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Abstract

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality, resulting primarily from the degeneration and
loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the
susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from
related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS), suggest that morphological properties of motor
neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore
set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability
to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle
in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable
and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice.
None of the parameters we investigated in healthy young adult mice – including motor unit size, motor unit arbor length,
branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular
junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major
determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This
suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are
more likely to determine relative susceptibility in SMA.
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Introduction

Spinal muscular atrophy (SMA) is the most common childhood

form of motor neuron disease affecting 1:6,000–1:10,000 live

births [1]. SMA causes the degeneration of lower motor neurons

leading to muscle atrophy, progressive paralysis and eventually

premature death [2,3]. SMA is clinically divided into four main

sub-types (type I, II, III and IV), based on the age of onset and

severity of symptoms [2]. Type I is the most severe form, with

patients exhibiting disease symptoms before six months of age and

death occurring in the first two years of life [2].

SMA is caused by reduced levels of the ubiquitously expressed

Survival Motor Neuron (SMN) protein [4]. This results from the

deletion or mutation of the Survival Motor Neuron 1 gene (SMN1)

with retention of a near identical gene (SMN2) only capable of

producing low levels of full-length SMN protein [5]. Therefore,

the copy number of SMN2 determines disease severity, with higher

copy numbers resulting in increased levels of full length SMN

protein and less severe disease phenotypes [6].

Previous studies have shown that one of the earliest pathological

events affecting motor neurons in SMA is a breakdown of motor

nerve terminals at the neuromuscular junction (NMJ), rendering

skeletal muscle fibres denervated [7–11]. Interestingly, the rate at

which NMJs degenerate in mouse models of severe SMA varies

considerably between different muscles, indicating differing levels

of vulnerability between distinct pools of motor neurons. For

example, we have previously reported that even within a single

anatomically-defined muscle, the levator auris longus (LAL),

motor neurons innervating the two distinct muscle bands were

affected differently, with those innervating the rostral band (LALr)

being unaffected, while those innervating the caudal band (LALc)

were severely affected [10]. Similarly, a study by Ling and

colleagues revealed a broad spectrum of NMJ vulnerability

between distinct pools of motor neurons in the D7 mouse model

of SMA [12]. It is not yet clear what determines whether the

motor neurons innervating a particular muscle are resistant or

vulnerable to degeneration in SMA. Findings from recent studies
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suggested that motor neurons with a delayed-synapsing develop-

mental phenotype may be associated with resistance to the disease,

but this appears to be more of a modifying factor (when all other

factors are constant) rather than a major determinant of

vulnerability [10,12].

We set out to establish whether core intrinsic morphological

features of motor neurons, such as motor unit size or branching

patterns, predisposed them to degeneration in SMA. We chose to

investigate motor neuron morphology as a possible regulator of

vulnerability in SMA as a result of recent evidence obtained

during studies of the adult onset form of motor neuron disease,

amyotrophic lateral sclerosis (ALS). A growing body of evidence

suggests that SMA and ALS share biochemical pathways [13–15],

indicating that factors regulating relative motor neuron suscepti-

bility in ALS may also underlie susceptibility in SMA. In ALS

there is a growing body of evidence suggesting that large motor

units are the first to degenerate [16–20]. For example, electro-

myographical (EMG) data from ALS patients showed that the

largest and strongest motor units were preferentially affected [17].

This evidence has been replicated in animal models of ALS, such

as the SOD1G93A mouse, where large diameter motor axons were

preferentially decreased in number in the ventral roots [18]. EMG

data has similarly shown that larger motor units innervating fast-

twitch muscles degenerate during the earliest stages of the disease

[19]. Moreover, there is also evidence that the large motor

neurons that are preferentially affected in ALS are also more

vulnerable to age-related changes in healthy mice [20].

Here, we report that, in sharp contrast to ALS, morphological

characteristics of motor neurons, such as motor unit size, do not

determine their relative vulnerability to degeneration in SMA.

Materials and Methods

Ethics Statement
All animal experiments were approved by a University of

Edinburgh internal ethics committee and were performed under

license by the UK Home Office (project license number 60/3891).

