectations for har-
monic movement60 and has simulated melodic and
harmonic expectations separately for tonal cadences
in classical string quartets.61 Current research is also
extending IDyOM to polyphonic music represented
as parallel sequences, each containing a voice or per-
ceptual stream, for which separate predictions are
generated.62 In time, this approach may be capable
of modeling complex aspects of polyphonic struc-
ture, such as stream segregation, and interactions
between harmony and melody (e.g., the ways in
which harmonic syntax constrains melodic expec-
tations). IDyOM does require its musical input to be
represented symbolically, which means that it can-
not process aspects of music that rely on timbral,
dynamic, or textual changes. Meyer refers to these
parameters as secondary, since they do not usually
take primary responsibility for bearing the syntax
of a musical style (at least in the Western styles he
is concerned with), and suggests that they operate
differently from primary parameters (e.g., melody,
harmony, and rhythm), though they may reinforce
or diminish the effects of these syntactic parameters
(which could be simulated as an independent pro-
cess that is subsequently combined with IDyOM’s
predictive output). Where they take a prominent
role in a musical style (e.g., electroacoustic music,
electronic music, and soundscapes), I would pre-
dict that expectations are psychologically generated
in a rather different way (based on extrapolation of
physical properties, such as continuous changes in
timbre, dynamics, or texture) that is not captured
by IDyOM’s structural processing of music.

Finally, it is instructive to draw parallels and
contrasts between IDyOM and other modeling
approaches, including rule-based models, adaptive
oscillator models, and general probabilistic theo-
ries of brain function. Rule-based models have been
proposed for simulating pitch expectations10,42,63–65

and temporal expectations.9,12,66–68 Such models are
characterized by a collection of fixed rules for deter-
mining the onset and pitch of a musical event in a
given context. Examples for pitch expectations are
the implication-realization theory10,63 consisting of
numerical rules defining the implications made by
one pitch interval for the successive interval and the

tonal pitch space theory69 consisting of numerical
rules characterizing harmonic and melodic tension
in terms of tonal stability and attraction. An exam-
ple of a rule-based approach to modeling tempo-
ral expectations is Melisma,70 which uses preference
rules to select the preferred meter for a rhythm from
a set of possible meters defined by well-formedness
rules. Rule-based models depend heavily on the
expertise of their designers and are often useful
for analytical purposes, since the degree to which
a musical example follows the rules can be inter-
rogated perspicuously. However, since the rules are
fixed and impervious to experience, such models
cannot be used to simulate the acquisition of cogni-
tive models of musical styles through enculturation
(though they may describe the end result of this
process for a given culture).

A rather different approach to simulating
expectation is to use nonlinear dynamical systems,
consisting of oscillators operating at different peri-
ods with specific phase and period relations.71–74

In this approach, metrical expectations emerge
from the resonance of coupled oscillators that
entrain to temporal periodicities in the stimulus.
A related oscillatory approach has been used to
predict cross-cultural invariances in perceived tonal
stability.75 Since these models naturally imply an
explanation of pitch and temporal processing in
terms of stimulus structure, they do not provide a
compelling account of enculturation (though it has
been claimed that it is potentially compatible with
Hebbian learning).71 It is possible that oscillator-
based models and the mechanisms of statistical
learning and probabilistic processing implemented
in IDyOM are complementary in simulating
different aspects of expectation (e.g., enculturated
versus nonenculturated processing) or by operating
at different Marrian levels of description.76

More broadly, there are relationships between
IDyOM and the general mechanisms of brain func-
tion hypothesized by predictive coding theory. First,
although the representations in IDyOM input are
particular to auditory stimuli, there is nothing else
domain-specific in IDyOM’s design and, in fact,
variable-order Markov models are widely used in
statistical language modeling77,78 and universal loss-
less data compression.44–46 Second, IC is a measure
of prediction error,15 as posited by predictive coding
theory, between the event that actually follows and
the top-down prediction made by IDyOM based
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on prior learning: high IC implies greater predic-
tion error and vice versa. Third, the combination of
distributions produced by the subcomponent mod-
els within IDyOM is weighted by entropy such that
models generating more certain predictions have
higher weights.35,50 This is similar to the precision
weighting of prediction errors in predictive coding
theory.15

Probabilistic prediction in music cognition

To substantiate the proposal that probabilistic pre-
diction constitutes a foundational process in music
perception, the following sections review empiri-
cal results in which IDyOM models, after training
on a corpus of Western tonal music, account well
for the performance of Western participants (with
long-term exposure to Western tonal music) on a
range of tasks, reflecting key psychological processes
involved in music perception.

