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Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS) patients suffer from
neurocognitive impairment. In this study, we investigated cortical volumetric and
thickness changes in ME/CFS patients and healthy controls (HC). We estimated
mean surface-based cortical volume and thickness from 18 ME/CFS patients who
met International Consensus Criteria (ICC) and 26 HC using FreeSurfer. Vertex-wise
analysis showed significant reductions in the caudal middle frontal gyrus (p = 0.0016)
and precuneus (p = 0.013) thickness in ME/CFS patients compared with HC. Region
based analysis of sub-cortical volumes found that amygdala volume (p = 0.002)
was significantly higher in ME/CFS patients compared with HC. We also performed
interaction-with-group regressions with clinical measures to test for cortical volume
and thickness correlations in ME/CFS with opposite slopes to HC (abnormal). ME/CFS
cortical volume and thickness regressions with fatigue, heart-rate variability, heart rate,
sleep disturbance score, respiratory rate, and cognitive performance were abnormal.
Our study demonstrated different cortical volume and thickness in ME/CFS patients
and showed abnormal cortical volume and thickness regressions with key symptoms of
ME/CFS patients.

Keywords: cortex, myalgic encephalomyelitis/chronic fatigue syndrome, International Consensus Criteria, sub-
cortical regions, volume and thickness, clinical measures

INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex illness characterized
by a range of symptoms that includes fatigue, malaise, headaches, sleep disturbances, difficulties
with concentration, and cognitive function, and muscle pain (Baker and Shaw, 2007). The cognitive
symptoms include deficits in memory, attention, reaction time, information processing speed, and
free memory recall (Cockshell and Mathias, 2010). The severity of ME/CFS has been classified
according to Fukuda criteria (Fukuda, 1994), Canadian Consensus Criteria (CCC) (Carruthers
et al., 2003), and International Consensus Criteria (ICC) (Carruthers et al., 2011).
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Brain magnetic resonance imaging (MRI) has been performed
to study the pathophysiology of ME/CFS (Zeineh et al., 2014;
Barnden et al., 2015, 2019; Kimura et al., 2019; Thapaliya
et al., 2020). Analysis of early structural imaging was limited to
qualitative radiologist report. White matter (WM) abnormalities
were not more prevalent in ME/CFS compared to healthy
controls (Greco et al., 1997). In contrast, white matter
hyperintensity or sulcal or ventricular enlargement were more
prevalent in ME/CFS patients than in healthy controls (21 vs.
2%) (Natelson et al., 1993). The more liberal classification of
ME/CFS subjects in these studies confounds comparisons with
more recent Fukuda, CCC or ICC studies. Thus a more recent
study of CCC classified subjects using radiologist reporting
found no differences (Barnden et al., 2011). Quantitative MRI
found T1 weighted signal intensity in prefrontal white matter
(indicative of myelination) increased with increasing ME/CFS
severity (Barnden et al., 2015). More advanced MRI also
reported increased T1 (myelin) levels in somatosensory WM, but
decreased levels in the brainstem in ME/CFS (Natelson et al.,
1993; Barnden et al., 2018). This was not detected in earlier T1
scans (Barnden et al., 2011) which emphasizes the advantage
of more advanced MRI instrumentation (3T magnet with 64
channel head-neck coil vs. 1.5 T magnet with birdcage coil). The
ratio of T1-weighted and T2-weighted images also showed higher
signal intensity levels in white matter and basal ganglia regions
(Thapaliya et al., 2020).