Mice
Smn+/2;SMN2 mice (Jackson labs strain no. 005024) on a

congenic FVB background were maintained as heterozygote

breeding pairs under standard SPF conditions in animal care

facilities in Edinburgh. All animal procedures and breeding were

performed in accordance with Home Office and institutional

guidelines. Litters produced from SMA colonies were retrospec-

tively genotyped using standard PCR protocols (JAXH Mice

Resources).

Thy.1-YFP-H mice [21] on a congenic C57Bl/6 background

were originally obtained from Jackson Laboratories and were

maintained under standard SPF conditions in animal care facilities

in Edinburgh.

Muscle Preparation
Neonatal Smn2/2;SMN2 [22] (P5) and unaffected littermates

(P5, P7 and P14) were killed by intra-peritoneal injection of

sodium pentabarbitol. Required muscles were dissected in 0.1 M

phosphate buffered saline (PBS). Whole mount muscles (LAL,

AAL, AS, IS, TS, TVA) were fixed in 0.1 M PBS containing 4%

paraformaldehyde (Electron Microscopy Studies) for 10 min at

room temperature. Muscles were then processed for immunohis-

tochemical staining (see below). For hind limb muscles, the skin

was removed and the limbs were fixed for 15 minutes in 0.1 M

PBS containing 4% paraformaldehyde at room temperature. After

fixation, the muscles were dissected from the limb. Hind limb

muscles were then cryo-protected in 0.1 M PBS containing 30%

sucrose overnight at 4uC and sectioned at 100 mm on a freezing

microtome after embedding in OCT. Hind limb muscles were

then stored in cold 0.1 M PBS and stained using the same

immunohistochemistry protocol as the whole mount muscles.

Thy.1-YFP-H [21] mice of approximately 22 weeks of age were

killed by overdose of anaesthetic via inhalation. Only whole mount

muscle preparations were used for tracing motor units and the

TVA was excluded from analysis due to poor YFP expression in all

muscles examined. The muscles were dissected in 0.1 M PBS then

exposed to TRITC-conjugated a-bungarotoxin (5 mg/ml) for 10

minutes and then fixed in 0.1 M PBS containing 4% paraformal-

dehyde for 15 minutes at room temperature. The muscles were

then mounted in Mowiol (Calbiochem) on glass slides and

coverslipped for subsequent imaging.

Immunohistochemistry
Muscles were permeabilised in 2% Triton X in 0.1 M PBS for

30 minutes and then blocked in 4% bovine serum albumin and

1% Triton X in 0.1 M PBS for 30 minutes. For endplate

occupancy and synapse elimination counts, muscles were then

incubated overnight at 4uC in primary antibodies against

neurofilament (anti-mouse 2H3) (1:200 dilution; Developmental

Studies Hybridoma Bank) and anti-mouse SV2 (1:100 dilution;

Developmental Studies Hybridoma Bank) diluted in blocking

solution. For Schwann cell counts, muscles were incubated

overnight at 4uC in primary antibody anti-rabbit S100 (1:400

dilution; Dako). After washing for 2 h with four changes of 0.1 M

PBS, muscles were incubated with 5 mg/ml TRITC-conjugated

a-bungarotoxin (Biotium, Inc) for 10 minutes at room tempera-

ture. Muscles were then washed in 0.1 M PBS for 5 minutes.

Muscles for NMJ counts and synapse elimination studies were then

incubated with 1:100 dilution of Donkey anti-Mouse Dylight488

(H+L) (Stratech Scientific) in 0.1 M PBS for 4 h at room

temperature. Muscles for Schwann cell counts were incubated

with a 1:60 dilution of Swine anti-rabbit FITC (Dako) in 0.1 M

PBS for 4 hours at room temperature. Muscles were then washed

for 30 minutes in three changes of 0.1 M PBS. Muscles for

Schwann cell counts were then further incubated with TO-PRO3

for 10 minutes and washed with 0.1 M PBS. Muscles were then

mounted in Mowiol (Calbiochem) on glass slides and coverslipped

for subsequent imaging.