Expectation and uncertainty
IDyOM has been shown to predict accurately West-
ern listeners’ melodic pitch expectations in behav-
ioral, physiological, and electroencephalography
(EEG) studies using a range of experimental designs,
including the probe-tone paradigm,35,79 visu-
ally guided probe-tone paradigm,80,81 a gambling
paradigm,35 continuous expectedness ratings,82,83

and an implicit reaction-time task to judgments
of timbral change.81 In these studies, IC accounts
for up to 83% of the variance in listeners’ pitch
expectations. Furthermore, listeners show greater
uncertainty when generating pitch expectations
in low-entropy contexts than they do in high-
entropy contexts, as predicted by IDyOM.79 In many
circumstances, IDyOM provides a more accurate
model of listeners’ pitch expectations than static
rule-based models,10,63 which cannot account for
enculturation.35,79,80 Figure 3 illustrates the relation-
ship between IC and listeners’ expectations through-
out a Bach chorale melody, using data from an
empirical study of pitch expectations reported by
Manzara et al.84

Furthermore, there is evidence that IC predicts
neural measures of expectation violation. EEG
studies with artificially constructed stimuli have
identified an increased early negativity emerging
around the latency of the auditory N1 (80–
120 ms) for incongruent melodic endings in
artificially composed stimuli.85–90 Omigie et al.

generalized these findings to more complex,
real-world musical stimuli, taking continuous EEG
recordings while participants listened to a collection
of isochronous English hymn melodies.91 The peak
amplitude of the N1 component decreased signif-
icantly from high-IC events through medium-IC
events to low-IC events, and this effect was slightly
right lateralized. Furthermore, across all notes in
all 58 stimuli, the amplitude of the early negative
potential correlated significantly with IC. Alongside
the behavioral studies reviewed above,35,79–83 these
results show that IDyOM’s IC also accounts well for
neural markers of pitch expectation. It remains to
be seen whether this holds true for neural measures
of temporal expectation.92

Emotional experience
Expectation is thought to be one of the principal
psychological mechanisms by which music induces
emotions.6,38,93–95 In spite of this, there has been
very little empirical research that robustly links
quantitative measures of expectation with induced
emotion, partly due to the previous lack of a reli-
able computational model capable of simulating lis-
teners’ musical expectations. Research has shown
greater physiological arousal and subjective tension
for Bach chorales manipulated to contain harmonic
endings that violated principles of Western music
theory96 and also for extracts from romantic and
classical piano sonatas.97 However, as the stimulus
categories were derived from music-theoretic analy-
sis, this does not provide insight into the underlying
cognitive processes, especially with respect to the
SLH and the PPH.

Egermann et al. took continuous ratings of sub-
jective emotion (arousal and valence) and physio-
logical measures (skin conductance and heart rate)
while participants listened to live performances of
music for solo flute. IDyOM was used to obtain pitch
IC profiles reflecting the unexpectedness of the pitch
of each note in the stimuli.82 The results showed that
high-IC passages were associated with higher sub-
jective and physiological arousal and lower valence
than low-IC passages. This has been replicated in
a controlled, laboratory-based behavioral study of
continuous responses to folk song melodies selected
to vary systematically in terms of pitch and rhythmic
predictability (assessed using IDyOM IC).83 The
results showed that arousal was higher and valence
lower for unpredictable compared with predictable
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Figure 3. Information content generated by IDyOM for the Bach chorale shown in Figure 1, together with mean perceived
expectedness from an empirical study reported by Manzara and colleagues.84 In this study, 15 participants were given a capital sum
of virtual currency S0 = 0 and bet a proportion p of their capital on the pitch of each successive note in a melody (presented via a
computer interface), continuing to place bets until the correct note was predicted, at which point they moved to the next note. At
each note position n, incorrect predictions resulted in the loss of p, while the correct prediction was rewarded by incrementing the
capital sum in proportion to the amount bet: Sn = 20 pSn−1 (there were 20 pitches to choose from). The measure of information
content plotted is derived by taking log220 − log2 S, where S is the capital won for a given note averaged across participants. As
in Figure 2, IDyOM was configured to predict pitch with an attribute linking melodic pitch interval and chromatic scale degree
(pi ⊗ sd, see Fig. 1) using both the short-term and long-term models, the latter trained on 903 folk songs and chorales (data sets 1,
2, and 9 in table 4.1 of Ref. 35 comprising 50,867 notes). IDyOM was configured to predict pitch only, since the participants in the
Manzara et al. study were given the task of predicting pitch only.