Voxel-based morphometry (VBM) based on high spatial
resolution anatomical scans permits quantification of both
regional and global volumes in individual subjects (Maksoud
et al., 2020). Global gray and/or WM volume differences have
been reported in ME/CFS in some studies (de Lange et al., 2005;
Finkelmeyer et al., 2018), WM only (Zeineh et al., 2014) but
not others (Zeineh et al., 2014; Shan et al., 2016; Barnden et al.,
2018). Differences in regional gray and white matter volumes
were also reported in ME/CFS patients (Okada et al., 2004; Puri
et al., 2012; Finkelmeyer et al., 2018). Increased amygdala and
insula volumes and decreased regional white matter volumes
in the pons, midbrain, and right temporal lobe were reported
in ME/CFS patients (Finkelmeyer et al., 2018). Reduced gray
matter volume in the occipital lobes, the right angular gyrus and
left parahippocampal gyrus was observed in ME/CFS patients
(Puri et al., 2012). Smaller WM volumes for the left putamen,
right caudate, and left cerebellum were also observed in female
ME/CFS patients compared to control females (Addiego et al.,
2021). A longitudinal study showed a significant decrease over
6 years of WM (arcuate fasciculus) volume in ME/CFS patients
but not in healthy controls (Shan et al., 2016). A 3T MRI surface-
based approach detected larger cortical thicknesses in five right
hemisphere regions including two arcuate fasciculus end points
in Fukuda ME/CFS (Zeineh et al., 2014).

Findings in ME/CFS of both positive and negative differences
in global and regional gray and white matter volumes are
therefore inconsistent (Shan et al., 2020). These inconsistent
findings in ME/CFS motivated further investigation of
volumetric and thickness differences in both cortical and
sub-cortical regions using anatomical images from a 3T MRI
scanner. The specific aims of this exploratory study were to test

for cortical and sub-cortical volumetric and thickness differences
in ME/CFS, and to explore interaction-with-group regressions
between volume and thickness maps and clinical measures which
test for opposite correlations in the two groups.

MATERIALS AND METHODS

Participant Recruitment
The study was approved by the human ethics (HREC/15/QGC/63
and GU:2014/838) committee of Griffith University and the
Gold Coast University Hospital where scanning was performed.
Written informed consent was obtained from all individuals.
18 ME/CFS patients who met ICC criteria (Carruthers et al.,
2011) and 26 age-matched healthy control subjects were recruited
(see Table 1 for demographic information) through an online
Lime survey. Furthermore, healthy controls and ME/CFS patients
were excluded if they had an exclusionary medical disorder
were: hyper/hypotensive, had an autoimmune dysfunction,
attention deficit hyperactivity disorder, autoimmune disease,
microvascular disease, or body mass index (BMI) > 35 or were
pregnant or breastfeeding.

Clinical Measures
Clinical measures incorporated in cortical volume and thickness
map regressions were collected as mentioned in Thapaliya et al.
(2021). The 36-item SF36 short-form health survey questionnaire
(Alonso et al., 1995), was completed by all subjects, and “Fatigue,”
“SF36 physical (Phys_all)” and “SF36 mental scores (Ment_all)”
were extracted. An “information processing score (Procinfo)”
and a “Sleep disturbance score (SDS)” were obtained via a survey:
“In the past month, how severe were the following symptoms (on
a scale of 1–10, 1 being not a problem, 10 being extremely severe)”
for symptoms “Difficulty processing information?” and “Sleep
disturbances?” The “Heart rate (HR),” “Heart rate variability
(HRV),” and “Respiratory rate (Resp)” were extracted from the
power spectra of the pulse oximeter and respiration strap data
recorded during a 15-min resting-state fMRI acquired in the
same scanning session (“HR” and “Resp” from the frequency of

TABLE 1 | Demographic and clinical characteristics of patients
with ME/CFS and HC.

ME/CFS (n = 18) HC (n = 26) p-value

Age 43.2 ± 10.7 43.1 ± 13.7 0.89

M/F 6/12 9/17 N/A

Fatigue 14.0 ± 18.5 71.7 ± 17.1 < 0.001

HRV (%) 27.3 ± 16.1 21.0 ± 8.7 0.19

HR 71.4 ± 10.9 65.47 ± 8.0 0.039

Resp 4.06 ± 1.2 4.0 ± 1.1 0.96,

SDS 7.0 ± 1.9 1.9 ± 1.5 < 0.001

Ment_all 34.86 ± 23.9 73.1 ± 0.7 < 0.001

ME/CFS, Myalgic Encephalomyelitis/Chronic fatigue syndrome; M/F, Male/Female;
HRV, Heart rate variability; HR, Heart rate; Resp, Respiration rate; SDS, SF36 Sleep
disturbance score; Ment_all, SF36 mental score.

