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Cancer early detection increases the chances of survival. Some cancer types, like pancreatic cancer, are challenging to diagnose or
detect early, and the stages have a fast progression rate. This paper presents the state-of-the-art techniques used in cancer survival
prediction, suggesting how these techniques can be implemented in predicting the overall survival of pancreatic ductal
adenocarcinoma cancer (pdac) patients. Because of bewildering and high volumes of data, the recent studies highlight the
importance of machine learning (ML) algorithms like support vector machines and convolutional neural networks. Studies
predict pancreatic ductal adenocarcinoma cancer (pdac) survival is within the limits of 41.7% at one year, 8.7% at three years,
and 1.9% at five years. There is no significant correlation found between the disease stages and the overall survival rate. The
implementation of ML algorithms can improve our understanding of cancer progression. ML methods need an appropriate
level of validation to be considered in everyday clinical practice. The objective of these techniques is to perform classification,
prediction, and estimation. Accurate predictions give pathologists information on the patient’s state, surgical treatment to be
done, optimal use of resources, individualized therapy, drugs to prescribe, and better patient management.

1. Introduction

Radiologists detect pdac tumours by symptoms of the disease
and patient history but not image processing. This paper stud-
ies some ML techniques used in image processing to predict
pdac overall survival. The anatomy of the pancreas is shown
in Figure 1.

Cancer on the pancreas is a challenge because it is diffi-
cult to detect. As there are no clear signs in the early stages, it
metastasises rapidly, having a poor forecast of the future
course of the disease. The early stages of the diseases show
no symptoms. In the later stage, the patient will have a lack
of appetite and weight loss.

Medical experts recommend knowing the tumour type as
each has a different treatment and behaves in different ways.
Researchers estimated that 94% of exocrine tumour patients
suffer from pdac type [3]. Figure 2 shows a pdac [4]. Tumour
size has a significant influence on overall survival rates. A
larger tumour is difficult to treat through resection.

Accurate predictions are crucial as they give pathologists
information on state of the patient, surgical treatment to be
done, optimal use of resources, provision of individualized
treatment, drugs to prescribe, and better management of
the patient. Features used for prediction include genomics
and proteomic data, clinical factors, and pathological
images. The need to identify possible weaknesses including
experimental design, data collection from valid sources,
and the analysis and result validation is a vital step as it
affects the prediction of clinical decisions [5, 6].

ML techniques classify pdac patients and learn to predict
the best survival period for each patient. Classify pdac stages
into low, medium, or high-risk groups. ML techniques have
been used to model the progression and treatment of pdac
conditions. ML tools are powerful in identifying features
from large datasets, which makes them of great use [7].

Big data with the increased patient will stress doctors,
making them more error-prone when making critical deci-
sions concerning human life. Machines can manage these
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large sets of imaging data with a lower error rate, attested by
the unfitness of medical personnel to colligate and see the
big picture from imaging data. Machines can help them by
assessing large numbers of image datasets and determine
whether there are any patterns suspicious to be cancerous.
Machines also can assist by superseding doctors or specialist
at times of their absence and provide the diagnosis in even
critical cases [8].

Predictive technique models such as ML (statistical
multivariate regression and deep learning (DL)) can be used
for pdac survival rate prognosis. The techniques have to be
reinforced for best predictive performance. Figure 3 shows
the steps to follow during the prediction process. This paper
will compare imaging techniques used in the medical world,
including magnetic resolution imaging (MRI) and computed
tomography (CT). These imaging techniques produce
images that need to be segmented into pixel classes. In a

review of segmentation methods, including those used in
deep learning, the current technology is mostly used in over-
all survival prediction for pancreatic cancer patients. The
feature extraction techniques are then looked at, leading to
classification after the necessary features to be extracted.
Deep learning techniques implemented in feature extraction
and classification are then summarised.

2. Medical Imaging Techniques

Medical imaging is a technique and process used to look at the
human body, diagnose, monitor, or treat medical statuses,
including a visual representation of the functions done by
some organs or tissues. Imaging techniques help screen for
hidden features before visible symptoms, diagnose the condi-
tions that would have developed into the now visible symp-
toms, and manage the disease stages or reaction to possible
treatment. This help to predict the overall survival of pdac
patients. Common imaging techniques are computed tomog-
raphy (CT) scan and magnetic resonance imaging (MRI).

Blood and other laboratory tests usually determine the
existence of pdac. In imaging the pancreas (Figure 4), com-
puted tomography (CT) and magnetic resonance imaging
(MRI) were used to help determine if the condition exists. If
detected, then determine the stages and reaction to treatment,
making it possible to predict the patient’s overall survival rate.

3. Segmentation

Segmentation is an image processing proficiency for bisect-
ing an image into multiple regions. The process of segmen-
tation well define semantic entity boundaries in an image,
as shown in Figure 5. Pixel in the image is allocated labels
to match affiliation according to their semantic properties.
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Figure 1: Pancreas [1]. Pancreatic cancer tumours are of two types [2], exocrine and endocrine tumours. The position of origination
determines this. The pdac originates from the lining of the ducts in the pancreas.
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Figure 2: Pancreatic cancer tumour [4].