Imaging and Analysis
Muscle preparations were viewed using a standard epifluores-

cence microscope equipped with a chilled CCD camera (106ob-

jective; 0.3NA; Nikon IX71 microscope; Hammamatsu C4742-95,

OpenLab software), and a laser scanning confocal microscope

(206objective/0.4NA; 406objective/1.3NA oil objective; 636ob-

jective/1.4NA oil objective; Zeiss LSM 710 confocal). TRITC

labelled preparations were imaged using 543 nm, excitation and

590 nm emission optics; YFP-labelled preparations were imaged

using 488 nm excitation and 520 nm emission optics. For confocal

microscopy, 488 nm, 543 nm and 633 nm laser lines were used

for excitation and confocal Z-series were merged using Zen

software.

Reconstruction of Motor Units
Reconstructions of whole motor units were obtained by

montaging fluorescent micrographs from TRITC-conjugated a-

bungarotoxin and YFP-H labelled muscle preparations in Adobe

Photoshop software. Individual motor neurons were traced by

hand and arbor lengths and endplate areas were measured using

ImageJ software.

Motor Neuron Morphology and SMA
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Quantification and Analysis
For synaptic vulnerability studies, a minimum of 80 endplates

per muscle per mouse, selected at random, were assessed in each

muscle preparation. Muscles with poor staining and/or damage

were excluded from further analysis. For occupancy counts, the

occupancy of individual NMJs was evaluated by categorising

endplates as either fully occupied (neurofilament and SV2 entirely

overlie the endplate), partially occupied (neurofilament and SV2

cover less than 50% of the endplate), or vacant (no neurofilament

or SV2 overlying the endplate).

Motor unit reconstructions were used to quantify morphological

parameters of single motor neurons. Motor unit size was

determined by identifying the number of motor end plates per

axon from traced reconstructions. The total intramuscular arbor

length of motor units was determined by tracing the axons in the

reconstructed images by hand from the point of entering the

muscle all the way to the nerve terminals. The arbor length of the

axons was determined as the sum of the length of the primary

axon trunk and all the distal branches.

The number of branch points in individual motor units was

evaluated by marking the branch points by hand in the motor unit

reconstructions using Adobe Photoshop. Where more than one

motor unit was labelled with YFP, differences in cytosolic levels of

YFP expression were used to distinguish between individual motor

units. The branching pattern of the axons was further investigated

by recreating schematic branching diagrams based on the whole

motor unit reconstructions. The branch order for each terminal

branch was determined by counting the number of branch points

between the nerve terminus and the site where the axon entered

the muscle.

End plate area was determined from the Maximum Intensity Z-

stack images. The outline of the motor endplates was manually

traced in the Image J software to enable the software to calculate

the area.

To evaluate the number of axonal inputs in neonatal muscles,

the number of axons converging on a single endplate was counted.

A minimum of 80 endplates per muscle were counted from each

mouse.

The number of terminal Schwann cells per motor end plate was

quantified by analysing Maximum Intensity confocal projection

images in Adobe Photoshop. To be counted as a tSC, the cell had

to be positive for S100 with a TO-PRO-3 labelled nucleus.

Statistical Analysis
All data were collected into Microsoft Excel spreadsheets and

analysed using GraphPad Prism software. Figures were produced

on Adobe Photoshop. All bar charts shown are mean 6 SEM.

Statistical significance was considered to be p,0.05 for all

analyses. Individual statistical tests used are detailed in figure

legends.

Results

Characterisation of Motor Neuron Vulnerability Across a
Range of Skeletal Muscles in a Mouse Model of Severe
SMA

In order to determine the extent of heterogeneity in motor

neuron pathology occurring between distinct pools of motor

neurons in a severe mouse model of SMA (Smn2/2;SMN2; [22]),

we initially quantified NMJ pathology in ten anatomically distinct

skeletal muscles from various body regions at a late-symptomatic

time-point (postnatal day 5; P5). We selected muscles from the

cranial region, torso and hind limb: levator auris longus (LAL)

(subdivided into caudal (LALc) and rostral (LALr) bands),

abductor auris longus (AAL), auricularis superior (AS) and

interscutularis (IS) (Figure 1A; see [23]); triangularis sterni (TS)

and transversus abdominis (TVA) (Figure 1B); tibilais anterior

(TA), extensor digitorum longus (EDL) and gastrocnemius (GS)

(Figure 1C). As expected, all of the muscles examined showed

evidence of fully occupied (Figure 1D), partially occupied

(Figure 1E) and vacant endplates (Figure 1F), albeit in varying

proportions (Figure 1G). The percentage of fully occupied (i.e.

healthy) endplates was then used to rank muscles with respect to

the severity of NMJ pathology/motor neuron degeneration

(Figure 1G). We used a ‘heat-map’ approach, where red indicates

the most severely affected motor neurons, to colour-code

individual muscles according to the relative vulnerability of their

innervating motor neurons (Figure 1G). The colour assigned to

each muscle was retained for use in further correlation analyses.