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 848730

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-848730 April 15, 2022 Time: 9:38 # 3

Thapaliya et al. Cortical Volume and Thickness Are Altered in ME/CFS

the primary peak, and HRV from the full width at half maximum
of the primary HR peak).

Data Acquisition
T1 weighted images for both ME/CFS and HC were acquired
using a 3T Skyra MRI scanner (Siemens Healthcare, Erlangen,
Germany) with a 64-channel head-neck coil (Nova Medical,
Wilmington, NC, United States). Three-dimensional T1 weighted
images were acquired using a T1 weighted magnetization
prepared rapid gradient-echo (MPRAGE) sequence with a
repetition time (TR) = 2,400 ms, echo time (TE) = 1.81 ms, flip-
angle = 8◦, acquisition matrix = 224 × 224 × 208, and voxel
size 1 mm × 1 mm × 1 mm. The total acquisition time for T1w
scans was 8:20 min:s.

Image Analysis
FreeSurfer version 7.1.1 (Fischl, 2012) was run to generate
cortical, sub-cortical volume and thickness from T1w images
from ME/CFS patients and healthy controls using the Desikan
Killiany parcelation scheme (Desikan et al., 2006). The default
FreeSurfer command “recon-all” was run in a Macintosh
computer (Operating system: Catalina, RAM = 36 GB, and
core: 8). The “recon-all” processing includes motion correction,
non-uniform intensity normalization, automated Talairach
transformation, intensity normalization, removal of non-brain
tissue, cortical parcelation, sub-cortical segmentation, gray
and white matter boundary tessellation, automated topology
correction, and surface deformation. Detailed information on
the pipeline can be found here1. Skull stripping and gray and
white matter boundaries were checked visually, and participants
were excluded if segmentation showed any error. The recon-all
was performed using the “qcache” option and the analysis were
performed using volume and thickness data with 10 mm full-
width half maximum separately on the left and right hemisphere.

Statistical Analysis
We performed group comparison of left and right hemisphere
using a general linear model (GLM) (Fischl, 2012) by computing
vertex-by-vertex for analysis of cortical volume and thickness
using FreeSurfer. Individual structural maps were combined
into a single dataset and resampled into MNI space using
the FreeSurfer command “mris_preproc” (Fischl, 2012). GLM
analysis was performed on the concatenated data of the
left and right hemispheres using the FreeSurfer command
“mri_glmfit” (Fischl, 2012). The multiple comparisons correction
(cluster correction) (Hagler et al., 2006) was performed
using “mri_glmfit-sim” (Fischl, 2012) with setting vertex-wise
threshold at 1.3 and cluster-wise p-threshold of 0.05 to control
for false positives.

We also performed cortical volume and thickness interaction-
with-group regressions with clinical parameters to test for
different relationships in ME/CFS and HC groups, that is,
an abnormal relationship in ME/CFS. To perform the group
interaction, we used the FreeSurfer GLM method by creating

1https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all

a FreeSurfer Group Descriptor (FSGD) file that describes
a group of subjects and their accompanying data2 and the
contrast3. The design matrix is automatically created by
FreeSurfer. The default method Different Offset Different
Slopes (DODS) was used to perform group interaction in
FreeSurfer. The “mri_glmfit” command was run with FSGD, and
contrast and multiple comparison correction (cluster correction)
was performed using FreeSurfer command line “mri_glmfit-
sim.” The detail information about group interaction can be
found in the given link https://surfer.nmr.mgh.harvard.edu/
fswiki/FsTutorial/GroupAnalysis. The eight clinical parameters
used as regressors were “HR,” “HRV,” “Phys_all,” “Procinfo,”
“Ment_all,” “Resp,” and “SDS.” One ME/CFS patient was
omitted from group interaction analysis due to missing clinical
information (Procinfo, “Phys_all,” and “SDS”). ME/CFS patient
data with clinical and autonomic measure outliers (one-
“Procinfo,” one-“SDS,” and two-“Resp”) were also omitted from
group interaction analysis.

