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The first description of the involvement of 
interferons (IFN) in systemic autoimmune 
diseases (AID) dates back more than 40 
years.1 IFNs play a crucial role in numbers of 
immunological pathways involve in AID, such 
as induction of dendritic cell (mDC), MHC 
expression, cytokines like BAFF, IL-2, IL-7. 
The aim of this editorial is not to discuss all 
these mechanisms linking IFNs to autoimmu-
nity but to discuss the origin and significa-
tion of what is called ‘the IFN signature’ and 
how measuring it. The diseases in which this 
signature plays a prominent role are systemic 
erythematosus lupus (SLE), Sjögren’s 
syndrome (SS),2 3 inflammatory myositis4 and 
scleroderma.5 The study of this IFN signature 
is still attracting the interest of research teams 
around the world, and for good reason: the 
advent of IFN-targeted therapies could revo-
lutionise the outcome of patients with IFN-
mediated diseases. However, behind this 
so-called IFN signature, there are still many 
grey areas: what type(s) of IFNs are we talking 
about? Who are the producers of IFNs? What 
is the origin of this IFN signature? What tools 
for assessing the IFN signature? Several tech-
niques have been developed including IFN-
inducible gene signatures; IFN-inducible 
proteins such as MxA, Galectin 9, Siglec1, 
IP-10; reporter system with WISH cells; 
dosage of the different subtypes of circulating 
IFNs. And finally, what are the consequences 
of this IFN signature in clinical practice, both 
in the classification of patients with the aim of 
achieving personalised medicine, and in the 
management of treatments, particularly at a 
time when therapies targeting IFNs are being 
developed?

The so-called signature corresponds to the 
evidence of an upregulation of transcripts 
induced by the different IFN subtypes: type I 
(IFN-α (of which there are 13 subtypes), β, ε, 
κ and ω), type II (IFN-γ) and type III (IFN-ʎ 1 

to 4). However, the limitation of this transcrip-
tomic definition was because until recently 
it did not allow differentiation between the 
three families of IFNs and only IFN-γ could 
be easily measured. The IFN signature is 
classically assessed by the level of expression 
of different mRNA induced by IFN. Several 
combinations of genes have been proposed 
to calculate IFN score. A five-gene signa-
ture (IFI44, IFI44L, IFIT1, IFIT3, MxA) has 
been proposed first.6 A four-gene set (IFI27, 
IFI44, IFI44L and RSAD2) was applied for 
the analysis of the anti-IFNAR therapeutic 
antibody—anifrolumab—trials.7 This score 
allows just a differentiation into IFN score 
high and low. Moreover, the transcriptomic 
overlap between the three types of IFNs, 
notably between type I and type III, is still a 
limit.8 It is the reason why the development 
of new techniques for the determination of 
type I IFN such as the single molecule array 
(Simoa),9 mesoscale diffusion technique and 
new methods of analysing the transcriptomic 
signature have changed the situation Impor-
tantly, it became apparent that within a single 
disease, different IFN profiles could coexist. 
In SLE, it was shown that the IFN signature 
was not limited to IFN-α, but involved the 
gradual activation of three distinct modules 
underpinned by various IFNs, including 
type II.10 In SS, a multiomic study was able 
to define four clusters of patients.11 Among 
them, three seem to be driven by IFNs: cluster 
C1 corresponds to the strongest IFN type I 
and type II signature, cluster C3 to an inter-
mediate IFN signature associated with B-cell 
activation and finally cluster C4 would be 
mainly linked to IFN type II. More recently, it 
has been shown that during SS, in the blood, 
it is IFN-α that drives this IFN signature. The 
level of circulating IFN-α was also associated 
with the clinical and biological characteristics 
of SS patients and with the prognosis, with 
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an association between the baseline IFN-α level and the 
development of systemic complications within 5 years.12 
Lastly, comparing the serum dosage of type I and type 
II IFN with the IFN signature will allow knowing if the 
high IFN signature is due to a high level of IFN, to an 
increased activation of pattern recognition receptors, or 
to an excessive response of IFN-responsive genes to IFN.

The cellular origin of the different IFN subtypes has 
also been re-evaluated. Initially, the focus was on plas-
macytoid dendritic cells (pDCs), which are ‘profes-
sionals’ IFN-α secretors. However, the role of resident 
cells, keratinocytes, renal tubular cells, salivary gland 
epithelial cells appears to be important both in the 
early and late phases of SLE and SS.13 14 In SLE, it has 
been shown that the IFN signature in tubular cells is 
associated with proliferative histology and markers of 
fibrosis, and IFN signature in keratinocytes is associ-
ated with clinical non-response to therapy.15 In addi-
tion, in SLE, the role of neutrophils, via NETosis, has 
also been demonstrated in inducing IFN signature.16

