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Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout
is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation
algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have
made the process of identifying the effects of geneticmodification on desirable phenotypes challenging. Furthermore, a vast number
of reactions in cellular metabolism often lead to a combinatorial problem in obtaining optimal gene knockout. The computational
time increases exponentially as the size of the problem increases.This work reports an extension of Bees Hill Flux Balance Analysis
(BHFBA) to identify optimal gene knockouts to maximise the production yield of desired phenotypes while sustaining the growth
rate. This proposed method functions by integrating OptKnock into BHFBA for validating the results automatically. The results
show that the extension of BHFBA is suitable, reliable, and applicable in predicting gene knockout. Through several experiments
conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as model organisms, extension of BHFBA has shown
better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes.

1. Introduction

The rapid development of genetic manipulation techniques
has made the alteration of microorganisms for different
purposes popular in recent years. Genetic manipulation of
microorganisms aims to increase the yields of biocompounds
or decrease the production of by-products [1]. The process
of developing computational models to simulate the actual
processes inside cells is growing rapidly because the models
are of central importance to the investigation of general bio-
logical functions and applications in the area of biomedicine
and biotechnology [2]. In nature, microorganisms evolve
by optimising their growth rather than by overproducing
specific chemical compounds due to metabolic responses to
the history of selective pressures. Hence, retrofitting cellular
metabolism is essential to economically developing high-
yield cellular production systems. However, data ambiguity

due to the complexities of the metabolic networks makes
the effects of genetic modification on the desirable pheno-
types difficult to predict. Furthermore, the huge number of
reactions performed in the course of cellular metabolism
often leads to a combinatorial problem in obtaining optimal
gene knockout due to the large solution space [3]. The
computational time increases exponentially as the size of the
problem increases. As mentioned by de Paz et al., the use of
computationalmethods is essential. One of the possible appli-
cations is in the use of Artificial Intelligence techniques [4].
In recent years, rational design principles based on genetic
engineering have been implemented to retrofit microbial
metabolism, a process that is widely known as metabolic
engineering. In metabolic engineering, the main objective
is to increase target metabolite production through genetic
engineering. Gene knockout is one of the most common
genetic engineering techniques in which one of an organism’s
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genes is made inoperative. To date, this technology has been
successfully applied in many organisms, from unicellular
eukaryotes to mammals, including human cells.

Computational algorithms have been developed to iden-
tify the gene knockout to obtain improved phenotypes. Bur-
gard et al. developed the first rational modelling framework
(known as OptKnock) for introducing a gene knockout,
leading to the overproduction of a desired metabolite [5].
OptKnock functions by identifying a set of gene (reaction)
deletions tomaximise the flux of a desiredmetabolite without
affecting the operation of the internal flux distribution so that
growth or another objective function is optimised.

OptKnock uses mixed integer linear programming
(MILP) to formulate a bilevel linear optimisation that is a
promising method of finding the global optimal solution.
OptGene is an extended approach of OptKnock, which
formulates the in silico design problem using a Genetic
Algorithm (GA) [6]. Metaheuristic methods are capable of
producing near-optimal solutions with reasonable compu-
tation time. Furthermore, the objective function that can
be optimised is flexible. OptGene is developed in two rep-
resentation schemes: binary or integer. The binary repre-
sentation is more complex and produces solutions with a
larger number of knockouts even though it is closer to the
natural evolution ofmicrobial genomes. Although the integer
representation results in a more compact genome, it still
encounters problems as it needs to define the number of
gene knockouts a priori [7]. Hence, Rocha et al. proposed
two optimisation algorithms, Simulated Annealing (SA),
and Set-based Evolutionary Algorithms (SEAs), to allow
the automatic determination of the best number of gene
deletions to achieve a given productivity goal. Still, these
methods do not guarantee to reach optimal solutions due
to their stochastic nature [8]. The computational algorithms
discussed in this paper are based on constraint-basedmodels.
According to Egen and Lun, to date, more than 50 organism-
specific genome-scale models have been developed and used
in various applications, and it is believed that constraint-
based models can produce more accurate predictions [9].

