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Abstract

optimized.

Background: The extraordinary diversity characterizing the antibody repertoire is generated by both evolution and
lymphocyte development. Much of this diversity is due to the existence of immunoglobulin (Ig) variable region
gene segment libraries, which were diversified during evolution and, in higher vertebrates, are used in generating
the combinatorial diversity of antibody genes. The aim of the present study was to address the following
questions: What evolutionary parameters affect the size and structure of gene libraries? Are the number of genes in
libraries of contemporary species, and the corresponding gene locus structure, a random result of evolutionary
history, or have these properties been optimized with respect to individual or population fitness? If a larger
number of genes or different genome structures do not increase the fitness, then the current structure is probably

Results: We used a simulation of variable region gene library evolution. We measured the effect of different
parameters on gene library size and diversity, and the corresponding fitness. We found compensating relationships
between parameters, which optimized Ig library size and diversity.

Conclusions: We conclude that contemporary species’ Ig libraries have been optimized by evolution in terms of Ig
sequence lengths, the number and diversity of Ig genes, and antibody-antigen affinities.

Background

Evolution of V gene libraries

The adaptive immune system uses recognition mole-
cules, the most diverse of which are the B and T cell
antigen receptors that recognize specific determinants
on specific antigens (Ags). When B cells are activated,
their Ag receptors, also known as immunoglobulins
(Igs), can be secreted as antibodies (Abs), which block
and promote elimination of the Ag.

The extraordinary diversity characterizing the Ab
repertoire has been generated by evolution and is then
further optimized during lymphocyte development [1].
Some Variable (V) genes can provide immediate selec-
tive advantage due to their high affinity against specific
conserved pathogen Ags in their germline configuration
or with little modification [2]. These may have been
optimized by evolution [3,4], but cannot account for the
whole repertoire. Special mechanisms for creating the
diversity of Abs within an individual during lymphocyte
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development include combinatorial rearrangement,
joining imprecision, gene conversion, somatic hypermu-
tation and the pairing of various heavy and light chains.
Not all of these mechanisms are used by all vertebrate
species. It has been suggested that the parameters gov-
erning Ig gene rearrangement have been optimized by
evolution to maximize diversity while preventing auto-
reactivity [5-8]. The diversity at the main Ag binding
sites appears, however, to be encoded in the germline,
and the primary role of somatic hypermutation is to
extend the diversity to the surrounding regions, in order
to increase fine specificity and enable the system to
cope with rapidly-mutating Ags [9].

Using the advances in sequencing technologies, the V
gene libraries of both the light and heavy chains have
been found in numerous organisms’ genomes [10-13].
In humans, V segments are classified into seven Vy, six
V, and ten V, families [14]. The number of different
alleles of the variable Ig gene is not yet determined, as
recent studies showed that there were many inaccuracies
in obtaining and analyzing the data due to sequencing
errors, mainly in the heavy chain [15,16]. For fish
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species the classification into families is less successful,
probably due to high degree of intraspecies sequence
divergence [11]. For example, in the rainbow trout there
are at least 11 gene families of heavy chain Ig variable
genes [17]. In the variable gene regions of Ig loci, two
types of polymorphism are mainly observed. One is sin-
gle nucleotide polymorphisms (SNP), and the other is V
gene insertion/deletion polymorphisms. Half the amino
acid-altering differences were observed in CDRs, despite
the CDRs being much shorter than FRs, which suggests
Darwinian selection [2,3]. The sizes of the Ig variable
(IgV) gene libraries vary significantly between different
vertebrate species, ranging from one functional IgV and
58 pseudo-IgV genes in the chicken heavy chain locus
to 353 IgV genes - out of which 131 are functional - in
the rat heavy chain locus [11,18].

Previous simulations of V gene library evolution
focused on finding how the diversity in the genome was
most probably created [19-21], and did not address the
structure of gene loci and the creation of gene families.
Oprea, Forrest and colleagues created a general frame-
work to study Ab-Ag matching rules [19,21], and
explored the way in which a small number of genes can
create Abs that cover a large part of the Ag space. High-
tower et al. showed that, when only part of the Ig gene
libraries are expressed in the phenotype, there still is an
evolution of fitness, but at a smaller pace [21].