melodies and that this effect was stronger for rhyth-
mic predictability than pitch predictability. Fur-
thermore, causal manipulations of the stimuli had
the predicted effects on valence responses: trans-
forming a melody to be more predictable resulted
in increased valence ratings. Theoretical proposals
of an inverted U-shaped relationship between pre-
dictability and pleasure98 have received empirical
support in some99 but not all100 studies of music
perception. The results reviewed above show lower
valence for more unpredictable musical passages,
which may be because the particular combination of
stimuli and participants reflects only the right-hand
side of a putative underlying an inverted U-shaped
relationship.

These results confirm the hypothesized role of
probabilistic prediction in communicating musical
affect, linking the predictability of musical events,
assessed quantitatively in terms of IC, with the
valence and arousal of listeners’ continuous emo-
tional responses. Gingras et al. report a study that
examines the relationship between compositional
structure, expressive performance timing, and per-

ceived tension in this communicative process.8

IDyOM was used to characterize, in terms of IC and
entropy, the compositional structure of the Prélude
non mesuré No. 7 by Louis Couperin, which was
then performed by 12 professional harpsichordists
whose performances were rated continuously for
tension experienced by 50 listeners. IC and entropy
were predictive of continuous changes in perfor-
mance timing (performers slowed down in antic-
ipation of high-IC events, and timing was more
variable across performers around points of high
IC and entropy), which, in turn, were predictive of
perceived tension. Since the prelude is unmeasured,
there is generous scope for expressive timing in per-
formance, and, since the piece was performed on a
harpsichord, performance expression is channeled
primarily through timing, since there is little scope
for expressive variations in dynamics and timbre.
These design choices provide experimental control,
but the results need to be generalized to a broader
range of musical and instrumental styles.

It is important to note that expectation is
not the only psychological mechanism by which
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music can induce emotions,6,93 and future research
should examine the ways in which expectation-
based induction of emotion interacts with other
psychological mechanisms, such as imagery, con-
tagion, and episodic memory, to generate complex
aesthetic experiences of music.

Recognition memory
As noted above, IDyOM uses computational tech-
niques originally developed for use in universal
lossless data compression, where IC has a well-
defined information-theoretic interpretation.44,54 A
sequence with low IC is predictable and thus does
not need to be encoded in full, since the predictable
portion can be reconstructed with an appropri-
ate predictive model; the sequence is compressible
and can be stored efficiently. Conversely, an unpre-
dictable sequence with high IC is less compressible
and requires more memory for storage. Therefore,
there are theoretical grounds for using IDyOM as
a model of musical memory. Empirical research
has shown that more complex musical examples
are more difficult to hold in memory for later
recognition,101–104 and this appears to be related
to features that are stylistically unusual.105 Further-
more, there is a strong link between information-
theoretic measures of predictability and perceived
complexity of musical structure.106 Therefore, there
are also empirical grounds for using IDyOM to sim-
ulate the relationship between stimulus predictabil-
ity (as a measure of complexity) and memory for
music.

Loui and Wessel used artificial auditory gram-
mars to demonstrate that listeners show better
recognition memory for previously experienced
sequences generated by a grammar and that this
generalizes to new exemplars from the grammar.107

Furthermore, in an EEG study, generalization per-
formance correlated with the amplitude of an early
anterior negativity (FCz, 150–210 milliseconds).89

However, this research did not explicitly relate
degrees of predictability with memory performance.
Agres et al. report a study that investigates recogni-
tion memory for artificial tone sequences varying
systematically in information-theoretic complexity
across three sessions in each of which listeners were
presented with 12 sequences, followed by a recogni-
tion test consisting of the same 12 sequences and
12 foils.108 To simulate listeners’ responses, an
IDyOM model with no prior training was exposed

to the stimulus set, learning the structure of the arti-
ficial style dynamically throughout the course of the
session. In the first session, memory performance—
measured by d′ scores—did not correlate with the
average IC of the stimuli. However, over time, listen-
ers learned the structure of the artificial musical style
to the extent that, by the third session, IC accounted
for 85% of the variance in memory performance,
such that memory was better for predictable stimuli
(those with low IC).