A hybrid of BA and FBA (BAFBA) was proposed by
Choon et al. [10]. BAFBA showed better performance in
predicting optimal gene knockout in terms of growth rate and
production yield. The concept of BAFBA is based on Bees
Algorithm (BA) introduced by Pham et al. [11]. BA is a typ-
ical meta-heuristic optimisation approach, which has been
applied to various problems, such as controller formation
[12], image analysis [13], and job multiobjective optimisation
[14]. The concept of BA is based on the intelligent behaviour
of honeybees. It locates the most promising solutions and
selectively explores their neighbourhoods looking for the
global maximum of the objective function. BA is efficient
in solving optimisation problems, according to previous
studies. Nevertheless, BA is relatively weak in local search
activities due to its dependency on random search [15].
BHFBA, a hybrid of Hill climbing and the neighbourhood
searching strategy of BAFBA, was proposed to improve the
performance of BAFBA by using the Hill climbing algorithm
as a promising algorithm in finding the local optimum
[16]. In this paper, we propose an extension of BHFBA

by integrating OptKnock into BHFBA for validating the
results automatically. This paper shows that the extension of
BHFBA is not only capable of solving large problems in short
computational time but also improves the performance in
predicting optimal gene knockout.We also present the results
obtained by extension of BHFBA in four case studies, with
E. coli (Escherichia coli) iJR904, B. subtilis (Bacillus subtilis),
andC. thermocellum (Clostridium thermocellum) as the target
microorganisms. In addition, we conducted a benchmarking
to test the performance of the hybrid Bee algorithm and Hill
Climbing algorithm.

This paper is organised as follows. First, the materials
and experimental setup are described. Then, the problem
formulation is introduced, and the details of the BAFBA and
the extension of BHFBA are described. Next, experimental
results are presented.Then, the obtained results are discussed,
reviewing the contributions of this work. Finally, this paper is
summarised by providing the main conclusion and addresses
future developments.

2. Materials and Methods

2.1. Materials. In this study, we used E. coli, B. subtilis, and C.
thermocellum models to test the operation of the extension
of BHFBA. E. coli iJR904 (http://bigg.ucsd.edu/) was used
to test the operation of BAFBA [17]. The E. coli model
contains 904 genes, 931 unique biochemical reactions, and
761metabolites.We used E. coli iJR904 in this work to test the
reliability of BHFBA because this model was used in previous
studies [5, 6, 10]. This model is preprocessed through several
steps based on biological assumptions and computational
approaches before it was applied.This results in the reduction
of the size of the model to 667 reactions.The secondmodel is
B. subtilis iBsu1103 [18] (http://genomebiology.com/content/
supplementary/gb-2009-10-6-r69-s4.xml), which includes
1437 reactions associated with 1103 genes. We preprocessed
this model to reduce the size to 763 reactions. The last
model is C. thermocellum (ATCC 27405) iSR432 model [19]
(http : //www.biomedcentral.com/content/supplementary/
1752-0509-4-31-s3.xml), which contains 577 reactions, rep-
resenting the function of 432 genes. The preprocessing of
this model reduced the size to 351 reactions. The growth
rate and BPCY were used in this work. The unit for growth
rate is hour−1, while the unit for BPCY is milligram (gram-
glucose.hour)−1.

We compared the results with those of previous reports in
the literature [5, 6, 10].The experiments were conducted on a
2.3 GHz Intel Core i7 processor and 8GBRAM workstation.
We carry out 100 individual runs in the experiment to test the
efficiency of BHFBA, and the result shown is the best result
among the runs.