The current study was aimed at addressing the follow-
ing questions. (a) How do evolutionary parameters (such
as the rates of various types of mutations) affect the
gene locus structure? (b) Are the genomes of contem-
porary species a product of some optimization, i.e. is
there a large parameter value space that could have gen-
erated the observed genome structures, or is it possible
only in a narrow subspace? In order to understand the
structure of variable gene loci and their evolution, we
used a computer simulation to explore the creation of V
gene libraries. We checked how the different parameters
affect the size and number of gene families, as well as
overall genome diversity and population fitness. The
results of the simulation showed that contemporary spe-
cies Ig libraries have probably been optimized by evolu-
tion in terms of Ig sequence lengths, the number and
diversity of Ig genes, and the affinity (binding threshold)
between the antibody and antigen.

Methods

Organism

The algorithm of our simulation is shown in Figure 1A.
The model’s basic unit is the organism, of which there
is a fixed, configurable number in the simulation. Every
organism has a “genome”, represented by a collection of
fixed-length bit strings, which represent its Ab V genes.
The number of strings in an organism’s genome is at
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least one, and the maximum number can be either
unlimited, or limited by reducing the organism’s fitness
as a function that increases with the number of strings,
representing the cost of maintaining these genes, as
described below. The life span of each organism is one
generation of the simulation.

Fitness

The fitness of the organisms is based on their ability to
survive the Ags they are exposed to, and determine
their ability to have descendants. In every generation,
the organisms’ fitness values are determined as follows:
A subset of strings from the genome is selected to be
“expressed” and becomes the organism’s phenotype, that
is, its Ab repertoire. The size of the subset is determined
by the Phenotype/Genotype ratio parameter and the
strings are chosen randomly. This Ab repertoire is
exposed to an Ag library. The Ag library is recreated
every generation, with randomly generated strings, to
account for the much faster evolution of pathogens rela-
tive to vertebrates, and is composed of random bit
strings in the same length as the Ab bit strings. The
number of Ags is configurable. Every Ab in the reper-
toire is checked against every Ag in the Ag library. The
match is done by a simple bit comparison (using a glo-
bal alignment for the comparison has resulted in non-
realistic running times for the simulation). If the match
between an Ab and an Ag exceeds a specified threshold,
then this Ab can defend the organism from this Ag. The
organism’s overall fitness is calculated by summing up
the maximum match values that exceeded the threshold
for each Ag, and dividing this sum by the Ag library
size. Thus, both the number of Abs that are over the
threshold and the maximum value over it are important,
and both are used in the fitness calculation. The fitness
is averaged on all the Ags, so having a great protection
against some Ag or good protection against more Ags
has the same effect on the organism likelihood to have
descendants. There is no threshold for the fitness
needed for creating offspring; instead, this is determined
by competition - the parents with higher fitness generate
offspring before parents with lower fitness, until there is
no more room in the population, such that the parents
with lowest fitness do not get to reproduce. If none of
the organisms survived any of the antigens, then the
next generation is not created and the simulation ends.

Creating the next generation

After the fitness is calculated for all organisms, the
organisms are divided into pairs. The pairs are chosen
according to the organisms’ fitness: the higher the fit-
ness, the more likely the organism will be selected to
have descendents. The organism with the highest fitness
is paired with the second highest, the third with the
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Figure 1 Simulation flow and cross-over. Schematic representation of (A) the flow of the simulation, and (B) the crossover process used to
create a child's genome from its parents’ genomes. In (B), boxes containing “0” or “1” represent the bits in the bit string. The arrows indicate the
random choices done: selecting each parent to get the genome from, in each parent selecting the crossover start string and also selecting the
direction for getting the strings in the parent genome.

fourth and so on. The number of descendents of a pair outcome that would terminate the simulation. We
is proportional to their combined fitness. The total preferred this way of representing evolutionary pressure
number of descendents is fixed to preserve the popula-  to selecting totally random pairs, which resulted in simu-
tion size, unless none of the organisms survived (all lation in which the average fitness did not converge, and
organisms have exactly zero fitness) - an unlikely to the more conventional procedure of selecting pairs by
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a biased selection in proportion to their to the fitness, as
this resulted in the same qualitative results as when using
our selecting method, but with more fluctuations.