This suggests a strong relationship between the
stylistic unpredictability of the stimulus, again rep-
resented by IDyOM IC, and accuracy of encoding
or retrieval in memory. However, these results need
to be replicated with actual music varying system-
atically in stylistic predictability.

Perceptual similarity
Similarity perception is considered a fundamental
process in cognitive science because it provides the
psychological basis for classifying perceptual and
cognitive phenomena into categories.109 Recent the-
ories view the process of comparing two perceptual
stimuli as a process of transformation such that
similarity emerges as the complexity of the sim-
plest transformation between them.110–112 This pro-
cess can be simulated using information-theoretic
models as the compression distance between the two
stimuli.56,113,114 Informally, IDyOM can be used to
derive a compression distance D(x, y) between two
musical stimuli x and y by training a model on x,
using that model to predict y, and taking the average
IC across all notes in y (see Ref. 115 for a formal pre-
sentation of the model). If x and y are very similar,
the IC will be low; if they are very dissimilar, the IC
will be high.

Pearce and Müllensiefen tested this model by
comparing compression distance with pairwise sim-
ilarity ratings provided by listeners in three studies
for stimuli consisting of one original pop melody
and a manipulated version (containing rhythm,
interval, contour, phrase order, and modulation
errors).115 The results showed very high correlations
between compression distance and perceptual sim-
ilarity (with coefficients ranging from 0.87 to 0.94),
especially for IDyOM models configured to com-
bine probabilistic predictions of pitch and timing.

To further assess generalization performance,
IDyOM’s measure of compression distance was
tested on a very different set of data:115 the MIREX
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2005 similarity task designed to evaluate melodic
similarity algorithms in music information retrieval
research.116,117 In this task, algorithms must rank
the similarity of 558 candidate melodies to each
of 11 queries (all taken from the RISM A/II cata-
log of incipits from music manuscripts dated from
1600 onward), and performance is assessed by com-
parison with a canonical order compiled from the
responses of 35 musical experts. Without any prior
optimization for this task, IDyOM performed com-
parably to the best-performing algorithms origi-
nally submitted (which took advantage of prior opti-
mization on a comparable set of training data that
is no longer available).

Phrase-boundary perception
The idea that perceptual grouping (or segment)
boundaries occur at points of uncertainty or pre-
diction error has been investigated in several areas
of cognitive science, including modeling of phrase
and word boundary perception in language.118–120

Research has also demonstrated that children and
adults learn the statistical structure of novel artificial
auditory sequences, identifying sequential group-
ing boundaries on the basis of low transition
probabilities.13,121

IDyOM has been used to test the hypothesis that
perceived grouping boundaries in music (defining
phrases) occur before contextually unpredictable
events (those with high IC).122 The principle is illus-
trated clearly in Figure 3, in which phrase bound-
aries (marked by fermata in the score shown in
Fig. 1) are preceded by a fall in IC to the final
note of a phrase, followed by a marked rise in
IC for the first note of the subsequent phrase.
IDyOM was configured to predict both pitch and
timing of notes and used to identify points where
IC increased markedly compared with the recent
trend.122 Comparing the boundaries predicted for
15 pop and folk songs with those indicated by 25 par-
ticipants in an empirical study, IDyOM predicted
perceived phrase boundaries with reasonable suc-
cess. In most cases, performance was not as high
as rule-based models,12,123 though these have been
optimized specifically for phrase-boundary detec-
tion based on expert knowledge and do not pro-
vide any account of enculturation or cross-cultural
differences in boundary perception.124 By contrast,
IDyOM was not optimized in any way for boundary
detection, and this research did not make full use of

IDyOM’s ability to simultaneously predict multiple
attributes of musical events, leaving much scope for
further development of IDyOM’s phrase-boundary
detection model. Simulating boundary perception
at one level opens the door to simulating percep-
tion of hierarchical structure in music by inferring
embedded groups at different hierarchical levels of
abstraction11 and using these as units in a multilayer
predictive model.

Metrical inference
The IDyOM models used to predict phrase-
boundary perception122 and similarity percep-
tion115 generate combined predictions of pitch and
temporal position. In these models, the timing of
notes is predicted using a model of statistical reg-
ularities in rhythm, but note timing is also influ-
enced heavily by meter, a hierarchically embedded
structure of periodically recurring accents that is
inferred and aligned with a piece of music9 and is
also an important influence on temporal expecta-
tions. Palmer and Krumhansl36 examined probe-
tone ratings for events whose timing was varied
systematically in relation to the meter implied by
the preceding rhythmic context. Ratings reflected
the hierarchical structure of the meter and the sta-
tistical distribution of onsets in music, leading to
the suggestion that listeners’ metrical expectations
reflect learned temporal distributions.