2 Computational and Mathematical Methods in Medicine



Segmentation can be defined as a map of the greyscale
into the binary set f0, 1g.

s x, yð Þ =
0 if g x, yð Þ < T x, yð Þ,
1 if g x, yð Þ ≥ T x, yð Þ:

(
ð1Þ

Images are segmented using a graph cut with some cost,
formed from image pixels. Image pixels of similarity and
nearby are put in the same zone [13, 14]. Graph cut T cost
(where T is a set of edges) is the sum of the edge weights
of the cuts.

Xcut = 〠
i,j∈Tð ÞZij

, ð2Þ

where Zij represent edge weight i, j from node i to node j
in the graph and cut and T represents all the edges’ sum. In
graph cut segmentation, a graph image section is zoned such
that the cut cost Xcut is reduced.

Segmentation of an image Mo is a pair ð∂Ω ;MÞ, where
M is some approximation of Mo, where Mo is defined in Ω
. The energy associated with a segmentation ð∂Ω ;MÞ is
the sum of three terms:

Z ∂Ω,Mð Þ = α int Ω

∂Ω
∇Mj j2dx + βlength ∂Ωð Þ

�
+ int Ω

∂Ω
M −Moð Þ2dx�:�

ð3Þ

If M is imposed to be constant within each region,

Z ∂Ω,Mð Þ = αlength ∂Ωð Þ + int Ω

∂Ω
M −Moð Þ2dx

� �
: ð4Þ

Gradient operator and Laplacian operator are defined as
follows:

(1) Gradient Operators. The gradient of an image, f
ðx ; yÞ, at a location (x ; y) is defined as the vector.

∇f x, yð Þ =
gx

gy

 !
=

∂t
∂x
∂t
∂y

0
BB@

1
CCA: ð5Þ

(2) Laplacian Operator. The Laplacian of an image f
ðx : yÞ is defined as follows:

∇2 f x, yð Þ = ∂2 f x, yð Þ
∂x2

+ ∂2 f x, yð Þ
∂y2

: ð6Þ

Medical images from CT and MRI modalities require
segmentation to fix various abnormalities like tumours and
cancerous elements. Most methods that use feature-based
approaches currently rely on the attributes of features
extracted by a human specialist. This poses some challenges
as humans are prone to making errors and miss potential
features for the segmentation of the image. DL addresses the
issue by providing automated feature learning techniques.
The mostly used technique in computer vision is convolu-
tional networks [15, 16]. The other used algorithms in com-
puter vision include generative adversarial networks (GNAs),
and variational autoencoders (VAEs) are used to solve
challenges like the generation of images. The scale-invariant
feature transformation (SIFT) is another object detection algo-
rithm used for tumour detection within images regardless of
the image rotation, orientation, or scale [17].

Texture features can be used according to [18] and
implemented with other methods like the Bacterial Foraging
Algorithm (BFA) used for classification. Studies have shown
that CAD system, Haar wavelet transform, and clustering
methods can be implemented for accurate diagnosis and
processing of pdac images obtained from MRI and CT
modalities, as shown in Table 1.

Different images call for different segmentation techniques
as they have distinct feature and properties as envisioned in
terms of colour (greyscale images, binary images, and colour
images) and texture (texture images and nontextured images)
[23]. Table 2 shows the advantages and disadvantages of some
different segmentation techniques used.
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Figure 3: Prediction model process—started by identifying the
problem and collecting related data, cleaning, and processing. The
output data is passed as input through DL techniques, and a
prediction is made.
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4. Segmentation Using Deep
Learning Techniques

Segmentation techniques continue to be developed and
improved to solve challenges differently. The evolution of
convolutional neural networks has seen most techniques
developed, as shown in Tables 3 and 4. Based on architecture
or framework, these techniques are grouped into an instance
or semantic segmentation [30].

In the semantic segmentation process, a label is assigned
to every pixel in the image, which is different from classifica-
tion, assigning a single label to the entire picture. Semantic
segmentation treats multiple objects of the same class as a

single entity and involves detecting objects within an image
and grouping them based on defined categories.

In the instance segmentation process, multiple objects of
the same class are treated as distinct individual objects or
instances. It involves detecting objects within defined catego-
ries, and it is more complicated than semantic segmentation.

4.1. GoogLeNet [31]. CNN layers are stacked as networks in
networks, based on the concept of [32]. GoogLeNet is built
from many inception modules of various filter sizes applied
to the input and the concatenated outputs. These inception
modules and filters are contained within the stem, a standard
architecture that simultaneously provides the extraction of
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Figure 4: Medical imaging techniques [9–12]: images from CT and MRI modalities.
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Figure 5: Image bisection [13, 14].
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image features at varying levels of detail. GoogLeNet does not
use fully connected layers, instead uses global average pooling,
thus lessening model parameters required.