In agreement with previous studies on mouse models of severe

SMA [10–12], neither the position of the muscle in the body (e.g.

axial versus appendicular), nerve stump length (e.g. distance from

the spinal cord), nor muscle fibre type correlated with the severity

of motor neuron pathology. For example, both the LALc and

LALr are composed almost exclusively of fast twitch muscle fibres

and are located the same distance from the CNS ([24]; Figure 1G;

Table 1), but were at opposite ends of our vulnerability spectrum.

A similar scenario was observed for the EDL and TA muscles ([25]

(Figure 1G; Table 1).

Intrinsic Morphological Characteristics of Motor Neurons
do not Correlate with Susceptibility to Disease

In order to address whether intrinsic morphological features of

vulnerable and disease-resistant motor neurons correlated with

their relative susceptibility in SMA, we reconstructed entire single

motor units innervating a range of vulnerable and disease-resistant

muscles in healthy young adult Thy.1-YFP-H [21] mice. YFP-H

mice express yellow fluorescent protein (YFP) in a small subset of

motor neurons [21], making it possible to identify, trace and

reconstruct single motor units in the confocal microscope. We

chose to perform these experiments in healthy mice, rather than

SMA mice, to ensure that we were comparing intrinsic morpho-

logical characteristics of motor neurons, rather than their

responses to pathological stimuli in SMA.

To assess and quantify morphological characteristics of individ-

ual motor neurons, whole motor unit reconstructions were created

by montaging fluorescent micrographs of 105 individual motor

units (Figure 2A; N$3 and n$3 for each muscle; see methods).

The reconstructed motor units were subsequently traced using

ImageJ software to enable further quantitative analysis (Figure 2B).

Only muscles where we could whole-mount the entire preparation

were used for these experiments. Attempts to reconstruct whole

motor units from muscles that required sectioning before imaging

(e.g. gastrocnemius) were unsuccessful, so these muscles were not

used for further experiments.

First, we wanted to determine whether motor unit size

correlated with SMA pathology, thereby testing whether larger

motor units were more vulnerable to SMA pathology (c.f. ALS;

[16–20]). Therefore, we quantified the total number of synapses

formed by individual motor neurons innervating each muscle.

Whilst there was considerable variability in motor unit size

between the different muscles examined (Figure 3A), no significant

correlation was found between motor unit size and the relative

vulnerability of a motor neuron to SMA (Figure 3A–B). For

example, muscles with a high level of vulnerability to SMA were

found with both relatively large (AAL) and relatively small (AS)

motor units. Similarly, muscles with a low vulnerability could be

Motor Neuron Morphology and SMA
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identified with relatively large (TS) and relatively small (IS) motor

unit sizes.

Second, we sought to determine whether there was any

correlation between the total length of a motor neuron’s

intramuscular axon arbor and its relative vulnerability or

resistance to SMA pathology. To this end, all intramuscular

axons belonging to a single motor unit were manually traced in

ImageJ to enable the measurement of total arbor length. We

measured the length of the axon from the point of muscle entry

down to the tip of all terminal branches at individual neuromus-

cular junctions. There was no significant correlation between the

total intramuscular arbor length and the susceptibility of a motor

neuron to SMA (Figure 3C–D).