Consistent with this proposal, cross-cultural dif-
ferences in meter perception have been observed
using a task in which listeners detect changes to
rhythmic patterns that either preserve or violate
metrical structure.125,126 American adults show bet-
ter detection in isochronous meters (e.g., 6/8) than
nonisochronous meters (e.g., 7/8), while adults from
Turkey and the Balkans (where such meters are
common) show no such difference125 but only
for nonisochronous meters that appear in the
culture.127 American 6-month-olds show no such
difference in processing of isochronous and non-
isochronous meters; 12-month-olds do show a dif-
ference, but it is eliminated by 2 weeks of listening
to Balkan music, while this was not the case for U.S.
adults.126 There is also evidence for cross-cultural
differences in rhythm production as a function of
enculturation.128,129

Can such enculturation effects be accu-
rately simulated using computational models?
As noted above, rule-based models of meter
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perception9,12,66–68 are not sensitive to experi-
ence and therefore cannot plausibly account for
enculturation, while approaches that simulate
meter perception as emerging from the resonance
of coupled oscillators that entrain to temporal
periodicities71,73,130,131 naturally imply an explana-
tion of meter in terms of stimulus structure rather
than the experience of the listener.

Recent research has extended IDyOM with an
empirical Bayesian scheme for inferring meter.132

The metrical interpretation of a rhythm is treated
as a hidden variable, consisting of both the metrical
category itself (i.e., the time signature) and a
phase aligning it to the rhythm. Metrical inference
involves computing the posterior probability of a
metrical interpretation at a given point in a rhythm
through Bayesian combination of a prior distri-
bution over meters (estimated empirically from a
corpus) with the likelihood of an onset given the
meter (estimated empirically by IDyOM). By virtue
of IDyOM’s statistical modeling framework, both
the likelihood and the prior are also conditional
on the preceding rhythmic context; therefore,
metrical inference can vary dynamically event by
event during online processing of music, taking
into account the previous rhythmic context. Fur-
thermore, the model naturally combines IDyOM’s
temporal predictions arising through repetition of
rhythmic motifs with temporal predictions arising
from the inferred meter. Unlike other probabilistic
approaches, which are hand-crafted specifically
for meter finding,133,134 this approach derives
metrical inference from a general-purpose model
of sequential statistical learning and probabilistic
prediction (implemented in IDyOM).

Computational simulations suggest that the
model of metrical inference performs well. In a
collection of 4966 German folk songs from the
Essen Folk Song Collection,135–137 it correctly
predicted the notated time signature in 71% of
the corpus, with performance increasing for higher
order models (tested up to an order bound of four).
Furthermore, and of greater theoretical interest,
metrical inference substantially reduces IC (or pre-
diction error) at all order bounds compared with a
comparable IDyOM model of temporal prediction
that does not perform metrical inference. This pro-
vides concrete, quantitative evidence that metrical
inference is a profitable strategy for improving
accuracy of temporal prediction in processing

music. It is important to generalize these findings to
musical styles exhibiting a greater range of meters
(including nonisochronous meters), as well as
styles exhibiting high levels of metrical uncertainty
(e.g., through syncopation or polyrhythm), making
metrical induction more challenging.

Statistical learning in musical
enculturation

Most research on music cognition has been con-
ducted on Western musical styles guided, implicitly
or otherwise, by the particularities of Western music
theory. However, the syntactic structure of musi-
cal styles varies among musical cultures. Accord-
ing to the SLH, this structure is learned through
exposure producing observable differences among
listeners from different musical cultures. Demor-
est and Morrison capture the effects of the SLH
in their cultural distance hypothesis: “the degree to
which the musics of any two cultures differ in the
statistical patterns of pitch and rhythm will pre-
dict how well a person from one of the cultures
can process the music of the other.”138 While cross-
cultural research has found evidence of differences
in music perception between listeners as a function
of their culture,40,41,64,65,124–129,139–146 the psycholog-
ical mechanisms underlying the acquisition of these
differences are currently poorly understood.