Region-based statistical analysis was also performed on
cortical and subcortical regions using SPSS version 27. All
the statistical tests were controlled for age, gender, and total
intracranial volume. Correction for multiple comparisons was
implemented using false discovery rate (FDR).

RESULTS

Group Comparison: Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome vs. Healthy Controls
We performed volumetric and thickness analysis on 18 ME/CFS
patients and 26 HC. Figure 1 shows significant clusters with
decreased volume in the left caudal middle frontal region (cluster
size = 1,793 mm2, p = 0.0016, X = −34.6; Y = 2.6, Z = 53.8)
and decreased thickness in the right precuneus region (cluster
size = 1,418 mm2; p = 0.013; X = 23.1, Y =−63.1, Z = 12.4).

Region-Based Analysis
We performed region-based analysis on the sub-cortical volume
(Left and right: thalamus, caudate, putamen, pallidum, amygdala;
posterior, anterior central regions of the corpus callosum; right,
and total cortex volume) obtained directly from FreeSurfer as
shown in Table 2. The central region of the corpus callosum,
left and right hemisphere, and whole cortex volumes were
significantly lower in ME/CFS compared to HC only before the
multiple comparison correction (see Table 2). We only observed
significantly larger volumes in left amygdala (p = 0.002) which
survived the multiple comparison correction. The comparison
of our significantly different volumetric regions in ME/CFS with
previous findings are presented in Table 3.

2https://surfer.nmr.mgh.harvard.edu/fswiki/FsgdFormat
3https://surfer.nmr.mgh.harvard.edu/fswiki/Fsgdf2G2V
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FIGURE 1 | Volume and thickness reduction in ME/CFS patients. Volume was reduced in the left caudal middle frontal (white arrow) and thickness in the right
precuneus region (white arrow) of ME/CFS patients compared with HC. The volume is represented with filled blue color whereas thickness is represented by unfilled
green color. Significant volume and thickness clusters were overlaid on the inflated brain (left and right hemisphere) available in FreeSurfer.

TABLE 2 | Vertex and region-based analysis of cortical regions in ME/CFS patients compared to HC.

Vertex based analysis

Areas peak x y z (mm) p Cluster size

Volume Left caudal middle frontal −34 2 53 0.0016 1,793

Thickness Right precuneus 23 −63 12 0.013 1,418

Region based analysis

Regions ME/CFS HC p 95% confidence interval

Left amygdala 1,758.5 ± 189.7 1,629.4 ± 130.2 0.002** −234.7 to −59.1

CC central 536.2 ± 105.3 614.0 ± 134.6 0.014 20.6–172.4

Lh cortex 230,442.1 ± 20,425.5 245,579.6 ± 21,720.0 0.032 1,035.9–21,631.4

Rh cortex 230,753.3 ± 21,140.0 245,283.0 ± 21,343.8 0.041 478.1–21,429.5

Cortex 461,195.5 ± 41,542.0 490,862.7 ± 42,991.9 0.036 1,567.1–43,007.9

Vertex based analysis with reduced volume and thickness in ME/CFS. Sub-cortical regions with significantly higher/or lower volumes for ME/CFS than for HC, and p -
values. Mean and standard deviation are represented as (±). CC, corpus callosum; Lh, left hemisphere; Rh, right hemisphere. Unit of volume is mm3. **Represents
statistically significant after adjusting for multiple comparison.

Group Interaction: Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome vs. Healthy Controls
Vertex-based interaction-with-group regressions were
performed between cortical volume and thickness (left and right
hemisphere) surface maps and eight clinical scores: “Fatigue,”
“Phys_all,” “Ment_all,” “Procinfo,” “SDS,” “HR,” “HRV,” and
“Resp.” Significant volume and/or thickness interaction-with-
group regressions were detected for six regressors (“Fatigue,”
“HRV,” “HR,” “SDS,” “Resp,” “Ment_all”). Volume and thickness
clusters for which ME/CFS regression slopes significantly
different to HC slopes are listed in Table 4.