Genetic Crossover

To create a new organism, a random number of genes is
taken from each parent, and combined by a “genetic
crossover” to create the organism’s new gene library, as
follows (Figure 1B). A gene is chosen randomly in each
parent, with a normal probability distribution around
the middle of the gene library. The chosen gene is then
included in the child’s genome, along with all the genes
that are either upstream or downstream from it in the
parent library (the direction is chosen randomly). The
choice of which parent will be used first is also random.
The resulting genome size is thus at least one bit string,
and its size can differ from the parents’ library sizes. As
a result of this process gene locations in the child’s
library can differ from their location in the parents’
libraries.

Mutations
After a new organism is created, its genome has a
chance of undergoing one or more mutations. The rate
for each of the following mutation types can be set
separately.

+ A point mutation that changes a randomly chosen
bit in a randomly chosen gene (bit string) in the
organism’s gene library.

« In a duplication, a randomly chosen gene from the
genome is duplicated, and the new copy is inserted
into the genome in a randomly chosen place, with a
high probability to be near the original gene.

« In a deletion mutation, a randomly chosen gene is
deleted from the genome and the new genome size
is thus reduced by one.

+ An exchange mutation swaps the locations of two
randomly chosen genes.

« The last type of mutation is deleting a randomly
chosen bit from a randomly chosen gene, inserting
as the last bit a new bit with the same value as the
deleted bit’s value, to preserve gene size.

After creating all the offspring, the system is ready for
the next cycle.

Repertoire characterization

After every generation, the simulation records the maxi-
mum and average organism fitness and genome size.
Once every ten generations, the average diversity, calcu-
lated from individual diversities of all organisms, is
recorded. For a single organism, the diversity is defined
as the average distance between every two different
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genes. For a pair of genes, the distance is one minus the
sum of the identical bits in the strings, divided by the
string length. The diversity thus takes a value between 0
and 1, where 0 is for a population in which all genes are
identical, and 1 is the value in the case in which for
every organism, the genes in the gene library are com-
plementary (i.e. there are only two genes in each organ-
ism which are mirror images of each other). When the
diversity is 0.5, the average organism has genes in its
library that have random bit string distances - 0.5. In
addition, the genomes of all the organisms are recorded
in the last generation.

Gene locus structure analysis

The analysis of the genome in the last generation
starts with finding the families in the genome of every
organism, in two ways. The first, intended to identify
only very similar family members, is to calculate the
above-defined distances between the organism’s genes.
A distance of less than 0.2 between two sequences
(equivalent to at least 80% homology) places them in
the same family [22]. The second way is to use a global
alignment algorithm when comparing the sequences,
and to include in the same family sequences whose
distance obtained from global alignment is under 0.2.
Family sizes are expected to be larger when using the
second method, as the global alignment algorithm
increases the chance of finding similarity between
sequences.

After finding the families, the following data on them
are gathered. For all organisms, we find the number of
families, the average and median family size (number of
family members), the average genomic span of a family
(the number of sequences in the genome between the
first and last sequences that belong to the family), the
average family size ratio - the genomic span of a family
divided by the number of sequences in the genome, and
the mixing index (the average of the distances between
sequences in a family divided by the family size). The
mixing index was thus defined, so that in a family that
is not mixed at all, it will be less than 1; if it is larger
than 1, it means that quite a few distances between
genes in the family are larger than the family size, which
can only happen if this family is mixed with other
families.