4.2. ResNet [31]. Train much deeper networks making use of
skip connections. The authors trained a 152-layer deep
ResNet, and they also successfully trained a version with
1001 layers. Combining the power of skip connections in
addition to the standard pathway allows the network to copy
activations from every ResNet block or layer, maintaining
information during processing through layers. Various
features are finest assembled in external networks, as some
need extra depth. The skip connections facilitate both simul-
taneously, improving the network’s flexibility when given
input data. Skip connections allow the network to learn
residuals, thereby giving ResNets an advantage to perform
a boosting.

4.3. U-Net [33, 34]. U-Net is a very popular and successful
network for segmentation in 2D images. When fed an input
image, it is first downsampled through a “traditional” CNN
before being upsampled using transpose convolutions until
it reaches its original size. In addition, based on the ideas

of ResNet, there are skip connections that concatenate
features from the downsampling to the upsampling paths.
It is a fully convolutional network, using the concepts first
introduced in [35].

4.4. V-Net [34]. V-Net is a three-dimensional version of U-
Net with volumetric convolutions and skip connections as
in ResNet.

5. Feature Extraction Techniques

A technique of transmutation to exhume common character-
istics and shape in an image, extracting the image properties
that differentiate it from a range of images. CT and MRI
images are complicated, and methods of feature extraction
application on them are limited. Image features can be consid-
ered the fundamental attributes or prominent features for real-
izing the image. As in Table 5, feature extraction methods use
four image features, texture features, colour image features,
shape features, and spatial relations [46–48]. In [49], the
author classified feature extraction into topological and

Table 1: pdac tumour segmentation algorithms in medical imaging.

Study
Medical
modality

Proposed segmentation method Results

Tam et al. [19] CT Region growing algorithm Efficient: Jaccard index of 73.37–86.97

Balakrishna et al. [20] CT MATLAB Detecting edges, corners, and points differentiating images

Sindhu et al. [18] MRI Texture extraction with BFA Texture feature extraction with BFA has an accuracy of 89%.

Farag et al. [21] CT
Cascaded superpixel

segmentation
Superpixels preserve more boundaries. Dice coefficient of 70.7%

and Jaccard index of 57.9%

Reddy et al. [22]
MRI and

CT
K-means clustering and Haar

wavelet transform
Based on threshold value with a mean threshold of 8.88

Table 2: Advantages and disadvantages of different segmentation techniques.

Segmentation technique Advantage Disadvantage

Region-based [16, 23, 24]

(i) High speed of operation
(ii) Efficient for object and background with
high contrast
(iii) Easier to classify and implement
(iv) Best when easy to define region similarities
(v) Less sensitive to noise compared to
edge detection

(i) Poor segments if there is low greyscale
(ii) Are by nature sequential and quite expensive both in
computational time and memory
(iii) Region growing has inherent dependence on the
selection of seed region and the order in which pixels
and regions are examined

Fuzzy theory-based [25–27]

(i) The single fuzzy rule applied to stress the
importance attached to feature-based and spatial
information in the image
(ii) Structure of the membership functions and
associated parameters automatically derived

(i) Sensitive to noise
(ii) Computationally expensive
(iii) The determination of fuzzy membership is not
very easy

Artificial network-based [15]
(i) Simple programming
(ii) Make use of neural net parallelism

(i) Long training time
(ii) Initialization could influence the outcome

Generalized PCA (principle
component analysis) [28, 29]

(i) Low noise sensitivity
(ii) Lack of redundancy of data
(iii) Increased efficiency
(iv) Reduced overfitting

(i) Independent variables become less interpretable
(ii) Data standardization is a must before PCA
(iii) Information loss
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geometric features, statistical features, and series expansion
features and global transformation.

Many researchers have studied the detection of skin can-
cer, breast cancer, and brain cancer. Different algorithms
have been successfully applied for the early diagnosis of
these tumours. Artificial neural networks (ANNs) have been
implemented for detecting skin cancer [50]. They prepro-
cessed the image to remove noise and enhance the image.
The wavelet transform was used for feature extraction, and
then, the tumour was classified using backpropagation neu-
ral networks.

The features must depict the objects correctly for classi-
fication. Shape features and feature extraction methods can
both be based on either boundary characteristics or regional
characteristics. The methods of shape feature extraction are
boundary-based and region-based. Shape feature extraction
lacks a mathematical model, and if changed, the result is
not reliable, and accuracy depends on the presegmentation
effects [49, 51–55].

Wavelet decomposition is used for brain tumour detec-
tion. The grey-level cooccurrence matrix (GLCM) is used for
feature extraction, while probabilistic neural networks are
used for further classification [56]. Another algorithm for
brain tumour detection is using an artificial neural network
fuzzy inference system [57]. Various supervised learning tech-
niques are used to detect breast cancer. These include princi-
pal component analysis (PCA) for feature extraction and
support vector machines (SVMs) and k-nearest neighbour
for classification [5]. As seen above, the various parametric
and nonparametric classifiers can be used to classify and detect
different tumours based on the tumour’s features.