Figure 1. Differential susceptibility to degeneration between motor neurons innervating anatomically distinct muscles in a mouse
model of severe SMA. A – Schematic illustration of the anatomical locations of the LALr, LALc, AAL, AS, and IS muscles in the mouse, collectively
known as the cranial muscles (Figure adapted from Murray et al., 2010). B – Schematic illustration of the anatomical locations of the TVA and TS
muscles in the abdominal and thoracic walls of the mouse. C – Schematic illustration of the anatomical locations of the TA, EDL and GS muscles in the
hind limb of the mouse. D2F – Representative confocal micrographs showing differing levels of synaptic pathology at neuromuscular junctions in P5
Smn2/2;SMN2 mice (green = neurofilament and SV2; red = bungarotoxin-labelled acetylcholine receptors). D shows an example of a healthy, fully
occupied motor endplate. E shows an example of a partially occupied motor endplate, where the motor nerve terminal (green) has retracted from the
majority of the motor endplate. F shows an example of a vacant motor endplate where the nerve terminal has completely retracted from the motor
endplate. Scale bars = 5 mm. G – Bar chart (mean6SEM) showing the percentage of fully occupied endplates in healthy littermate controls (white bars;
N = 3 mice) and Smn2/2;SMN2 mice (coloured bars; N = 3 mice). Mean values were used to rank the muscles from low vulnerability (yellow) to high
vulnerability (red). This colour coding system has been applied to subsequent figures in order to distinguish muscles with vulnerable and disease-
resistant motor neurons.
doi:10.1371/journal.pone.0052605.g001
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Third, we wanted to determine whether there was any

correlation between the size or form of neuromuscular synapses

formed by individual motor neurons and their susceptibility to

SMA. Morphological parameters of individual neuromuscular

junctions formed by a motor neuron were assessed by qualitative

and quantitative assessment of post-synaptic acetylcholine recep-

tors in reconstructed single motor units. There were no overt

qualitative differences between the gross morphology of motor

endplates in vulnerable and disease-resistant muscles (Figure 3E).

Similarly, we did not observe a correlation between endplate area

and vulnerability to synaptic pathology in SMA (Figure 3F).

Fourth, we asked whether the branching pattern of individual

motor neurons had an impact on their relative susceptibility to

SMA. By examining branching patterns of motor neurons in ALS,

Valdez and colleagues showed that the distribution of NMJs, with

respect to their branch points within the motor unit, influenced

their vulnerability [20]. Therefore, to analyse motor neuron

branching patterns in motor units with differing susceptibilities to

SMA we initially quantified the number of branch points within

individual motor units. There was no significant correlation

between the number of branch points and the susceptibility of a

motor neuron to SMA pathology (Figure 4A–B). We subsequently

constructed branching diagrams for individual motor units from a

range of vulnerable and disease-resistant muscles. Representative

reconstructions of single motor units from each of the six muscles

examined are shown in Figure 5A. Comparison of the percentage

of branch points per branching order revealed no difference

between vulnerable and disease-resistant motor neurons

(Figure 5B).

Taken together, these findings suggest that core intrinsic

morphological properties of motor neurons are not a key factor

determining a motor neuron’s relative susceptibility to degener-

ation in SMA.

Motor Neuron Susceptibility in SMA is not Determined by
Intrinsic Differences in Synaptic Plasticity

At birth, the majority of neuromuscular junctions receive inputs

from more than one axonal input. Over the three weeks after

birth, these supernumerary inputs asynchronously withdraw from

motor endplates via a dynamic process known as synapse

elimination, thereby establishing the mono-innervation pattern

characteristic of mature neuromuscular junctions [26]. Given that

there are considerable similarities between the processes of

synaptic degeneration at the neuromuscular junction in SMA

and axon pruning at the neuromuscular junction during develop-

Table 1. Muscle fibre twitch types of muscles analysed from
Smn2/2;SMN2 mice.

Muscle Twitch Type

LALr Fast

EDL Fast

IS –

TS Slow

TVA Slow

GS Mixed

TA Fast

AS Slow

AAL Fast

LALc Fast

Table 1. Table showing the muscle fibre type for muscles collected from Smn2/
2;SMN2 mice (see Figure 1G). Muscles are ranked in order of vulnerability to
SMA, from low at the top to high at the bottom. Muscle fibre type is based on
data from previously published studies [10,23,25].
doi:10.1371/journal.pone.0052605.t001