The above-defined gene locus properties were studied
as function of the simulation’s parameters (Table 1). At
the first stage, we only varied the basic simulation para-
meters (such as gene size or the number of Ags), and
examined their effects on fitness and genome diversity.
These initial results were used to set the basic para-
meter default values. Then we proceeded to examine
how the various mutation rates affect all the measured
gene locus characteristics.
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Table 1 Simulation parameters
Parameter Description Default Range
value
Basic Parameters
Generations: The number of generations in the simulation 20000
Population size: The number of organisms in the simulation 100 10-100
Segment length: The number of bits in a gene segment string and in an antigen string 128 128,
512,1024
Maximum number of The upper limit on the size of an individual's genome library 250 50-250
segments:
Binding threshold: The minimum binding affinity between antigen and antibody that is needed for protecting the  0.53 0.3-0.7
individual from the antigen
Antigen number: The antigen library size created in every generation 100 10-1000
Phenotype/Genotype The ratio between the number of antibody segments expressed in the phenotype and their 0.2 0.1-1
ratio number in the genome

Penalty function:

Penalty added to an organism'’s fitness as a function of genome size

fitness/(1 + tan(m*n/
(2*Nmax))
where n is the number
of segments in the
organism's library and
Nemax 1S the maximum
number of segments
allowed.

Mutations Rates
events/bit/generation.

All rates are in units of events/gene/generation, except the point mutation and bit deletion rates, which are in units of

Point mutation The probability for every bit in every segment to change its value. 0.001 0.001
-0.014
Duplication The probability of every segment to be duplicated 0.001 0.001
-0.014
Deletion The probability of every segment to be deleted 0.001 0.001
-0.014
Exchange The probability of a segment to swap its location with other randomly chosen segment. 0.001 0.001
-0.014
Inversion The probability of a segment to change its orientation in the genome 0.001 0.001
-0.014
Bit deletion The probability for every bit in every segment to be deleted 0.001 0.001
-0.014

The parameters used in the simulation and their default values. For value justification see text.

Results

Setting the default simulation parameters

We first performed an initial exploration of the para-
meter space (results not shown), varying all parameter
values simultaneously, and based on those results, we
narrowed the default value ranges of the parameters.
(The simulation parameters are summarized in Table 1.)
Then, we proceeded to explore each of the simulation
parameters further.

Number of generations and population size

The first parameter to be examined was the number of
generations needed to achieve the system’s steady state.
This steady state is not necessarily a fixed state, as there
are ongoing fluctuations in the population as it continues
to evolve. However, the amplitude of these fluctuations is
relatively small and the system stabilizes around a single

state (that is, more or less constant average values of
fitness, genome size and diversity) after a relatively small
number of generations - around 500. The number of gen-
erations in the simulation was set to 20,000, or until all
the organisms have perished. The latter condition was
rarely encountered and used only in extreme conditions.
The 20,000-generation limit was high enough so that the
effect of the initial conditions was small and the system
quickly reached equilibrium (Figure 2 A-C). The genome
size under the default parameters has settled to an aver-
age of about 40, which is within the range of the known
Ig genomes as described above [10-18], and the average
diversity approaches 0.5, which is the maximum diversity
possible for random bit strings.

The size of the population in the simulations had only
a small impact on the results. As the number of organ-
isms is increased, the variability in the results is reduced,
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Figure 2 Effects of basic simulation parameters. The average fitness - the ability of organism to survive the Ag it exposed to (A, D, G, J, M),
genome size (B, E, H, K, N) and diversity of the genes in an organism (C, F, |, L, O) of the population, are shown here as function of the number
of generations (A, B, ), the gene length (G, H, 1), the number of organisms (D, E, F), the maximum genome size (J, K, L) and the antigen library

but the overall system behavior remains the same

(Figure 2 D-F).

Gene length and number

The gene length in the simulation has a fixed value. We
used a size of 128 bits in most runs, but also checked

the values 512 and 1,024. The effect of increasing the

gene length is that, as the length is increased, fewer bits
are identical in a bit match between any two genes. For
example, in 128 bit-long sequences the random match-