2.2. Method

2.2.1. Problem Formulation. The problem of identifying opti-
mal gene knockout from biological models can be formulated
as follows. Suppose that a model that contains the stoichio-
metric matrix S provides the linear relationship of the model
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Figure 1: BAFBA flowchart. Note. Red-dotted box is Flux Balance Analysis which is hybridized into standard BA as an objective function in
order to predict the effect of gene knockout.

between the flux rates of the reactions (k) and the derivatives
of the reactant concentrations (x). The matrix is a constant,
while the flux vector is a variable. Assume that there are 𝑚
reactants and 𝑛 reactions between them.

Flux vector:

k = (V
1

, V
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, . . . , V
𝑛

)
T
. (1)

Concentration vector:
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)
T
. (2)

Dynamic mass balance equation:

𝑑X
𝑑𝑡
= Sk, (3)

where T represents the time.
The chemical elements, ionic charge, and biochemical

moieties must be balanced in the stoichiometric matrix. The
objective is to find the optimal gene knockout to improve
the product yields of industrially important chemicals while
sustaining the growth rate of the microorganism. This is
commonly performed using linear programming, defined as
follows:

maximise cTx

subject to Sk = 0,

lowerbound ≤ x ≤ upperbound,

(4)

where k represents the vector of fluxes and S is the stoi-
chiometric matrix. The expression (cTx) to be maximised

or minimised is known as the objective function, where c
is a vector of weights, indicating how much each reaction
contributes to the objective function. The inequalities of the
lower bound and upper bound define the maximal rates of
flux for every reaction corresponding to the columns of the
stoichiometric matrix.

2.2.2. A Hybrid of BA and FBA (BAFBA). Figure 1 shows the
flow of the BAFBA. The BAFBA is initialised by mimicking
a population of bees. In identifying gene knockout, a bee
is represented by a binary variable to indicate the absence
or the presence of genes in the reaction. In this study, the
BAFBA is started with the bees being placed randomly in
the search space. The fitness of the sites visited by the bees is
evaluated using the FBA. Bees with the highest fitness would
be denoted as “selected bees” and the sites they visited would
be chosen for a neighbourhood search. A small amount of
“selected bees” was expected to encourage local exploitation.
After many tests, we found that an appropriate maximum
“selected bees” was (1/4) × 𝑛. We chose and limited the
amount of selected bees within the range [1, (1/4) × 𝑛] to
prevent the selection of too many sites for a neighbourhood
search. Each bee was required to go through this repetitive
local search neighbourhood procedure until the best possible
answer was obtained. Meanwhile, the remaining bees were
assigned randomly to search for new potential solutions.

Before attempting to propose the extension of BHFBA,
it is crucial to find the limitations of the BAFBA [10] and
BHFBA [16].The dependence of BA on random searchmakes
it relatively weak in local search activities, and it suffers
from slow convergence due to the repetitive iteration of
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Figure 2: BHFBA flowchart. Note. Red-dotted box is Hill Climbing algorithm which is hybridized into BAFBA in order to improve the local
search performance of BAFBA.
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Figure 3: Bee representation of metabolic genotype.

the algorithm. The repetition of unnecessary similar process
in the neighbourhood search causes additional computa-
tional time in generating the solution. In addition, the results
need to be validated manually.

2.2.3. An Extension of Bees Hill Flux Balance Analysis
(BHFBA). In this paper, we propose the extension of BHFBA
to identify optimal gene knockout. It is proposed to overcome
the limitations of BAFBA and previous reports.The extension
of BHFBA in our work differs from the BAFBA in local
search activities and in validating the results.The extension of
BHFBA improves the algorithm by hybridisingHill Climbing
algorithm with BAFBA and by integrating OptKnock into
BHFBA. Figure 2 shows the overall framework of BHFBA.
Important steps are explained in the following subsections.

Bee Representation of Metabolic Genotype. One or more genes
can be involved in each reaction in a metabolic model. In
this paper, each of those genes is represented by a binary

variable, where 0 represents the absence of the gene and 1
represents the presence of the gene in the reaction. These
variables form a “bee” representing a specific mutant that
lacks somemetabolic reactions when compared with the wild
type (Figure 3).