Figure 2 shows four clusters with statistically significant
volume or thickness interaction-with-group regressions with
“Fatigue” and “HRV.” Fatigue showed a significantly different
ME/CFS regressions in the right postcentral gyrus and inferior

parietal lobe (see Figure 2, left). Cortical thickness interaction
regressions with “HRV” showed significant clusters in the right
superior parietal (Figure 2 left) and the left superior frontal
gyrus (Figure 2 right). “HR” regressions showed significant
clusters with abnormal volume and thickness in ME/CFS. The
significant cluster of later occipitals (left and right) and caudal
middle (right) frontal gyrus thickness and in the paracentral
gyrus volume in the left hemisphere (see Figure 3). Cortical
volume and thickness regression with “SDS” showed significant
volume clusters in the left later occipital and superior frontal
gyrus and significant thickness clusters in the right lingual
gyrus (see Figure 4). Four significant volume and thickness
clusters were detected in regression with “Resp” (see Figure 5).
Significant volume cluster of left caudal middle frontal and
right superior frontal gyrus and thickness cluster of left rostral
middle frontal and superior frontal gyrus were abnormal in
ME/CFS patients (see Figure 5). Cortical volume regression
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TABLE 3 | Different ME/CFS volumes reported here and in previous publications for both global and regional regions.

Author Significantly different regions in ME/CFS compared to healthy
controls

Sample size
(ME/CFS)/HC

Diagnostic
criteria

Decreased Increased

This study Volume: Left caudal middle frontal
region
Thickness: Right precuneus

Left amygdala 18/26 ICC

de Lange et al., 2005 Global Gray matter volume 13/15 Fukuda

Finkelmeyer et al.,
2018

Global Gray matter volume
Global White matter volume
Bilateral internal and external capsule,
anterior midbrain, pons, right
prefrontal lone, inferior frontal lobe,
anterior parts of the right temporal
lobe

Right temporal lobe including
insular cortex, bilateral amygdala,
putamen, thalamus, parts of the
left inferior frontal lobe and left
occipital lobe

42/30 Fukuda

Okada et al., 2004 Bilateral prefrontal areas 16/49 Fukuda

Puri et al., 2012 Left and right occipital lobes (left
lateral occipital cortex, superior
division, and left supracalcrine cortex)
Right angular gyrus and the left
parahippocampal gyrus, posterior
division
White matter volume in the left
occipital lobe

26/26 Fukuda

Zeineh et al., 2014 Supratentorial white matter volume Right hemispheric cortical
thickness (lateral occipital,
precentral, middle temporal, post
central and Pars orbitals

15/14 Fukuda

Addiego et al., 2021 Left putamen, right caudate and left
cerebellum white matter

38/34 Fukuda and CCC

Shan et al., 2016 Left inferior fronto-occipital fasciculus 25/25 Fukuda and CCC

TABLE 4 | Significant clusters from cortical volume and thickness voxel-wise interaction-with-group regressions with six clinical regressors.