ing is 64 bits and for a threshold of 0.53 (the binding
threshold, described in detail below, is the minimum
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number of identical bits needed for Ab-Ag binding)
there are on average about 4 unmatched bits for totally
random genes that need to be mutated in order to get
an antibody string that would pass the binding threshold
(128%(0.53 - 0.5)), while for sequence with 1024 bits
there are about 31 unmatched bits for the same thresh-
old (1024*(0.53 - 0.5)) that would have to be mutated.
To compensate for this, more antibody genes are needed
in order to cover the antigen space, and thus the gen-
ome size is increased, although it remains within the
range of the known Ig genomes as described above
[10-18]. Although the repertoire quickly reaches the maxi-
mum diversity of 0.5, where all the sequences are the least
similar to each other (Figure 2I), genome size still
increases considerably with sequence length (Figure 2H).
The large number of sequences needed for covering all
the possibilities when gene length is increased is probably
the reason why Ig sequences in real genomes are rela-
tively short compared to the full length of the original
antigen proteins, and antibodies only bind to small epi-
topes on the antigens. This way, a smaller number of
genes can cover a larger fraction of all possible antigens,
and the required matching does not need to be perfect,
but only above a binding threshold. Both effects of gene
length - large genome sizes and poor bit matching -
explain why the average fitness decreases as gene size is
increased (Figure 2G).

The maximum number of genes in an organism (max-
imum genome size), used within a penalty function that
reduces the fitness as a function of gene number, helps
the simulation avoid the trivial but biologically incorrect
solution, where all or most of the possible genes are
included in the organism’s genome. The penalty func-
tion reduces the fitness of an organism when the num-
ber of genes in its genome increases. We used the value
of 250 genes, as it is in upper range observed in real
species [10-18], and any increase above this value
seemed to increase the fitness by a negligible amount.
Increasing the maximum number of genes increased the
genome size (Figure 2 K) until a new balance between
the fitness (Figure 2 J) gained by the larger genome size
and lost by the penalty was reached. This parameter did
not affect the diversity of the population (Figure 2 L), as
it was already close to the maximum for smaller genome
sizes.

Ag library size and binding threshold

The Ag library size has a negligible effect on overall sys-
tem behaviour (Figure 2M-0O). As the library is recreated
randomly in every generation, under the very gross
approximation that most pathogens evolve faster than
organisms, the evolution of Abs acts to increase the
diversity and not to achieve specificity against a static
Ag.
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The binding threshold is the minimum fraction of bits
in the Ab string that must be identical to the Ag string
in order to protect the organism against the Ag. When
comparing two random bit strings, 0.5 of the bits are
identical on average. Hence a binding threshold lower
than 0.5 would have resulted in a high organism fitness
with almost no dependency on other parameters, since
with such a threshold even a small number of genes -
actually, one gene - has a high probability of protecting
the organism against most Ags (Figure 3A). As the
threshold approaches 0.5, genome size and diversity
begin to rise (Figure 3B, D), since the chance of match-
ing all Ag genes is lower for any given Ab gene. At
threshold values of 0.42 and higher the genome size is
increased, to compensate for this difficulty in binding
and achieve a higher fitness. In addition, there is a large
“jump” in the diversity due to the increase in genome
size - as one random antibody gene is no longer enough
to protect the organism against all antigens. When the
binding threshold approaches 0.5, the fitness begins to
drop; at threshold values of over 0.5 (the random
match), even those compensations are not enough and
the fitness is reduced; and when the threshold exceeds
0.58, the population usually dies out. We chose the
value of 0.53 as a default for subsequent runs, as it is
higher than the random match - which would have been
unrealistic, as real antibodies must be selected not to
match the “self” - and hence must be a little more speci-
fic than just a generally “sticky” molecule - without also
losing their match to most Ag sequences, so they cannot
be too specific. However, the value of 0.53 is not too
small, so the fitness genome size and diversity are still
acceptable.