Lastly, a key question is what the origin of this IFN 
signature is. Genetic, epigenetic and environmental 
factors may be involved. The role of genetic factors and 
in particular single nucleotide polymorphisms located 
on IFN pathways is well established.17 19 In SLE, more 
than 100 genetic risk loci have been identified. Half 
of them are related to IFN pathways.20 Interestingly, 
type I and type II are involved. SNP within interferon 
regulatory factor (IRF) 5 locus has been shown to be 
associated with SLE and SS.20 21 Among these SNPs a 
5-bp CGGGG indel in the promoter of IRF5 is asso-
ciated with a high level of IRF5 mRNA, mainly after 
viral infection, which in turn correlate with higher IFN 
signature.22 SNPs in STAT4 loci are also associated with 
both SLE and SS.13 23 Interestingly, STAT4 is a classical 
transcription factor of type 2 IFN but an association 
between STAT4α mRNA level and PKR, IFITM1 and 
MX1 mRNA levels that are type 1 IFN-induced genes 
has been described.24 Epigenetic factors also play a 
role. Interestingly, epigenetic control seems to over-
ride genetic susceptibility. This has been demonstrated 
with methylation notably in SS where methylation alter-
ations in B cells are more frequent in some specific 
pathways including IRF genes.25 The most common 
pathological situation where type I IFN is increased is 
viral infections. A viral origin of systemic AID has been 
looked for decades. But even if some associations with 
a higher immune response to some viruses (especially 
Epstein-Barr virus26) have been observed in SLE and 
SS, no causal virus was found. If an exogenous viral 
infection cannot be found as the cause of this IFN 
signature, it might be useful to consider the possible 
role of endogenous viruses. Human endogenous 
retroviruses (HERVs) represent almost 10% of our 
genome.27 They are exposed to epigenetic regulation 
and have been shown to be differentially expressed in 
patients with AID including multiple sclerosis or SLE. 
Differentially expressed HERVs are in close proximity 

with IFN-induced genes and could modulate their 
expression.28

Besides these viral endogenous sequences, a number 
of long non-coding RNAs (lncRNAs) are present in our 
genome, more or less expressed and having a regula-
tory role by specific interactions with DNA, RNA and 
proteins.29 In this issue of RMD, Joachims et al focus 
on the role of long lncRNAs as regulators of the IFN 
response in SS patients. They assessed blood transcrip-
tome of SS patients looking at RNA-seq and comparing 
patients with and without anti-SSA/Ro60 auto-
antibodies. They confirmed that the IFN signature is a 
characteristic feature of anti-SSA/Ro60+ patients. They 
assessed transcripts associated with IFN signature and 
found that 16 lncRNAs were strongly correlated with 
the IFN signature. Interestingly, through functional 
experiments, they showed that four antisense lncRNAs 
(NRIR, OAS123-AS1, MX1-AS1 and GBP5-AS1) were 
rapidly induced in response to IFN and that their 
increased expression acted as a massive upregulation 
signal to induce the expression of mRNAs. This study 
therefore demonstrates the potential role of these 
lncRNAs as targets and regulators of the IFN response, 
which may therefore participate in the amplification 
of this response during systemic AID.

Thus, our understanding of the origin and the 
consequences of the IFN signature is progressing. The 
question arises as to what this means in clinical prac-
tice. The development of therapies that target IFN 
(JAK inhibitors, anifrolumab) is an important step for 
the management of patients suffering from systemic 
AID. It was during the studies evaluating anifrolumab 
in SLE that the use of IFN signature monitoring in 
patients was developed. By pooling data from the 
TULIP trials into a post hoc study, it was shown that 
anifrolumab was more effective in the subgroup of 
SLE patients with high IFN signature.30 Of note, the 
presence of serological biomarkers (anti-DNA, low 
C3, low C4) also allowed to discriminate patients who 
could benefit from anifrolumab treatment. In prac-
tice, it will therefore be interesting to compare the 
interest of monitoring the IFN signature (transcrip-
tomic signature including 4 or 5 genes or inducible 
proteins) or the dosage of serum IFN itself by sensitive 
techniques (SIMOA or meso scale diffusion) versus 
the use of classical biomarkers more easily available 
in clinical practice. In addition, it will be important 
to assess the reproducibility of calculation of the IFN 
score. Actually, the IFN score calculated at different 
laboratories may be hardly comparable due to the 
distinct sets of IFN-stimulated genes assessed and 
different controls. The value of the IFN signature for 
stratification of patients treated with tsDMARDs is also 
being studied. JAK inhibitors may inhibit both type I 
by inhibiting JAK1 and TYK2 downstream IFNAR and 
also Type II IFN by inhibiting JAK1 and JAK2 down-
stream IFN gamma receptor. It was confirmed that they 
may decrease the IFN signature.31 However, the IFN 
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signature at baseline has never been shown to predict 
clinical response to JAK inhibitors until recently. In a 
study presented at the 2022 ACR meeting focused on 
SS patients, it was shown that IFN signature at base-
line correlated with response to filgotinib (JAK inhib-
itor) and to tirabrutinib (BTK inhibitor).32 Finally, 
the evaluation of the IFN signature as a predictor of 
response to treatment could be also of interest in AID 
in which IFN is not the main driver. This is the case in 
rheumatoid arthritis (RA) in which an IFN signature 
is observed in only 20% of patients.33 A recent study 
showed that in patients with early RA, an IFN signature, 
linked to IFN-α, was associated with a lower probability 
of response to csDMARD treatment at 6 months.33 This 
was independent of conventional markers of disease 
activity. It was suggested that IFNs could drive disease 
persistence epigenetic reprograming of autoimmune 
lymphocytes.

In conclusion, the understanding of the IFN signa-
ture in systemic AID and its usefulness in clinical prac-
tice continues to progress. Nevertheless, there are still 
challenges to overcome for understanding the origin 
of this IFN signature in both blood and tissue and the 
role of non-coding RNA sequences, deciphering the 
specificity of this signature regarding type I, type II or 
type III IFN. It will be needed to compare the IFN signa-
ture to the dosages of IFN themselves to determine 
what is the most relevant and the most convenient in 
daily practice and to explore the usefulness of the IFN 
signature compared with the usual biomarkers, notably 
autoantibodies for stratifying patients and optimising 
therapeutic strategies. Clarifying these points will help 
optimise the management of patients with numbers of 
systemic AIDs in which IFN play a role.
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