Clinical parameter Region Cluster size mm2 MNI X Y Z mm Cluster p

Fatigue (+) Postcentral gyrus RH/volume 3,570 38.3 −9.4 8.3 < 0.0001

Inferior parietal lobe RH/volume 1,625 44.7 −57 14.7 0.0028

Inferior parietal lobe RH/thickness 1,623 45.3 −51.4 41.5 0.0038

HRV (+) Superior frontal gyrus LH/thickness 1,920 −8.7 45.9 5.6 0.0024

HR (+) Paracentral gyrus LH/volume 1,920 −6.6 −32.2 58.7 0.0012

Lateral occipital LH/thickness 2,590 −34.8 −87.1 10 0.0002

Lateral occipital RH/thickness 2,203 30.5 −88.1 13.9 0.0002

Caudal middle frontal RH/thickness 1,384 41.7 16.9 47 0.015

SDS (+) Lateral occipital LH/volume 1,782 −43.8 −80.3 1.7 0.0016

Superior frontal gyrus LH/volume 1,731 −6.5 1 61.7 0.002

Lingual gyrus RH/thickness 1,302 12.2 −93.7 −8.4 0.02

Resp (-) Caudal middle frontal LH/volume 1,463 −37.1 0.6 33.6 0.009

Superior frontal gyrus RH/volume 1,213 16.4 −6.7 63.2 0.038

Rostral middle frontal LH/thickness 2,251 −36.7 19.2 22.4 0.0002

Superior frontal gyrus LH/thickness 1,325 −17.8 36.7 47.1 0.017

Ment_all (-) Inferior parietal lobe RH/volume 1,265 35.2 −79.6 20.2 0.028

Clusters were formed with vertex-wise and cluster-wise p-thresholds of 0.05. The cluster p is corrected for multiple comparisons. The sign of the regressor is the sign of
the slope of the regression for the ME/CFS group. LH, left hemisphere; RH, right hemisphere.

with “Ment_all” showed a significant cluster in the inferior
parietal lobe of the right hemisphere (see Figure 5, right).
The interaction-with group regression plot is shown in the
Figure 6.

DISCUSSION

This study implemented surface-based analysis which defines
internal and external cortex surfaces as a grid of vertices. At
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FIGURE 2 | For ME/CFS and HC, significant clusters from interaction-with-group regressions for 2 clinical regressors (“Fatigue” and “HRV”). The volume and
thickness cluster of the post central gyrus and inferior parietal was observed in the left hemisphere when regressed with “Fatigue” (left side). The thickness cluster of
the superior frontal gyrus was detected at the left hemisphere when regressed with “HRV” (right side). The volume is represented with filled blue color whereas
thickness is represented by unfilled green color. Significant volume and thickness clusters were overlaid on the inflated brain (left and right hemisphere) available in
the FreeSurfer.

FIGURE 3 | For ME/CFS and HC, a significant cluster from interaction-with-group regressions with “HR.” The volume cluster of the paracentral gyrus was observed
in the left hemisphere and the thickness cluster of lateral occipital and caudal middle frontal gyrus in both left and right hemispheres. The volume is represented with
filled blue color whereas thickness is represented by unfilled green color. Significant volume and thickness clusters were overlaid on the inflated brain (left and right
hemisphere) available in the FreeSurfer.

each vertex local cortical volume and thickness are computed.
Here we performed vertex-by-vertex comparisons between the
ME/CFS and HC groups for both volume and thickness. The
advantage of the vertex-based approach is that it does not require
any a priori hypothesis of locations of interest, unlike the region-
based approach, and reports clusters of vertices. For display
purposes the convoluted cortical gyrus maps are “inflated” to a
smooth surface with shading to indicate original sulcal locations.

Group Comparison: Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome vs. Healthy Controls
We detected significantly decreased volumes in the left caudal
middle frontal cortex in ME/CFS patients. This region is involved

in inhibition and modulation of attention (Japee et al., 2015)
and participates in executive function (Andersson et al., 2009).
A study of self-initiated elaborate encoding strategies (which rely
on complex, highly effortful cognitive processes) demonstrated
the involvement of left caudal middle frontal cortex (Husa
et al., 2017). ME/CFS patients report memory and concentration
problems, and difficulties in processing complex information
(Jason et al., 1999) and perform worse than healthy controls
in neuropsychological tests of attention, working memory, and
processing speed (Marcel et al., 1996; Vercoulen et al., 1998).
These deficits are consistent with the observed smaller left caudal
middle frontal volume in ME/CFS.