The research reviewed to this point demonstrates
that exactly the same underlying model of proba-
bilistic prediction provides a plausible account of a
wide range of different psychological processes in
music perception, including expectation, emotion,
recognition memory, similarity perception, phrase-
boundary perception, and metrical inference. In this
research, the responses of Western listeners have
been simulated using IDyOM models trained on
Western tonal music (that approximates, within a
tolerable degree of error, the stylistic properties
of the music to which a typical Western listener
is exposed). The IDyOM results reviewed above,
therefore, are consistent with statistical learning as a
mechanism for musical enculturation but the rela-
tionship is correlational rather than causal (with
the exception of Ref. 108, which examined statisti-
cal learning directly but using an artificial musical
system). In the following, I will outline a new mod-
eling approach for a causal empirical investigation
of the SLH of enculturation in musical styles.
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Figure 4. Simulating cultural distance between Western and Chinese listeners. (A) The information content of the Western model
plotted against that of the Chinese model with the line of equality shown. (B) A 45° rotation of A such that the ordinate represents
cultural distance and the abscissa culture-neutral complexity. For each style, the composition with the most extreme cultural
distance is highlighted, and corresponding musical scores are shown for these two melodies. The Western corpus consists of 769
German folk songs from the Essen Folk Song Collection135–137 (data sets fink and erk). The Chinese corpus consists of 858 Chinese
folk songs from the Essen Folk Song Collection (data sets han and natmin). In a prior step, duplicate compositions were removed
from the full data sets using a conservative procedure that considers two composition duplicates if they share the same opening for
melodic pitch intervals, regardless of rhythm. IDyOM is configured to predict pitch with an attribute linking pitch interval with
scale degree (pi ⊗ sd) and onset with the ioi-ratio attribute (Fig. 1) using the long-term model only trained on the Western and
Chinese corpora, respectively, for the Western and Chinese models.

In order to test whether IDyOM is capable of
simulating enculturation effects through statistical
learning, IDyOM models were trained on corpora
reflecting different musical cultures, simulating lis-
teners from those cultures. A Western listener was
simulated by training a model on a corpus of West-
ern folk songs (the Western model) and a Chinese

listener by training a model on a corpus of Chi-
nese folk songs (the Chinese model). Each model
was used to make both within-culture and between-
culture predictions. For the within-culture predic-
tions (i.e., the Western model processing Western
folk songs or the Chinese model processing Chinese
folk songs), IDyOM was used to estimate the IC
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Table 1. IDyOM simulations of cultural distance between the Chinese and Western corpora (Fig. 4)

Western example (deut1445) Chinese example (han0418) Overall

Western

model IC

Chinese

model IC

Cultural

distance

Western

model IC

Chinese

model IC

Cultural

distance Accuracy

Cultural

distance

Pitch 2.44 6.53 2.89 4.77 2.36 1.70 97.91 0.62

Onset 1.49 2.86 0.97 4.51 3.11 0.99 84.27 0.15

Pitch and onset 3.93 9.39 3.86 9.27 5.48 2.69 98.52 0.77

Note: Results are shown for IDyOM models configured to predict pitch only (using an attribute linking pitch interval with scale
degree, pi � sd, see Fig. 1), onset only (using the attribute ioi-ratio), and both pitch and onset. Overall accuracy and cultural distance
are shown as well as results for a Western and a Chinese piece with high cultural distance (Fig. 4) including the information content
(IC) for the Western and Chinese models (trained on the Western and Chinese corpora, respectively) and cultural distance.

of every event in every composition in the corpus
(using 10-fold cross-validation147 to create training
and test sets from the same corpus). For between-
culture predictions, IDyOM was first trained on the
within-culture corpus (e.g., the Western corpus for
the Western model) and then used to estimate the IC
of every note in every composition in the other cor-
pus representing the comparison culture (e.g., the
Chinese corpus for the Western model). IDyOM was
configured to use only its LTM trained on the appro-
priate corpus; the short-term model was not used.
In all cases, IC was averaged across notes, yielding
a mean IC value representing the unpredictability
of each composition for each model. The results are
shown in Figure 4 and Table 1.