Dimension reduction is used in machine learning and
statistics to reduce the number of feature set, categorized
into feature selection and feature extraction [58, 59]. Feature
extraction is referred to as dimensionality reduction [60].
The input matrix W, of dimension A × B, is

W11 ⋯ W1B

⋮ W ⋮

WA1 ⋯ WAB

2
664

3
775, ð7Þ

where we have a sample representation by rows and vari-
ables represented by columns. The feature extraction algo-
rithm will learn from this transformation the prerequisite
features needed for extraction.

Image texture analysis is currently used to predict tumour
heterogeneity. However, only a few studies have reported
texture analyses of tumour heterogeneity in pdac [61].

Edge detection highlights the contrast or difference in the
intensity of an image. This detection draws attention to the
boundaries of features within an image, the sameway a human
vision can perceive the perimeter of an object, which is of
different contrast to its environment. Fundamentally it is the
boundary of an image that varies in intensity levels or the
contrast [13, 14, 62]. The edge is at the location of the variation
and is detected by differentiation of first order. Intensity
variation is demonstrated by varying adjacent pixels. If com-
puted on image M, the horizontal detector edge creates an
intensity variation between two horizontally adjacent points,
as such detecting the vertical edges, VEðxÞ, as follows:

Table 4: Segmentation techniques: DeepLab V3, SegNet, and Fast Convolutional Network (FCN).

Method Advantages Disadvantages Dataset DC ID Modality App Ref

DeepLab V3 [41, 42]

(i) Allows us to enlarge
the fields of view of
filters to incorporate
large context
(ii) Preserves spatial
information

(i) Has no postprocessing step
conditional random fields
(ii) Does not scale well for large
or deeper layers if GPU
memory is limited

CHAOS 81.0 3D
CT and
MRI

Kidney Guo et al.

SegNet [43]

(i) Low memory
requirement during
both training and
testing
(ii) Improved boundary
delineation
(iii) Reduced number of
parameters enabling
end to end training

(i) Both input image and
output segmentation have fixed
resolution

OASIS 91.47 3D MRI Brain Khagi et al.

FCN [44, 45]

(i) Ability to make
predictions on
arbitrarily sized inputs
(ii) End to end trainable
fast and improved
performance

(i) Direct predictions are
typically in low resolution
resulting in fuzzy object
boundaries
(ii) Suitable mainly for object
detection, not object
classification (used for local
rather than global tasks)

DRIVE 95.33 3D Funduscopy
Retinal
vessels

Cai et al.
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VEXxy
= Mxy −Mx+1,y
�� ��∀x ∈ 1,N − 1 ; y ∈ 1,N: ð8Þ

A vertical edge detector that varies adjacent vertical points
is needed to detect horizontal edge using vertical edge detec-
tors, VEðyÞ, as follows:

VEXxy
= Mxy −Mx,y+1
�� ��∀x ∈ 1,N ; y ∈ 1,N − 1: ð9Þ

We can then combine the two forming an operator VEðyÞ
that detect both vertical and horizontal edges. That is,

VEXxy
= Mxy −Mx+1,y +Mxy −Mx,y+1
�� ��∀x, y ∈ 1,N − 1,

ð10Þ

which gives

VEXxy
= 2 ×Mxy −Mx+1,y −Mx,y+1
�� ��∀x, y ∈ 1,N − 1, ð11Þ

given the coefficients of a varying template which can be
twisted together with an image to detect all the edge points.

Grey-level cooccurrence matrix (GLCM) and histogram
analyses are methods employed by texture analyses to clas-
sify objects according to their texture. Evaluation of grey
level placement, regularity, and coarseness within the dam-
aged or abnormal change in the pancreatic tissues, computer

vision, and machine learning algorithms can analyze CT and
MRI images to provide other morphological details related
to pdac tumour heterogeneity.

6. Survival Prediction Model Review

Traditional diagnosis models like the popular American
Joint Committee on Cancer (AJCC) tumour-node-
metastasis (TNM) model is used in cancer diagnosis.
According to [7, 8], the challenge is that they do not predict
the cancer patient’s overall survival. The study explores dif-
ferent ML techniques used in pdac survival rate prediction.

ML techniques classify pdac patients and learn to predict
the best survival period for each patient. Classify pdac stages
into low, medium, or high-risk groups. ML techniques have
been used to model the progression and treatment of pdac
conditions. ML tools are powerful in identifying features
from large datasets, which makes them of great use.

Big data with the increased patient will stress doctors,
making them more error-prone when making critical deci-
sions concerning human life. Machines can manage these
large sets of imaging data with a lower error rate, attested
by the unfitness of medical personnel to colligate and see
the big picture from imaging data. Machines can help them
by assessing large numbers of image datasets and determine
whether there are any patterns suspicious to be cancerous.
Machines also can assist by superseding doctors or specialist

Table 5: Feature extraction advantages and disadvantages.

(a)

Method Description (texture features) Advantage Disadvantage

Gabor wavelet
transform [52, 55, 58]

In information theory applications, Dennis Gabor used
complex functions to build wavelets forming a basis for Fourier

transforms.