Our ME/CFS patients also had reduced cortical thickness
in the right precuneus which is involved in visual imagery,
attention, and memory retrieval (Cavanna and Trimble, 2006).
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FIGURE 4 | For ME/CFS and HC, a significant cluster from interaction-with-group regressions with “SDS.” The volume cluster of lateral occipital and superior frontal
was observed in the left hemisphere and thickness cluster in the lingual gyrus in the right hemisphere. The volume (left hemisphere) is represented with filled blue
color whereas thickness (right hemisphere) is represented by unfilled green color. Significant volume and thickness clusters were overlaid on the inflated brain (left
and right hemisphere) available in the FreeSurfer.

This is consistent with the ME/CFS symptom of
difficulty in directing and maintaining visual attention
(Hutchinson and Badham, 2013).

We also detected significant differences in the left amygdala
volume in ME/CFS patients. The volume of the amygdala
was significantly greater in ME/CFS which confirms an earlier
VBM result (Finkelmeyer et al., 2018). Amygdala morphological
changes can indicate a neuroinflammatory process (Lv et al.,
2014; Nakatomi et al., 2014) or neuronal and synaptic alterations
induced by stress (Roozendaal et al., 2009; Christoffel et al.,
2011). Increased financial stress was associated with increased
symptom severity in ME/CFS (Balinas et al., 2021) and better
stress management skills lowered illness burden and fatigue
severity in ME/CFS (Lattie et al., 2013). Increased amygdala
volume in ME/CFS from exposure to stress may be mediated
by the expression of Brain-derived neurotrophic factor (BDNF)
(Bennett and Lagopoulos, 2014) which is altered in ME/CFS
(Chen et al., 2008; Polli et al., 2020).

Group Interaction: Myalgic
Encephalomyelitis/Chronic Fatigue
Syndrome vs. Healthy Controls
Vertex-based cortical volume and thickness interaction-with-
group regressions with clinical measures yielded multiple
significant clusters (Table 4 and Figures 2–5). In these clusters,

regressions were oppositely directed for ME/CFS and HC, that is,
ME/CFS regressions were abnormal (see Figure 6). We interpret
inter-individual differences in local volume or thickness to be
an expression of normal human variability. Figure 6 (x-values)
shows this is similar for both ME/CFS and HC in the clusters
illustrated. Insofar as volume or thickness is a surrogate for
a functionally relevant feature such as myelination or axonal
density, different correlations with clinical measures in a cluster
indicate abnormal communication in ME/CFS within the control
circuits that traverse the cluster and influence the clinical
measure. This mechanism was proposed in an earlier MRI study
of autonomic correlations (Barnden et al., 2016).

Cortical volume and thickness map interaction-with-group
regressions with “Fatigue” and “Ment_all” scores both showed
significant clusters in the inferior parietal lobe. The inferior
parietal lobe is a hub of the default mode network (DMN) and
the abnormal correlations detected here with fatigue and mental
scores may be a manifestation of the same neuronal phenomenon
that yielded diminished resting connectivity between inferior
parietal and medial prefrontal DMN hubs in the same cohort
(Shan et al., 2018).

We detected significant cortical thickness interaction
regression with heart rate variability (HRV) in the left superior
frontal gyrus. This is consistent with a resting-state functional
MRI study which showed that HRV was positively correlated with
BOLD activity in the superior frontal gyrus (Yoo et al., 2018).
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FIGURE 5 | For ME/CFS and HC, a significant cluster from interaction-with-group regressions with “Resp” and “Ment_all.” The volume cluster of caudal middle
frontal and superior frontal were observed in the left and right hemisphere and the thickness cluster of superior frontal when cortical volume and thickness regressed
with “Resp.” The volume cluster of the inferior parietal lobe was detected at the right hemisphere when regressed with “Ment_all.” The volume is represented with
filled blue color whereas thickness (right hemisphere) is represented by unfilled green color. Significant volume and thickness clusters were overlaid on the inflated
brain (left and right hemisphere) available in the FreeSurfer.