Genotype/phenotype ratio

The parameter Phenotype/Genotype ratio gives the frac-
tion of genes in the genome that are expressed in the
Ab repertoire, and was varied using the values 1, 1/2, 1/
3... down to 1/10. This parameter strongly influences fit-
ness and genome size (Figure 3 D, E). Decreasing the
ratio causes a decrease in the fitness and a compensat-
ing increase in genome size. There is a limit to the com-
pensation that can be reached by increasing the genome
size, because of the limitation on the genome size in the
simulation. When the Phenotype/Genotype ratio is
small enough, the compensation limit is reached and,
since increasing the genome does not increase the fit-
ness anymore, the genome size and fitness drop drama-
tically, together with the diversity (Figure 3D-F). It is
difficult to compare the ratios we used to what happens
in real organisms, as complete repertoire characteriza-
tions do not exist for most of them. In zebrafish, it was
found that between 50 and 86% of all possible VD]
combinations are used, and different individual fish
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shared a similar frequency distribution [23]. From the
graphs presented in the latter study, it can be seen that
some individual V genes are rarely represented in the
actual repertoire, while others are more common. Simi-
lar results were found in sequencing the repertoires of a
few human subjects [24]. In both cases, a fraction of the
repertoire is not represented, but it does not seem to be
higher than 50% in any individual, and in most cases it
is must smaller - i.e., the genotype/phenotype ration in
real systems is in the range that our simulations show
to be “safe” for the individual.

After exploring the impact of basic parameter values
(Figure 3), we chose the default values for the simula-
tion (Table 1). Using those values, we explored the
effects of changing the various mutation rates.

Effects of Mutation rates

The rates of occurrence of different mutation types were
varied between simulation runs (Table 1), and their
effects on average fitness, genome size, diversity, and
gene locus structure were examined. Some of the results
are intuitively obvious, e.g., that increasing the gene
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duplication rate increases the average genome size
(Figure 4A). Others are less obvious and several proper-
ties are influenced by several different mutation rates, as
described in the following sections. In the results pre-
sented below, global alignment was used to find the
members of a family, and the average over all organisms
is shown for each gene locus property. The ranges of
mutation rates we used cover the transition from the
region where the impact of the mutation is negligible
and its effects are controlled by other factors in the sys-
tem, to the region where the mutations dominate the
system’s behaviour - as in the case of duplication muta-
tions increasing the genome size uncontrollably.

Gene duplication rate

The gene duplication rate directly affects the genome size.
However, this effect is significant only when the duplica-
tion rate is high enough - over 0.01 events per gene per
generation, which can also be considered very high in
terms of real systems (Figure 4A). Genome size, limited by
the maximum genome size and by the Phenotype/Geno-
type ratio, has an optimal value, and the larger genomes
created by higher duplication rates are corrected to the
preferred size. However, when the duplication rate is high
enough, the genome size still increases and so the fitness
decreases (Figure 4B). The number of families in the gen-
ome - which is between 10 and 40 in our simulations, as
in real genomes - decreases when the duplication rate
increases (Figure 4C), again because overall genome size is
limited. The degree of inter-family mixing (the average
radius of the family divided by its size) increases with the
gene duplication rate, as the frequent duplication of genes
that belong to the same family but are separated by mem-
bers of other families increases the mixing (Figure 4D), up
to unrealistic values of >100 (that is, distances of 100
genes or more between genes from the same family) for
the highest values of the gene duplication rates.

Gene deletion rate

The same set of optimization mechanisms that play a
role in the case of gene duplication is also at work in
the case of gene deletion. When the gene deletion rate
is low, the average genome size converges to the optimal
size, but it decreases if the deletion rate is too high (Fig-
ure 4E). Unlike in duplication, the fitness decline rate as
function of gene deletion rate is negligible (Figure 4F).
However, similarly to the effect of changing the duplica-
tion rate, the number of families decreases as the gene
deletion rate is increased (Figure 4G). The degree of
mixing is only high (>2 - which is the value we’'d expect
to get in real genomes) for very low segment deletion
rates, and for higher values it decreases, as expected
since deletion contradicts the mixing effects caused by
gene duplications (Figure 4H).
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Point mutation rate

The point mutation rate has a negligible effect on
genome size (Figure 4I). The average family size
decreases slightly and family number increases slightly
with an increase in the point mutation rate, which is
expected since the mutations decrease the similarity
between genes and hence the gene families are smaller
(Figure 4], K). These changes are very small compare to
the changes caused by gene deletion and duplication.
Since families become smaller when the point mutation
rate is higher, the mixing between them is also reduced
(Figure 4L), similar to the effect of increasing the point
mutation rates.