Initialisation of the Population. The algorithm starts with an
initial population of 𝑛 scout bees. Each bee is initialised
as follows. Assume a reaction with 𝑛 genes. Bees in the
population are initialised by randomly setting the present or
absent status of each gene. Initialisation of the population is
performed randomly so that all bees in the population have
an equal chance of being selected. The result might not truly
reflect the population if it is performed with a bias setting.

Evaluation of the Fitness (Flux Balance Analysis). Each site
is given a fitness score that determines whether more bees
should be recruited or whether the site should be abandoned.
Here, we use the FBA to calculate the fitness score for each
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site (see (4)). In this paper,maximisation of growth is applied.
After maximising cellular growth, mutants with growth rate
higher than 0.1 continue the process by maximising the
desired product flux at fixed optimal cellular growth value.
Hence, we enhance the yield of our desired products at a
fixed optimal cellular growth. The production yield is the
maximum amount of product that can be generated per
unit of substrate. The following shows the calculation for
production yield:

Production yield

=
production rate production (mmol/gm)
consumption rate substrate (mmol/gm)

,
(5)

where mmol is millimole and gm is gram.
We used biomass-product coupled yield (BPCY) as the

fitness score in this work. According to Soons et al., metabolic
networks can function in living cells under various biological
objectives depending on the relevant organism and its genetic
and environmental context. However, biological objectives
are only applicable for analysing a number of organisms in
terms of microbial metabolic engineering. It is desirable to
couple the formation of the desired product to growth [20].
The calculation for BPCY is as follows:

BPCY = production yield (mmol/gm)

× growth rate (mmol ⋅ hr/gm ⋅ hr) ,
(6)

where mmol is millimole, hr is hour, and gm is gram.
The flow of calculating the fitness function is shown in

Figure 4.

Neighbourhood Search (Hill Climbing Algorithm). This algo-
rithm carries out neighbourhood searches in favoured sites

(m) using the Hill Climbing algorithm. Hill climbing is an
iterative algorithm that starts with an arbitrary solution to
a problem and then attempts to find a better solution by
incrementally changing a single element of the solution. In
this paper, the initial solution is the𝑚 favoured sites from the
population initialised with the BA. The algorithm starts with
the solution and makes small improvements to it by adding
or reducing a bee to the sites. We define the value of initial
size of patches (ngh) and use the value to update the site (𝑚)
identified in the previous step to search the neighbourhood
area. In this paper,𝑚 is equal to 15 and ngh is equal to 30.The
values are obtained by conducting a small number of trials
with the range of 10 to 25 and 20 to 35, respectively. This step
is important because there might be better solutions in the
neighbourhood than the original solution.

Random Assignment and Termination. The remaining bees in
the population are sent randomly around the search space
to scout for new feasible solutions. This step is performed
randomly to avoid overlooking potential results that are not
in the initial range. These steps are repeated until either
the maximum loop value is met or the fitness function has
converged. In the end, the colony has two components in
its new population—representatives from each selected patch
and other scout bees assigned to perform random searches.

OptKnock Validation. Originally, the result from BHFBA is
solely validated through literature. In this paper, we use
OptKnock to evaluate the result obtained from the BHFBA.
OptKnock is used to evaluate the results by using the list of
gene deletions from the BHFBA. If the difference between
the BPCY obtained from the BHFBA and the maximum
production rate obtained by OptKnock is less than 0.001,
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the list is considered a valid solution.This saves the biologists’
time as they can consider only the valid solution to carry out
their laboratory experiments. The list of genes in this paper
is the best valid solution among 100 individual runs. After
the validation, most of the knockout genes are proven to be
related in improving the desired products through literature.
Figure 5 shows the flow of the validation.