We also demonstrated an abnormal correlation between
respiratory rate (Resp) and cortical volume and thickness
in the superior frontal gyrus, caudal middle frontal, and
rostral middle frontal cortex. A pilot study in ME/CFS
showed different respiratory rates in ME/CFS patients
(Nijs et al., 2008). Our previous T1/T2 study also showed
a group interaction with respiratory rate in the middle
temporal gyrus, corpus callosum, and cerebral WM regions
in ME/CFS patients (Thapaliya et al., 2020). A diffusion
tensor imaging (DTI) study found an abnormal correlation
between diffusion parameters correlation and “Resp” (Thapaliya
et al., 2021) in the superior prefrontal cortex (BA 9) in
ME/CFS patients.

Here we also detected abnormal cortical volume and thickness
interaction-with-group regressions with “HR” in four cortical
regions (Table 4), one in the middle frontal lobe. HR is faster
in ME/CFS than controls in both supine and seated positions
(Nelson et al., 2019). White matter (WM) volumes from voxel-
based morphometry showed interaction-with-group regressions
in bilateral prefrontal WM, hypothalamus and cerebellum
(Barnden et al., 2016).

The autonomic measures HRV, Resp, and HR are regulated
by the central autonomic network that involves the medial
prefrontal cortex, insular cortex, amygdala, hypothalamus and
midbrain, pons and medulla (Benarroch, 1993). Here the
prefrontal cortex was involved in multiple interaction with group
regressions with autonomic measures.

We also tested cortical volume and thickness maps for
interaction-with group regressions with sleep disturbance score
(SDS). Significant clusters were detected in the superior frontal,
lingual and occipital cortex. Previous research on alcohol use
disorder patients with sleep disorder showed reduced overall
cortical volume (Wiers et al., 2015; Tomasi et al., 2019). Zhang
et al. (2021) showed that longer sleep-wave and rapid eye
movement (REM) sleep was significantly associated with greater
cortical thickness. Diffusion tensor imaging showed abnormal
inferior frontal gyrus correlations between “SDS” and DTI
parameters in ME/CFS patients (Thapaliya et al., 2021). Another
study using fMRI also showed activation of the inferior frontal
gyrus after sleep deprivation (Vartanian et al., 2014). Thus, the
clusters detected here do not agree with earlier “SDS” results and
further study is required to resolve this difference.
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FIGURE 6 | Plots for cluster average volume vs. five clinical measures (see Y-axis label). The X axis is “Average Volume,” the spatial average of the local volumes in
the cluster. (A) Fatigue score (cluster p ≤ 0.0001 in postcentral gyrus—see Figure 2). (B) Heart Rate Variability (HRV) (cluster P = 0.0028 in superior frontal gyrus–
see Figure 2); (C) Heart rate (HR) (cluster p = 0.0002 in lateral occipital– see Figure 3); (D) Sleep disturbance score (SDS) (p = 0.002 in superior frontal gyrus–
see Figure 4); (E) Respiration Rate (Resp) (cluster p = 0.038 in superior frontal gyrus—see Figure 5). Lines are linear fits to individual values. Average volume (x-axis)
was default volume obtained from the “mri_glmfit-sim” command from FreeSurfer that computes a spatial average inside a cluster.

Limitations
The relatively small ME/CFS sample size will affect the power
of the study to detect all the differences in cortical regions
and their association with clinical measures. Larger populations
should be investigated in future studies to ensure more accurate
statistical results are obtained. The cortical volume and thickness

are also affected by the choice of work station, operating
system, processing software, and its version (Gronenschild
et al., 2012; Perlaki et al., 2017; Seiger et al., 2018). Another
limitation is that some of the clinical scores in this study were
obtained by questionnaires, which by their subjective nature
may limit interpretation of our findings. This study was a
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cross-sectional study. Longitudinal studies should be performed
to test for progressive cortical volume and thickness changes in
ME/CFS patients.

CONCLUSION

Our study detected significantly reduced cortical volume and
thickness in ME/CFS patients compared with HC. We found that
amygdala volume was significantly higher in ME/CFS patients.
We also observed that cortical volume and thickness relationships
were abnormal in regressions with clinical and autonomic
measures. Overall, our findings suggest altered cortical volume
and thickness in ME/CFS patients relative to healthy controls.
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