Discussion

The human Ig variable region gene locus has undergone
extensive evolutionary editing. This can be seen by the
division to families, where every family probably started
from a single gene that was duplicated and mutated to
form sets of similar but not identical sequences. The
aim of the current study was to answer the following
questions. What evolutionary parameters affect the size
and structure of gene libraries? Are the numbers of
genes in libraries of contemporary species, and the cor-
responding gene locus structure, a random result of evo-
lutionary history, or have these properties been
optimized with respect to individual or population fit-
ness? To aid us in answering those questions, we cre-
ated a simulation of the evolution of Ig gene libraries in
a population of organisms.

Although it is difficult to directly relate rates and
other simulation parameters to actual evolutionary rates,
we may examine the general characteristics of real Ig
gene loci in order to draw conclusions regarding
whether the current Ig variable gene loci have been
optimized in any way. Our results suggest that the Ig
gene locus structure has been optimized by evolution,
based on the following observations. Our simulations
show that the population of organisms, after a stochastic
start, settles into to a steady state with the maximal fit-
ness that can be reached within the limiting conditions
of the chosen parameters. This is achieved by evolution
towards the optimal combination of genome size and
diversity for the given set of parameters. This optimiza-
tion is not observed when the size of the genome is
unlimited and the organisms’ genomes can grow indefi-
nitely. As the Ig gene loci of contemporary organisms
do have limited sizes, it is reasonable to conclude that
there is a maintenance cost that limits the number of Ig
gene segments. If there was no limitation on gene locus
size, we would have expected that large numbers of
genes will have an evolutionary advantage. This advan-
tage would have manifested itself in the largest possible
number of genes appearing in all species. However,
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there are large differences in the number of genes
between species [11]. For example, in the chicken gen-
ome, where the main diversity mechanism is gene con-
version, only one functional V gene for each of the light
and the heavy chains is found in the genome [25,26], and
the fish Raja erinacea has no somatic diversification and
therefore has a larger germline Ig gene diversity with
amino acid sequence differences preferentially distributed
in complementarity-determining versus framework
regions [27]. Additionally, the rat genome has a 353 IgV
genes in the heavy chain (IgVH) while humans and

zebrafish have much lower numbers of IgVH genes (104
and 47, respectively). As the genes are created by gene
duplications, if there were no limiting mechanisms, we
would also expect a smaller degree of diversity in the
genes. However, the data show that more evolutionarily
advanced species do not necessarily have more genes,
and the genes have large diversity [11]. Preference for
diversity is found in the rabbit, where the polymorphism
in the dominant Vy is highly conserved through [28,29].
Sharks also show a selection aimed at increasing the Vi
diversity [30]. Ig locus sizes and arrangement in different
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species may reflect the different diversity-generating
processes they use, for example translocon organization
(locus with multiple V and few or one C genes) versus
clusters (multiple loci each containing one to three V
and one C genes) [31].

Our simulations show that the Phenotype/Genotype
ratio has an optimal range, below which the fitness is too
low, as the benefits of having a large gene library to creates
a large enough Ab repertoire are counteracted by the over-
head of maintaining a large gene library (Figure 3), and
above which the fitness is not significantly increased.

Human IgH variable region gene loci contain up to
ten gene families, with a total number of genes of at
most 123, the diversity of which is quite high. Together
with the diversity of the IgL and with the additional
mechanisms of diversity generation not modeled here,
such as gene rearrangement and junctional diversity, the
Ab repertoire generated in normal individuals, although
it covers only a small fraction of potential receptors, is
evidently sufficient for survival. That is, the Phenotype/
Genotype ratio is probably in the range that allows rea-
sonable diversity and hence fitness, and also a reason-
able gene locus size. Comparing our results to the
repertoire coverage in those species for which repertoire
sequencing for single individuals has been performed, i.
e., fish [23] and humans [24], we see that the fraction of
V genes used is within the range that our simulations
identify as “safe” for the individual.