3. Results and Discussion

3.1. Benchmark Functions. In this paper, we propose an
improved method, extension of BHFBA, to test the per-
formance of the BHFBA. For evaluation, we conduct a
benchmarking analysis. However, benchmark functions can
only be tested on BH and BA because FBA is an objective
function. Hence, we test the benchmark functions on BH and
BA in this study. Because BA is used to look for a maximum,
the functions are inverted before the algorithm is applied.
The De Jong, Martin and Gaddy, Schwefel, and Griewangk
functions are used in this study. These functions are a set of
common parametric test problems.The simplest test function
is De Jong. It is continuous, convex, and unimodal. Martin
and Gaddy function is a unimodal function. The Schwe-
fel function is complex, with many local minima. Lastly,
Griewangk function has many widespread local minima.
However, the location of the minima is regularly distributed.
We carry out 100 individual runs to test BH and BA.

Table 1 shows the mathematical representation of the
functions. Table 2 shows the mean and standard deviation
(STD) of the De Jong, Martin and Gaddy, Schwefel, and
Griewangk functions tested on both the original BA and BH.
The results show that BH performs better than the BA. All
functions had a low STD, indicating that the result from each
run is very close to the mean. In conclusion, the stability of
the proposed method is high given that the difference in the
result of each individual run is small. In addition, the means
for both algorithms are similar, indicating that BH is indeed

Table 1: Mathematical representation of De Jong, Martin and
Gaddy, Schwefel, and Griewangk functions.

Name Mathematical representation

De Jong max𝐹 = (3905.93) − 100(𝑥
1

2

− 𝑥

2

)

2

− (1 − 𝑥

1

)

2

Martin and
Gaddy min𝐹 = (𝑥

1

− 𝑥

2

)

2

+ (

𝑥

1

+ 𝑥

2

− 10

3

)

2

Schwefel min𝐹 = 418.9829 ∗ 𝑛 +
𝑑

∑

𝑖=1

−𝑥

𝑖

∗ sin(√




𝑥

𝑖









)

Griewangk min𝐹 = 1

(0.1 + ∑

𝑛

𝑖=1

(𝑥

𝑖

2

/4000) − ∏

𝑛

𝑖=1

cos ((𝑥
𝑖

/

√

𝑖) + 1))

Table 2: Obtained fitness value of all benchmark functions.

Function Mean STD
BA BH BA BH

De Jong 3.91𝑒 + 03 3.90𝑒 + 03 0.000504 4.79e − 13
Martin
and Gaddy 11.1083 11.1111 0.002797 0

Schwefel 8.38𝑒 + 02 8.38𝑒 + 2 2.205𝑒 − 05 0
Griewangk −0.5263 −0.5263 5.76765𝑒 − 09 0
Note. The bold numbers represent the best result.

reliable because the results obtained from BH are consistent
with the results from previous reports.

3.2. Production of Succinic Acid and Lactic Acid in E. coli. In
this paper, the extension of BHFBA is compared with the
previous works: BAFBA, SA + FBA, and the conventional
OptKnock. Tables 3 and 4 summarise the results obtained
from the BHFBA for succinic acid and lactic acid production
in E. coli. As shown in the results, this method produces
better results than the previous studies in terms of growth rate
and BPCY and is able to identify potential genes that can be
removed.



BioMed Research International 7

Table 3: Comparison between different methods for production of Succinic acid by E. coli.

Method Growth rate (1/hr) BPCY List of knockout genes
BHFBA 0.7988 0.93656 PTAr∗∗, RPE, SUCD1i
BAFBA [9] 0.62404 0.66306 FUM, PTAr∗∗, TPI∗∗

SA + FBA [5] N/A 0.39850 ACLD19∗, DRPA, GLYCDx, F6PA, TPI∗∗, LDH D2, EDA, TKT2, LDH D-
OptKnock [3] 0.28 N/A ACKr, PTAr∗∗, ACALD∗

Note. The bold numbers represent the best result. N/A: not applicable. ∗∗Common genes in either 2 methods. BPCY is in gram (gram-glucose⋅hour)−1.