For the comparison between cultures (Western
versus Chinese), the data are plotted in Figure 4
for each composition in the two corresponding cor-
pora: IC for one model is plotted on the abscissa,
while IC for the second model is plotted on the ordi-
nate. The line of equality (x = y) indicates equiva-
lence between the two models: compositions lying
on this line are equally predictable for each model
and do not distinguish the two cultures; in other
words, they should be equally familiar and pre-
dictable to listeners enculturated in either musical
style. Positions near the origin represent composi-
tions that are predictable within both cultures, while
positions far from the origin represent composi-
tions that are unpredictable within both cultures.
Positions farther away from the line of equality rep-
resent compositions that are predictable for the sim-
ulated model of one culture but unpredictable for
the simulated model of the other culture. Distance
from the line of equality, therefore, provides a quan-
titative measure of cultural distance138 based on
information-theoretic modeling of enculturation in

musical styles. Figure 4A illustrates how cultural
distance is computed for a comparison between
IDyOM models trained on Western and Chinese
corpora and, by rotating the data points through
45°, Figure 4B shows the same data with cultural
distance on the ordinate and culture-neutral com-
plexity on the abscissa. In this example, IDyOM
correctly classifies 98.52% of the folk songs by cul-
ture (Chinese versus Western). Moreover, classifica-
tion accuracy and cultural distance are greater for
IDyOM models configured to predict both pitch
and time than models configured to predict pitch
or time in isolation (Table 1), suggesting both that
a combination of temporal and pitch regularities
distinguishes the styles and that IDyOM is capable
of learning such distinctive regularities in pitch and
timing.

This approach provides a formal, computational
model of enculturation, which guides the propo-
sition of hypotheses about cultural familiarity and
processing fluency. For example, referring to the
examples shown in Figure 4, stimuli with strongly
positive cultural distance should prove culturally
familiar and easy to process for Western listeners
but culturally unfamiliar and difficult to process
for Chinese listeners and vice versa for stimuli with
strongly negative cultural distance.

Van der Weij et al. developed empirical simu-
lations of the effects of enculturation on metrical
inference, using the computational model of metri-
cal inference described above.132 A Western model
trained on 1136 German folk songs is compared
with a Chinese model trained on 1136 Chinese folk
songs (all stimuli taken from the Essen Folk Song
Collection135–137). When tested on 200 unseen folk
songs from each culture, the Western model shows
greater IC (prediction error) for Chinese music
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(1.72 bits per symbol) than for German music
(1.34), while the Chinese model shows greater
prediction error for the German music (1.70)
than the Chinese music (1.49). Furthermore, the
Western model also shows better meter-finding
performance for German music (73% correct) than
Chinese music (72%), while the Chinese model
performs better on Chinese music (75%) than
German music (47%).

These simulations demonstrate that IDyOM
provides a plausible computational model of
enculturation effects through statistical learning,
though further empirical studies are required to
fully corroborate SLH.

Conclusions

I have proposed two hypotheses about the psy-
chological processes underlying enculturation in
musical styles: (1) that probabilistic prediction is
a foundational process in music perception under-
pinning other psychological processes (PPH) and
(2) that statistical learning is the mechanism by
which listeners acquire probabilistic models of
musical styles (SLH). A review of the empirical
evidence demonstrates that many different aspects
of music perception—expectation, emotional
response, recognition memory, phrase boundary
perception, perceptual similarity, and, potentially,
meter perception—can be simulated in terms of a
single underlying process of probabilistic predic-
tion, implemented in IDyOM. While these results
are consistent with the SLH, since an IDyOM model
trained on Western music accurately simulates
Western listeners across a range of tasks, they do not
provide causal evidence for the SLH. However, the
results of a recognition memory study108 show that
memory performance is causally related to dynamic
statistical learning of an artificial musical system.
Finally, I presented data from computational simu-
lations suggesting that statistical learning can plau-
sibly predict causal effects of differential cultural
exposure to musical styles on perception, providing
a formal, quantitative model of cultural distance.138

Therefore, there are increasingly valid empirical
and theoretical grounds to propose probabilistic
prediction based on statistical learning as a foun-
dational psychological process in a general theory
of music perception. However, several areas remain
open for future research. The results reviewed in
this paper have been obtained for discrete, symbolic