Multiscale
robust

Incomplete cover of
spectrum plane needs
rotation normalization

GLCM-based method [48]
Find the frequency of a set of pixel and its spatial relationship

in an image to characterize its texture.

Easy to use
compact
robust

High computation cost
partial description of texture

(b)

Method Description (colour features) Advantage Disadvantage

Scalable Colour
Descriptor [48]

Defined in the hue-saturation-value (HSV) colour space with
fixed colour space quantisation and uses a novel, Haar transform

encoding

Compact and robust
never changing and

uninterrupted

Needs
postprocessing for
spatial information

Colour
histogram [47, 48, 53]

A histogram represents the dispersion of colours in an image. It
can be visualised as a graph that gives a high level of suspicion

regarding the pixel value distribution

Simple to compute, easy
to use and understand

High dimension
sensitive to
information

(c)

Method Description (shape features) Advantage Disadvantage

Wavelet
transform [47]

Mathematical means for performing signal analysis when
the signal frequency varies over time.

Translation and scale invariant good
affine transformation good noise

resistance

Average occultation
resistance

Zernike
moments [48]

A set of rotation invariant features is introduced. They are
the magnitude of a set of orthogonal complex moments of

the image.
Good noise resistance

High computational
complexity bad affine

transform
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at times of their absence and provide the diagnosis in even
critical cases. ML can be either supervised learning or unsu-
pervised learning, as shown in Figure 6.

Supervised learning (Figure 7) is typically implemented in
the context of classification, mapping the input to output labels,
or regression, for the mapping of input to continuous output.

For both regression and classification, the goal is to find
specific relationships or structure in the input clinical data
for the correct generation of output patient clinical data,

determined entirely from the clinical training data. When
carrying on supervised learning, the principal circumstances
are model complexness and the bias-variance tradeoff.

Model complexity refers to the complexness of the func-
tion sought to learn. Figure 8 shows the data analytics types,
indicating the complexity of each type. The proper level of
model complexity is determined by the nature of patients’
clinical training data, the smallness of data, and distribution
throughout different possible assumptions.

Reinforcement
learning

Markov decision
process

Algorithm learns
to react to

environment

Unsupervised
learning

Supervised
learning

Regression
Classfication

Inferential/event
driven

Labeled data
Direct feedback
Predict outcome

Clustering
Dimension
reduction

Anomaly
detection

Descriptive/data
driven

Unlabeled data
No feedback
Find hidden

structures in data

•
•
•

•
•

•

•
•

•
•

•

Figure 6: Types of machine learning: supervised learning, unsupervised learning, and reinforcement learning (a hybrid of supervised and
unsupervised learning).

Labeled test data 1 Labeled test data 2TRAINING DATA

Machine learning
algorithms

New data

Unprocessed
fact, value, text,

image or sound to
be analyzed

Model that is
capable of making

predictions and
include machine

learning algorithms
that learns certain
properties from a
training dataset

Predictive
modeling Prediction

The output of the
predictive model
after it has been

trained on a
historical dataset

and provided with
new data

Figure 7: Supervised machine learning: accept training data in labelled test data (CT and MRI images). The trained ML algorithm output
plus new data is taken into the predictive model to make pdac patients’ survival prediction.
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Unsupervised learning requires representation learning,
density estimation, and clustering to be carried out. We need
the inherent structure of our patients’ clinical data without
using explicitly provided labels. Since no labels are provided,
there is no specific way to compare model performance in
most unsupervised learning methods. Exploratory analysis
and dimensionality reduction are the common use cases for
unsupervised learning. Unsupervised learning is powerful for
the identification of hidden structures in patients’ clinical data.
Over the years, survival prediction models in cancer were
developed implementing techniques like Decision Trees
(DTs), support vector machines (SVMs), Bayesian Networks,
and artificial neural networks (ANNs). There is a need to val-
idate these machine learning methods used in progression
analysis of cancer for them to be used in medical practices.

ML has been implemented in cancer prognosis or overall
survival prediction [63]. Most of the studies proposed for the
last years focused on developing predictive models using super-
vised ML methods to predict disease outcomes [64] accurately.
Based on the analysis of their results, it can be concluded that
the integration of multidimensional heterogeneous data, with
the application of different models for feature selection and
patients’ data classification, can help to model useful tools for
overall survival prediction for pdac patients [65].

Many evolutionary algorithms have been implemented
into resolving challenges to do with feature selection and
classification to analyze gene expression data. Genetic algo-
rithms [65–67] are implemented for creating selectors with
each allele is linked to one gene and having a state to tell if
selected or not. Genetic programming is practically applica-
ble to find hidden features in complex datasets. It is good for
identifying rule-based classifiers and gene expression profil-
ing from medical data.

A random survival forests method for the analysis of right-
censored survival data was suggested by [68]. New survival

splitting rules for growing survival trees and a conservation-
of-event principle for survival forests are proposed to define
an interpretable measure of mortality used as a predicted
outcome.