Table 4: Comparison between different methods for production of Lactic acid by E. coli.

Method Growth rate (1/hr) BPCY List of knockout genes
BHFBA 0.62501 5.2241 FBP, PGK, ACALD∗∗

BAFBA [9] 0.58586 3.5656 GAPD, L LACD2, PTAr∗∗

SA + FBA [5] N/A 0.39850 ACLD19∗∗, DRPA, GLYCDx, F6PA, TPI, LDH D2, EDA, TKT2, LDH D-
OptKnock [3] 0.28 N/A ACKr, PTAr∗∗, ACALD∗∗

Note. The bold numbers represent the best result. N/A: not applicable. ∗∗Common genes in either 2 methods. BPCY is in gram (gram-glucose⋅hour)−1.

Table 3 shows that the extension of BHFBA performs
better than those proposed in previous studies with a
growth rate of 0.7988 and BPCY of 0.93656. In addition,
Figure 6 shows that the extension of BHFBA obtained the
highest value for both growth rate and BPCY among the
othermethods tested. Knocking out succinate dehydrogenase
(SUCD1i) interrupted the conversion of succinic acid to
fumarate. By eliminating the conversion of succinic acid to
fumarate, the production yield of succinic acid is improved.
Next, phosphotransacetylase (PTAr) is removed. According
to Burgard et al. [5], these mutants can grow anaerobically
on glucose by producing lactate. In the next step, ribulose-5-
phosphate-3-epimerase (RPE) is suggested to be knocked out.
This knockout involves the inflow reaction of ammonium. As
stated in Bohl et al., the utilisation of nitrate as the electron
acceptor and ammonium source under anaerobic conditions
can improve succinate production [21].

Table 4 shows the results of the extension of BHFBA
and previous works. The extension of BHFBA resulted in
a better growth rate and BPCY than the previous works,
which are 0.62501 and 5.2241, respectively. Figure 7 shows
the comparison among the methods of producing lactic
acid in E. coli. The extension of BHFBA shows a drastic
difference in the value of BPCY and a small improvement
in the growth rate. The deletion of fructose bisphosphatase
and phosphoglycerate kinase decreased the efficiency of
gluconeogenesis, which resulted in an increased concentra-
tion of phosphoenolpyruvate. Phosphoenolpyruvatewas then
converted into pyruvate and then lactic acid. Knocking out
acetaldehyde dehydrogenase, which catalyses the conversion
of acetaldehyde into acetic acid, eliminated the competing
product, acetic acid. In consequence, the yield of lactic acid is
improved.

3.3. Production of Ethanol by B. subtilis. We applied the
BAFBA to B. subtilis andC. thermocellum to identify the opti-
mal gene knockouts to improve the production of ethanol.
Ethanol is a volatile, flammable, and colourless liquid, and
it is a promising biofuel. Ethanol is currently used as an
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Figure 6: Comparison between different methods for growth rate
and BPCY of succinic acid by E. coli. Note. BPCY is in gram (gram-
glucose⋅hour)−1.

alternative fuel for gasoline worldwide. Hence, ethanol is a
good case study here.

Table 5 shows the results of the extension of BHFBA and
previous works. The extension of BHFBA obtained a growth
rate and BPCY of 122.9089 and 1.15680e + 05, respectively. In
the experiment by Kim et al., deletion of NADH-dependent
glycerol-3-phosphate dehydrogenase 1 (GPDH) resulted in
a slight improvement in ethanol yield. As stated in Kim
et al., lactate dehydrogenase (LDH L) plays a key role in
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Table 5: Comparison between different methods for growth rate and BPCY of ethanol by B. subtilis.

Method Growth rate (1/hr) BPCY List of knockout genes
BHFBA 122.9089 1.15680e + 05 ALAD L∗, GPDH, LDH L∗

BAFBA [9] 122.8861 1.1154𝑒 + 05 ALAD L∗, LDH L∗, XYLI1, inosose 2,3-dehydratase
Note. The bold numbers represent the best result. N/A: not applicable. ∗Common genes for all methods. BPCY is in gram (gram-glucose⋅hour)−1.