The binding threshold in the simulation must be more
than the random 0.5 match, to prevent antibodies from
being so “sticky” as to be potentially autoreactive while
minimizing the loss of matching to possible foreign Ag
sequences. On the other hand, a too-large threshold
results in a too-small coverage of the Ag sequence
space. Values should be in the order of 0.55, as for
higher values the coverage becomes too small, and the
organisms become extinct. This result is in agreement
with recent studies showing that low-avidity interactions
between an Ag and the B-cell receptor can induce dele-
tion, receptor editing and T-dependent immune
responses, suggesting that high-avidity binding of the Ag
is not essential [9]. As actual Igs are not bit strings and
the matching to the Ag is through amino acids with a
3-dimensional structure, the optimal matching value
and length that are small enough to cover the maximum
Ag space and large enough to implement self-tolerance
without compromising Ag recognition, as evidenced by
the relatively small size of antibody binding epitope size
relative to the total antigen size.

Our simulation also shows that the gene length should
not be too large, as the possible number of Ag genes
increases exponentially with gene length. Keeping anti-
body genes short, as observed in real species genomes
(relative to the full antigen size as explained above),
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together with the relatively low binding threshold, allows
the Ab repertoire to cover a large portion of the Ag
space and thus aids in the survival of the organisms. As
the number of human Ig variable region genes is by no
means the largest observed, we may also conclude that
the gene duplication and deletion rates were evolutiona-
rily optimized to a range that would not cause the
decrease in fitness shown by our simulation.

When gene deletion or duplication changes the gen-
ome size, the evolutionary process can restore the gene
library size back to its optimal size, and so maintain the
fitness values. If the rate of gene deletion or duplication
is too high, our simulation shows that evolution cannot
restore the library size to the optimal one in a way that
will maintain the organism population’s fitness. From
this we conclude that the range of rates of Ig gene dele-
tion and insertion were also optimized during evolution,
and organisms with too-high rates became extinct
because of their reduced fitness.

While V(D)J recombination is an important contribu-
tor to V region diversity, it is out of the scope of the
model presented here, which deals only with the evolu-
tion of V segments, for the following reasons. (a) Evolu-
tionary changes in the IG gene locus, such as
duplications and mutations, operate on segments and
not on the recombined genes. (b) Most of the length of
the variable region gene is due to the length of the V
segment, hence the insights gained for the length of the
V segment should be applicable for the whole gene. (c)
Most of the inheritable variability in Ig genes is con-
tained within the V segments; while much variability is
added by recombination, it is not inheritable. Addition-
ally, most of the binding to the Ag is done by the
longer V genes and not the D and ] genes, so we
focused our study on them, but the same principles that
govern V gene evolution should also apply to the evolu-
tion of the D and ] genes. Evolution has reduced the
cost of maintaining large segment libraries by generat-
ing diversity through recombination. However the V
segment libraries are still large, and their structures - i.
e., the composition of the families and in the order the
family members appear in the genome - are extremely
diverse in the different vertebrates [10,11] and thus
their evolutionary optimization is still an interesting
question.

The structure of the families of IgV gene is extremely
diverse in the different vertebrates; both the composi-
tion of the families and in the order the family members
appear in the genome vary considerably. As our simula-
tion does not include the somatic diversity, our results
should be more relevant to species that use genomic
diversity as the main diversity generator. Indeed, in the
simulation results (Figure 4) for most cases the size of
families is close to 1, similar to the repertoires found in
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fish species that rely mostly on genomic diversity, and
have a small similarity between genes [11].

Conclusions

Overall, we may conclude that contemporary species’ Ig
gene libraries were optimized by evolution. We believe
that the fact that not all parameter value combinations
yield acceptable results in and of itself shows that some
optimization of the IgV loci has occurred during evolu-
tion. The parameters to which the results are most sensi-
tive are the binding threshold between Ab and Ag, the
length of the Ig gene, and the genome size. The gene
length is optimized so that, on one hand, it would not be
too short, which would make the selection against self
reactivity almost impossible. On the other hand, gene
length would not be too long, so that the Ag space can
be mostly covered. The number of Ig gene genes is opti-
mized so that the cost of maintaining it will not be too
high, and the diversity will not be too low. The affinity
threshold (binding threshold) between the Ab and the Ag
is optimized so that self-tolerance will be possible while
creating a maximum diversity of Igs. Diversity of the Ig
genes, combined with the Ig library size, is thus sufficient
to protect the organisms from almost all possible Ag.
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