Some papers proposed the use of Feed Forward Neural
Networks. ANNs [69] were implemented for two years on
patients and the network predictions for twelve months of
death compared to surgical doctors. ANNs achieved a 95%
prediction accuracy [32].

The techniques can detect features from complex data-
sets. According to [66], genetic programming can make an
automatic feature selection. They showed that genetic pro-
gramming performs substantively better than SVM, multi-
layered perceptron, and random forests in classifying. As
reported by [70], the result indicated frequency usage of
ANN with high accuracy in survival prediction of any malig-
nancy. However, they suggested combining ANN and fuzzy
logic with 93% accuracy as superior and powerful.

A short review of current algorithms being used in ML
such as SVM [71–73], Naïve Bayes [74], Logistic Regression
[75], genetic algorithms, Decision Tree, ANN, and KNN algo-
rithm is done. A graph-based semisupervised learning para-
digm that takes advantage of both unlabelled and labelled
data when training a model is used. Other semisupervised
learning (SSL) are self-training, cotraining, and transductive
SVM.

According to the study [76], for lung cancer, the study
chooses Linear Regression, Decision Trees, Ensemble Learn-
ing algorithm, random forest, and Gradient Boosting
Machines as logistic-based methods. SVM was then used to
sum the predictions of each of the five models into final pre-
dictions. The study by [77] concluded that classification and
regression trees (CARTs) are also used compared to ANN as
prediction modes. ANN proves significantly more accurate
than the CART model. The comparison of three different

Problem defination:
Getting information

Identify cause:
Feature extraction
and segmentation

Outcome
forecasting:

Predictive models,
data analytics

Rule:
To make the
best happen
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Figure 8: Data analytics types: four types of data analytics—descriptive analysis (problem definition), diagnostic analysis (identify cause),
predictive analysis (outcome forecasting), and prescriptive analysis (rules).
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techniques is in [78], SVM, Decision Trees, and k-nearest
neighbour. SVM proved to be the best performer.

However, in [79], the extracted features are used as inputs
for Back Propagation NN and Logistic Regression (LR) and
the two algorithms are compared for accuracy. LR was the best
given a higher number of features. Random forest [80] was
used as a biomedical classifier that has led to the proposal of
two variants, namely, Forest-RK and dynamic random
forests [81].

In survival prediction for cancer [35, 82–84], they used
convolutional neural networks (CNNs) for classification
and feature extraction with the aid of computer-aided diag-
nosis (CAD) based on pathological images. Tumours can be
characterized through the implementation of supervised ML
[85] for labelled data, and usage of SVM as state-of-the-art
classification algorithms. Experiments to prove state-of-
the-art ML techniques can be efficiently or equally better
than traditional techniques (Linear and Logistic Regression)
were done [86]. All algorithms executed using Weka ML
workbench.ML algorithms used are Linear Regression, ZeroR,
and Logistic Regression. For classification, the algorithms they
used are Naive Bayes, J4.8 (C4.5 learning algorithm), k-nearest
neighbor, OneR, Locally Weighted Learning, and Bayesian
Nets.

Colon cancer predictions [87] implemented a supervised
classification technique. Synthetic Minority Oversampling
Technique (SMOTE) was used to balance the survival and
nonsurvival classes. Ensemble Voting of three classifiers
was found to result in the best prediction performance in
prediction accuracy and area under the receiver operating
characteristic (ROC) curve. The study by [88] proposed a
semisupervised model in trying to address data scarcity in
cancer datasets. Ensemble classifiers used to learn unlabelled
data. CART tools helped to deal with missing attribute
values by using the surrogate splitting technique. ML tech-
niques can be categorized into the following:

(1) Statistical techniques

(2) Deep learning (DL)

6.1. Statistical Techniques. According to [3, 63], Weibull
distribution is implemented to estimate the overall survival.
It is the widely used technique for statistical cases involving
data with periods, which considers life behaviour. The
author states that alpha is the rendering probability of
63.2% prediction that an event occurs. Beta is used to repre-
sent the probability of growing (beta > 1) and to decrease
(beta < 1). If nearing one, then the distribution is exponen-
tial with an invariable chance rate.

The study [8, 89] used the cox proportional hazard to
assess the independent effects of prognosis factors. It was
also implemented to assess the correlation between tumour
node metastases (TNMs) [63]. Song et al. [8] used a Stu-
dent’s t-test or chi-square test to compare disease features.
The Kaplan-Meier was used for the assessment of survival
factors. The rank test was used to test survival curve varia-
tion. They argued that their model is capable of providing
quantitative prognosis to individual cancer patients. Song

et al. and Hang et al. [8, 89] designed a graphical nomogram
using the R statistical package using statistical analysis. The
c-index was applied to validate the predictive accuracy of
the nomogram.

6.2. Deep Learning.Deep learning is a subset of ML, in which
algorithms learn unsupervised from unstructured or unla-
belled data. Deep neural networks (Figure 9) are designed
based on biological neural networks with many hidden
layers to extract features from data using interconnected
node matrix to imitate how the human brain works.