Figure 2. Reconstruction of entire single motor units from Thy.1-YFP-H mice. A – Representative example of a low magnification confocal
montage showing YFP-expressing motor neurons innervating the LALr muscle from a Thy.1-YFP-H mouse. Whole mount muscles were dissected and
incubated with TRITC-conjugated a-bungarotoxin to label motor endplates (red). B – An example trace of one motor unit from the LALr shown in
panel A. A total of 105 entire motor unit reconstructions were produced for subsequent analyses of motor unit morphology.
doi:10.1371/journal.pone.0052605.g002

Motor Neuron Morphology and SMA
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Figure 3. No apparent correlation between morphological properties of motor neurons and their susceptibility to SMA. A/B – Bar
chart (Mean6SEM; A) and scatter plot (B) of motor unit sizes in a range of vulnerable (red bars in A) and disease-resistant (yellow bars in A) muscles,
determined by obtaining the total number of synapses formed by a single motor neuron. No significant correlation was found between motor unit
size and the relative susceptibility of a motor neuron (P.0.05, Spearman correlation analysis; N$3 mice per muscle). C/D – Bar chart (C) and scatter

Motor Neuron Morphology and SMA
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mental synapse elimination [27], we wanted to establish whether

motor neurons that are more susceptible to SMA display different

dynamics during normal developmental synapse elimination.

Synapse elimination rates were determined across a range of

vulnerable and disease-resistant muscle by quantifying the number

of axonal inputs to individual motor endplates in healthy littermate

control mice at P7 and P14 (Figure 6A–B). Quantitative analysis

showed that there was no significant correlation between the

percentage of polyinnervated neuromuscular junctions at P7 or

P14 and the level of susceptibility to SMA (Figure 6C–D), or

between the average number of axon inputs to neuromuscular

junctions at P7 or P14 and the level of susceptibility to SMA

(Figure 6E–F). Thus, motor neurons that were more susceptible to

degeneration in SMA did not have different capabilities for

intrinsic remodelling compared to those that were resistant to

degeneration.

Motor Neuron Vulnerability does not Correlate with the
Number of Terminal Schwann Cells at the Neuromuscular
Junction

Terminal Schwann cells (tSCs) are a specialised form of glial cell

that overlies the nerve terminal of the motor neuron at the

neuromuscular junction. It is well documented that tSCs are

intricately involved in the development, maintenance, and stability

of neuromuscular junctions [28]. We therefore sought to

determine whether there was a difference in the complement of

tSCs associated with neuromuscular junctions between motor

neurons that are vulnerable and disease resistant in SMA.

tSCs were immunohistochemically labelled in whole-mount P5

muscles from wild-type P5 mice using primary antibodies raised

against S100 protein and the nuclear marker TO-PRO-3

(Figure 7A–B). There was no qualitative difference observed

between tSCs in all muscles examined: all neuromuscular

junctions had tSCs capping the synapse, with only a minimal

extension of tSC cytoplasm beyond the boundaries of the motor

endplate. Quantitative analyses of tSCs revealed no correlation

between the mean number of tSCs at neuromuscular junctions

and the relative susceptibility of the motor neuron to SMA

(Figure 7C–D).

Discussion

The current study demonstrates that, in sharp contrast to ALS,

morphological characteristics of motor neurons do not determine

their relative susceptibility to degeneration in SMA. Neither the

position of the innervated muscle in the body, nor the muscle fibre

type being innervated, modulated the susceptibility of a motor

neuron. Similarly, we could find no correlation between factors

such as motor unit size, total length of intramuscular axonal

arbors, motor unit branching patterns, numbers of synaptic glia

and intrinsic remodelling capabilities, in healthy young adult mice,

and the relative susceptibility of some motor neurons in SMA.

The clear difference between our findings in a mouse model of

SMA and previous studies of ALS patients and mouse models

[19,29,30] was somewhat surprising. In particular, given that there

is a growing body of evidence suggesting that the molecular and

biochemical pathways underlying SMA and ALS are linked [13–

15], it might have been expected that factors underlying motor

neuron susceptibility would similarly be shared between the two

conditions. The most parsimonious explanation for our findings is

that motor neurons affected in SMA are targeted during the early

stages of life, whereas motor neuron pathology in ALS is mostly

associated with the later years of life. The relative contribution of

morphological characteristics to the vulnerability of motor neurons

in ALS may therefore represent factors that only manifest in the

aging nervous system [20].