representations of melodic musical styles. To gen-
eralize the approach to a wider variety of musical
styles, the representational capacity of IDyOM
must be expanded to polyphonic music61 but also
to musical cultures that have no written tradition,
where the distinction between composition and
performance is blurred or nonexistent, or where
music is inextricably combined with other modes of
communication.148,149 Doing so would open up the
approach to a much broader range of musical cul-
tures and traditions while also introducing signif-
icant computational challenges in modeling statis-
tical learning and probabilistic prediction. It is also
important to understand in more detail how musical
training (active and explicit) and musical exposure
(passive and implicit) exert a combined influence
in musical enculturation.150,151 Questions also arise
over the effects of exposure to more than one musi-
cal style during enculturation. Further research is
required to examine whether IDyOM’s statistical
learning mechanism distinguishes the styles suffi-
ciently to account for such cases of bimusicalism or
whether separate IDyOM models simulate bimusi-
cal listeners more accurately.152,153 Finally, there is
a fast-growing body of neuroscientific research on
predictive processing in music,80,88,89,91,92,96,154,155

and further progress in understanding the neural
processes underlying the SLH and the PPH in
musical enculturation will benefit significantly
from closely coordinated combination of empirical
neuroimaging with computational modeling of
the underlying mechanisms as outlined in this
paper.
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62. Sauvé, S. 2018. Prediction in polyphony: modelling musi-
cal auditory scene analysis. Doctoral dissertation. School
of Electronic Engineering and Computer Science, Queen
Mary University of London.

63. Schellenberg, E.G. 1997. Simplifying the implication-
realisation model of melodic expectancy. Music Percept.
14: 295–318.

64. Krumhansl, C.L., P. Toivanen, T. Eerola, et al. 2000. Cross-
cultural music cognition: cognitive methodology applied
to North Sami yoiks. Cognition 76: 13–58.

65. Krumhansl, C.L., J. Louhivuori, P. Toiviainen, et al. 1999.
Melodic expectation in Finnish spiritual hymns: con-
vergence of statistical, behavioural and computational
approaches. Music Percept. 17: 151–195.

66. Lee, C. 1991. The perception of metrical structure: exper-
imental evidence and a model. In Representing Musical
Structure. P. Howell, R. West & I. Cross, Eds.: 59–127. Lon-
don: Academic Press.

67. Povel, D.-J.J. & P.J. Essens. 1985. Perception of temporal
patterns. Perception 2: 411–440.

68. Parncutt, R. 1994. A perceptual model of pulse salience
and metrical accent in musical rhythms. Music Percept. 11:
409–464.

69. Lerdahl, F. 1988. Tonal pitch space. Music Percept. 5: 315–
350.

70. Temperley, D. & D. Sleator. 1999. Modeling meter and
harmony: a preference-rule approach. Comput. Music J.
23: 10–27.

71. Large, E.W., J.A. Herrera & M.J. Velasco. 2015. Neural net-
works for beat perception in musical rhythm. Front. Syst.
Neurosci. 9: 159.

72. Large, E.W. & M.R. Jones. 1999. The dynamics of attending:
how we track time-varying events. Psychol. Rev. 106: 119–
159.

73. Large, E.W. & J.F. Kolen. 1994. Resonance and the percep-
tion of musical meter. Conn. Sci. 6: 177–208.

74. Large, E.W. & C. Palmer. 2002. Perceiving temporal regu-
larity in music. Cogn. Sci. 26: 1–37.

75. Large, E.W., J.C. Kim, J.J. Barucha, et al. 2016. A neu-
rodynamic account of music tonality. Music Percept. 33:
319–331.

76. Marr, D. 1982. Vision. San Francisco, CA: W. H. Freeman.
77. Manning, C.D. & H. Schütze. 1999. Foundations of Statis-

tical Natural Language Processing. Cambridge, MA: MIT
Press.

78. Chen, S.F. & J. Goodman. 1996. An empirical study of
smoothing techniques for language modeling. In Proceed-
ings of the 34th Annual Meeting of the Association for Com-
putational Linguistics. 13: 310–318.

79. Hansen, N.C. & M.T. Pearce. 2014. Predictive uncer-
tainty in auditory sequence processing. Front. Psychol. 5:
1–17.

80. Pearce, M.T., M.H. Ruiz, S. Kapasi, et al. 2010. Unsu-
pervised statistical learning underpins computational,
behavioural and neural manifestations of musical expec-
tation. Neuroimage 50: 302–313.

81. Omigie, D., M.T. Pearce & L. Stewart. 2012. Tracking of
pitch probabilities in congenital amusia. Neuropsychologia
50: 1483–1493.

82. Egermann, H., M.T. Pearce, G.A. Wiggins, et al. 2013.
Probabilistic models of expectation violation predict psy-
chophysiological emotional responses to live concert
music. Cogn. Affect. Behav. Neurosci. 13: 533–553.
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