A node is the basic unit of an artificial neural network.
The input feature set is multiplied by corresponding weights
using mathematical functions, passing the output to the next
node layer. These outputs are weighed up to known facts. It
autoadjusts the weights using errors as feedback to minimise
future errors during iterations [90, 91].

Deep learning rose to its prominent position in computer
vision when neural networks started outperforming other
methods on several high-profile image analysis benchmarks.

The main common characteristic of deep learning
methods is their focus on feature learning: automatically
learning data representations. Discovering features and per-
forming a task are merged into one problem and therefore
both improved during the same training process [31].

Tumour detection in pancreas images is achieved using
CNN, which extracts the image features, classifying the
tumour based on the extracted features. Various classifiers
used for feature extraction in machine learning include
Naive Bayes classification, support vector machine, and
logistics functions. CNN delivers the information needed
using convolution methods in three steps: convolution,
pooling, and padding, which are layers in the input and out-
put images. Region Convolution Neural Network (R-CNN)
is used to extract image features from a particular region.
The CNN will be acting as a feature extractor.

[92] suggested deep learning and described it as in the
unsupervised learning category. Segmentation using CNN
is mainly used for image processing in machine learning. It
requires providing segments of the pancreas image to the
convolution neural network as the inputs. CNN labels the
pixel and classifies each pixel determining the context to
identify the images. A segment represents the tumours in
the pancreas image or parts or the superpixels. Analysis of
the images is carried out in three levels: classification,
tumour detection, and segmentation. Segmentation signifi-
cantly detects the tumour, classifying them into their differ-
ent classes.

6.2.1. Deep Learning Frameworks and Image Processing
Platforms. Developing complex machine learning models
for image processing requires special platforms and frame-
works. Some of the popular frameworks are TensorFlow
and PyTorch.

(1) TensorFlow [93]. Google developed TensorFlow, which is
an open-source framework with support for machine learning
and deep learning. TensorFlow facilitates the creation and
training of custom deep learning models. The framework has
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a set of libraries, including for image processing projects and
computer vision applications.

(2) PyTorch [94]. PyTorch is an open-source deep learning
framework designed by the Facebook AI Research lab
(FAIR). This Torch-based framework has Python, C++,
and Java interfaces. PyTorch is used for building computer
vision and image processing applications.

6.2.2. Neural Networks in Image Processing. Researching on
neural networks has been done for many years, which has
seen improvements in machine learning, a reason for the
magnificent progress in medical imaging and computer
vision technology today. Most successful machine learning
models for image processing implement neural networks
and deep learning. Examples include Mask R-CNN and fully
convolutional networks.

(1) Mask R-CNN. Mask R-CNN [95] is a Faster R-CNN-
based deep neural network that separates tumours in a proc-
essed image. This neural network performs segmentation
and generates masks and bounding boxes. The neural net-
work is adjustable, flexible, and efficient as compared to
other techniques. Mask R-CNN is poor in real-time process-
ing, as the neural network is massive and the mask layers
slow performance, mainly if compared to Faster R-CNN.
For instance, segmentation, Mask R-CNN is a very efficient
technique.

(2) Fully Convolutional Network (FCN). FCN [40] was devel-
oped by University of Berkeley researchers. CNN has a convo-
lutional layer rather than FCN, which has a regular, fully

connected layer. This difference enables FCN to manage vari-
ous input sizes. Also, FCNs use downsampling and upsam-
pling to reduce computational costs for convolution functions.

7. pdac Survival Prediction

There is a possibility that delay in diagnosing pdac can cause
concentrated resectable tumours to develop into unresect-
able by the time of diagnosis [96]. They estimated that it
might take just over one year for an average T1-stage pdac
to develop into a T4-stage tumour. CT/MRI scans taken by
radiologists for other medical purposes but not focused on
the pancreas are useful for screening pdac at a reduced cost,
time, or radiation exposure [97]. Deep learning has proven
to serve as a tool at the disposal of a radiologist in
computer-aided diagnosis that points to minor changes on
the pancreas that may result in abnormalities that health
experts could miss.

A few studies have evaluated the detection of pdac
tumours using deep learning techniques [98]. According to
[99], they study CT scans using deep learning networks from
303 pdac patients and 136 normal test data. The results
showed the detection of pdac had 94.1% sensitivity and
98.5% specificity. The study by [100] used 370 patient CT
scans suffering from pdac and 320 test data to study the
effectiveness of deep networks in pdac tumour detection. A
98.8% accuracy, 99.3% specificity, and 98.3% sensitivity were
achieved. The study proved that a deep network, if imple-
mented in detecting pdac, is more sensitive than radiologists.
The results indicated that about 91.7% of tumours missed by
radiologists could be correctly classified by deep network
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and paying attention to tumours less than 2 cm in size,
achieving a 92.1% sensitivity.

The advantage is that deep learning has over traditional
methods, as the networks can adapt automatically and mod-
ernise features from big data instead of already added fea-
tures. Deep learning is effective in that it can receive new
complex pancreas image feature representation quickly [92].