As morphological characteristics of motor neurons do not

appear to be a major determinant of their relative susceptibility to

degeneration in SMA, it remains unclear what factors are

regulating their vulnerability. One possibility is that intrinsic

differences persist between pools of vulnerable and disease-

resistant motor neurons at a molecular level. The key determining

factor of a motor neuron’s relative susceptibility to degeneration in

SMA could therefore be dependent upon baseline levels of SMN

protein. It has recently been established that the splicing efficiency

plot (D) of total intramuscular arbor lengths from motor neurons innervating a range of vulnerable and disease-resistant muscles. No significant
correlation was found between total intramuscular arbor length and the relative susceptibility of a motor neuron (P.0.05, Spearman correlation
analysis; N$3 mice per muscle). E – Example fluorescence micrographs of motor endplates from each muscle group investigated. Scale bars = 30 mm.
F – Scatter plot of endplate areas (mm2) in a range of vulnerable and disease-resistant muscles. No significant correlation was found between the size
of neuromuscular synapses and the relative susceptibility of innervating motor neurons (P.0.05, Spearman correlation analysis; N$3 mice per
muscle).
doi:10.1371/journal.pone.0052605.g003

Figure 4. Motor unit branching patterns do not influence susceptibility to degeneration in SMA. A/B – Bar chart (mean6SEM; A) and
scatter plot (B) showing the number of branch points in motor units from a range of vulnerable (red bars in A) and disease-resistant (yellow bars in A)
muscles. No significant correlation was found between the number of branch points and the relative susceptibility of a motor neuron (P.0.05,
Spearman correlation analysis; N$3 mice per muscle).
doi:10.1371/journal.pone.0052605.g004

Motor Neuron Morphology and SMA
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Figure 5. Further analysis of motor unit branching patterns revealed no influence on the susceptibility to degeneration in SMA. A –
Representative examples of individual branching diagrams from single motor units innervating the range of vulnerable and disease-resistant muscles

Motor Neuron Morphology and SMA
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analysed. Note the similarities in overall branching patterns in all examples shown. B – Bar charts (mean6SEM) showing the percentage of branch
points per branching order in motor units innervating the range of vulnerable and disease-resistant muscles analysed. Once again, note the similarity
in distribution of branch orders in all examples shown.
doi:10.1371/journal.pone.0052605.g005

Figure 6. The relative susceptibility of a motor neuron to SMA is not determined by differences in intrinsic remodelling capabilities.
A/B – Representative confocal micrographs showing immunohistochemically labelled neuromuscular junctions from a littermate control SMA mouse
(Smn+/2;SMN2) at P7 (A) and P14 (B). White arrows in A show two axonal inputs (green) converging onto a single motor endplate (red), illustrating a
polyneuronally innervated neuromuscular junction (the ‘immature’ state). The white arrow in B shows how a single axonal input is innervating the
motor endplate, illustrating a mononeuronally innervated neuromuscular junction (the ‘mature’ state). C/D – Scatter plots showing the incidence of
polyneuronally innervated endplates at P7 (C) and P14 (D) across a range of vulnerable and disease-resistant muscles in healthy littermate controls.
There was no significant correlation between the percentage of polyinnervation (as a marker of the rate of synaptic remodelling during synapse
elimination) and the relative susceptibility of the motor neuron at either P7 or P14 (P.0.05, Spearman correlation analysis; N = 3 mice per age group).
E/F – Scatter plots showing the average number of axon inputs to motor endplates at P7 (E) and P14 (F) across a range of vulnerable and disease-
resistant muscles in healthy littermate controls. As for the assessment based on percentages of polyinnervation, there was no significant correlation
between the average number of axon inputs (as a marker of the rate of synaptic remodelling during synapse elimination) and the relative
susceptibility of the motor neuron at either P7 or P14 (P.0.05, Spearman correlation analysis; N = 3 mice per age group). Note that, as expected,
statistical analyses on C and D gave identical results to those on E and F as data were generated from the same experimental material.
doi:10.1371/journal.pone.0052605.g006
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of exon 7 in the SMN2 gene is lower in motor neurons compared

to other cells in the spinal cord [31], and perhaps further

differences in splicing efficiency exists between distinct pools of

motor neurons. Alternatively, it is possible that other molecular

differences, such as intrinsic levels of neuroprotective factors, could

account for the relative susceptibility of some motor neurons.

Although intrinsic differences in the molecular composition of

vulnerable and disease-resistant motor neurons may contribute to

their relative susceptibility to degeneration, our current findings

also raise the possibility that interactions between motor neurons

and other cell types may also be important. For example, intrinsic

defects in skeletal muscle have been identified in SMA [32]. It is

possible that intrinsic pathological changes in skeletal muscle

pathology may have consequences for the stability of innervating

motor neurons [33]. Similarly, deficiencies in central inputs onto

motor neurons in the spinal cord have been identified in SMA

mouse models [34,35]. Differences in sensory-motor connectivity

between vulnerable and disease-resistant motor neurons may

therefore be an underlying cause of differential susceptibility. It is

also possible that interactions between motor neurons and glial

cells in the spinal cord and/or peripheral nerve influence their

relative vulnerability. Studies of ALS have revealed potentially

important roles for astrocytes, microglia and Schwann cells [36–

37]. These cell types are therefore worthy of further investigation

in SMA. However, data from the current study suggests that at

least one type of glial cell, terminal Schwann cells present at the

NMJ junction, appear not to play a major role in mediating motor

neuron susceptibility.

Our study highlights the importance of animal models for

examining factors regulating disease pathogenesis in SMA. The

decision to examine motor unit morphology in healthy young

adult mice expressing YFP (a requirement to obtain strongly-

labelled motor neurons in the absence of pathological stimuli) does

leave open the remote possibility that subtle intrinsic morpholog-

ical properties of motor neurons specific to SMA mouse models

may contribute to relative vulnerability in disease. However, the

finding that motor neurons in pre-symptomatic SMA mice are

grossly indistinguishable from those in wild-type littermates [11],

suggests that this is unlikely to be the case. The extent to which

mouse models of SMA accurately reproduce the human condition

also remains unclear [38,39]. The ability to reproduce the kind of

experimental data presented in the current study in human

patients is obviously limited, but recent developments in human

stem cell technology suggest that it may soon be possible to

recreate motor units from motor neuron disease patients in a dish

[40,41]. Such experimental models may be particularly beneficial

Figure 7. The number of terminal Schwann cells at the
neuromuscular junction does not influence the relative
susceptibility of motor neurons in SMA. A/B – Example confocal
micrographs showing immunohistochemically labelled terminal
Schwann cells (S100; green) at neuromuscular junctions in the LALr
(A) and AAL (B) muscles. Nuclei were labelled with TOPRO-3 (blue) and
motor endplates were labelled with bungarotoxin (red). The bottom left
panel of A and B shows a merge of all three individual channels. Images
were acquired on a confocal microscope using sequential capture to

ensure no bleed-through from one channel to the next. The arrows in A
show a single motor endplate (in the BTX channel), with clear terminal
Schwann cell cytoplasm above it (in the S100 channel), but with two
nuclei present within the S100 footprint (TO-PRO3 channel). This NMJ
was therefore assessed to have 2 associated terminal Schwann cells.
The arrows in B show two distinct motor endplates (in the BTX channel),
each with clear terminal Schwann cell cytoplasm above it (in the S100
channel), but with only one nucleus present within the S100 footprint
(TO-PRO3 channel) at each NMJ. These NMJs were therefore assessed to
have 1 associated terminal Schwann cell each. Scale bars = 5 mm. C – Bar
chart (mean6SEM) showing the mean number of terminal Schwann
cells (tSCs) per NMJ in a range of muscles from P5 healthy littermate
control mice (N = 3 mice). D – Scatter plot showing the number of tSCs
per NMJ in each muscle examined, plotted against the relative
vulnerability of motor neurons innervating that muscle. Statistical
analysis showed that there was no significant correlation between the
number of tSCs per NMJ and the susceptibility of the motor neuron in
SMA (P.0.05, Spearman correlation analysis).
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in identifying factors that render some motor neurons more

susceptible to degeneration than others in SMA.
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