Convolutional neural networks (CNNs) are a category of
deep learning networks developed precisely for image pro-
cessing. The networks have neurons that mimic neurons in
the human brain. CNNs need fewer preprocessing opera-
tions than other neuron networks, and the networks learn
the required filters and characteristics during training rather
than using hand-engineered filters. They are multilayered
neural networks with layers organised in three dimensions:
weight, height, and depth. They have two components: fea-
ture extraction and classification [17, 98, 100].

Fully convolutional network (FCN) is suitably imple-
mented in image segmentation tasks when the neural net-
work splits the processed image into many pixels to be
labelled and classified. Popular examples of FCNs for
semantic segmentation are RefineNet and DeepLab.

U-Net is a convolutional neural network that allows for
fast and precise image segmentation. U-Net was designed
particularly for the segmentation of complex tasks in bio-
medical image processing. U-Net is built with U-shaped
architecture with more feature channels in its upsampling
part so that the network propagates context information to
higher-resolution layers [34].

In feature extraction, CNN runs many convolutions and
pooling functions to detect features used for image classifica-
tion. The network algorithm predicts the tumour in the pan-
creas image with a calculated probability in the classification
component.

Techniques employing deep learning are used in the pre-
diction and prognosis of pdac development. They focus on
three major domains: prediction of cancer susceptibility, pre-
diction of pdac relapse, and prediction of pdac survival rate.
This paper focuses on the third case, which predicts several
possible parameters characterizing pdac development like
survival time, life expectancy, and progression. The overall
survival rate and the pdac relapse mostly depend on the med-
ical treatment and the quality of the diagnosis [101].

8. Dataset

According to the study [102], they used the Cancer Imaging
Archive (TCIA) Public Access dataset, consists of 3D CT scans
of 512 × 512-pixel resolution from 53males and 27 female sub-
jects of the 18-76 age group. Liu et al. [100] implemented CNN
to the Taiwanese Centre dataset with contrast-enhanced CT
images of 370 patients with pdac and 320 controls. These data-
sets can be used to study the prediction of pdac overall survival
using CT images and ML or deep learning techniques.

9. Period for Prediction

According to [63], they considered one year, three years, and
five years, but [87] reduced the three years to two. While in

[65], high or low was used. Follow up for five years [32] and
predict death within nine, twelve, fifteen, eighteen, twenty-
one, and twenty-four months. However, they differ with [7]
as they used six, twelve, and twenty-four months. Short
periods of survival times like less than six months give better
accurate results when developing a prediction model [103].
Some authors [89] used three risk groups with median overall
survival of 11.7, 7.0, and 3.7 months. Short- and long-term
classes were used by [104, 105]. According to [77], five-year
survival was output prediction with zero for dead and one
for alive and classified as good, intermediate, or poor.

10. Validation Methods

In the study of Kourou et al. [65], the methods used for eval-
uating the performance of a classifier are the holdout
method, bootstrap, random sampling, and cross-validation.
According to [8, 89], they validated their nomogram using
discrimination and calibration and using bootstrap resam-
pling. Discrimination between survival probability and
actual observation was evaluated using c-index. Calibration
plot was constructed to determine the concordance of pre-
dicted survival and actual survival.

Tenfold cross-validation methods were employed [76] to
measure the unbiased estimate of the prediction models
(DTs, ANN, and SVM). Nevertheless, [104] called it k-fold
cross-validation, depending on the factor (k) used. According
to [105], they used a leave-one-out-cross-validation (LOOCV)
protocol.

11. Conclusion

This paper reviews machine learning techniques imple-
mented in overall survival prediction of pancreatic cancer
patients, that is, statistical and DL methods. ML methods
have significantly proved to be effective if applied to the
overall survival prediction of pdac. Features used for predic-
tion include genomics and proteomic data, clinical factors,
and pathological images. The need to identify possible weak-
nesses in experimental design, data collection from good
sources, and the analysis and validation results is vital as it
affects the prediction of clinical decisions. There is a need
for a model that could help in the individualized survival
prediction calculation and provide specific treatment deci-
sions. Based on the reviews done on most studies, we have
found that for the integration of various feature extraction,
segmentation, and classification, DL techniques can provide
a useful prediction tool best to make accurate predictions
that will assist pathologists in making informed decisions.

Implementing frameworks and platforms like PyTorch
and TensorFlow in developing computer vision and image
processing significantly improves the overall survival predic-
tion for pdac patients. Various neural networks are deployed
to solve various image processing tasks, from binary classifi-
cation to instance segmentation. Selecting the proper type
and architecture of a neural network is important in creating
an efficient machine learning-based image processing solu-
tion. The most used neural networks in DL are CNN and
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FCN. The U-Net model is largely implemented in image
processing tasks and has shown a high degree of accuracy.

The authors suggest reinforcing different DL techniques
in order to come up with an efficient pdac predictive model.
An end-to-end model that will use DL techniques to predict
the overall survival rate of pdac patients is proposed.
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