Table 6: Result of implementation of different knockout for produc-
tion of Ethanol in C. thermocellum.

Method Growth rate
(1/hr) BPCY List of knockout genes

BHFBA 10.1637 8.5e + 003 G3PD1∗, NDPK5, PTAr∗

BAFBA [9] 9.9313 8.329𝑒 + 003 MDH, G3PD1∗, PTAr∗

Note. The bold numbers represent the best result. N/A: not applicable.
∗Common genes for all methods. BPCY is in gram (gram-glucose⋅hour)−1.
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Figure 7: Comparison between different methods for production of
lactic acid by E. coli. Note. BPCY is in gram (gram-glucose⋅hour)−1.

the fermentative metabolism in the metabolic engineering
of B. subtilis for ethanol production. The deletion of LDH L
inhibited the conversion from pyruvate to lactate, so more
pyruvate was decarboxylated to acetaldehyde and further
converted to ethanol [22]. Figure 8 shows the comparison
between different methods in terms of the growth rate and
BPCY of ethanol; the extension of BHFBA generates better
results in terms of both growth rate and BPCY compared to
BAFBA.

3.4. Production of Ethanol by C. thermocellum. Table 6 shows
the results of the extension of BHFBA and previous methods
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Figure 8: Comparison between different methods for growth rate
and BPCY of ethanol by B. subtilis. Note. BPCY is in gram (gram-
glucose⋅hour)−1.

to enhance the production of ethanol in C. thermocellum.
The extension of BHFBA provides a better result for the
C. thermocellum model with a growth rate of 10.1637 and a
BPCY of 8.5e + 003. Figure 9 shows the comparison between
different methods in terms of the growth rate and BPCY of
ethanol. The extension of BHFBA results in a higher value
of both the growth rate and BPCY than the BAFBA. The list
of knockout genes includes nucleoside-diphosphate kinase
(NDPK5), glycerol-3-phosphatedehydrogenase (G3PD1) and
phosphate acetyltransferase (PTAr). According Roberts et al.,
the deletion of PTA2, PTAr, PPAKr, and ACKr is expected
to increase the lower and upper bounds of ethanol secre-
tion relative to wild-type ethanol secretion [19]. The result
indicated that deletion of one of these reactions should force
an increase in ethanol production. As mentioned in Kim
et al., deletion of NADH-dependent glycerol-3-phosphate
dehydrogenase (G3PD1) can slightly improve ethanol pro-
duction [22]. However, there is still no direct evidence for a
unique effect of NDPK5 on ethanol levels inC. thermocellum.
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Figure 9: Comparison between different methods for production
of ethanol by C. thermocellum. Note. BPCY is in gram (gram-
glucose⋅hour)−1.

However, NDPK5 catalyses the reaction in which the ter-
minal phosphate of a nucleoside-triphosphate is transferred
to a nucleoside-diphosphate. According to Lu et al., NDPK5
is not essential for growth, but mutants display a mutator
phenotype [23].

3.5. Computational Time. Table 7 shows a comparison of the
computational time required for the extension of BHFBA
and BAFBA with 1000 iterations. The average computational
time for the extension of BHFBA improved by 69%, 69%,
and 72% compared to the BAFBA result for 1000 iterations,
respectively.

3.6. Discussion. As seen in the results, both the extension
of BHFBA and BH performed better than other algorithms.
It can be concluded that the ability of the Hill Climbing
algorithm to find local optimum improved the performance
of the original BA. The original BA has a problem with
repetitive iterations of the algorithm in local search, where
each bee continues to search until the best possible answer
is reached. Our proposed extension of BHFBA solves the
problem by implementing Hill Climbing algorithm in the
local search and improved the algorithm by integrating
OptKnock. The Hill Climbing algorithm is a powerful local
search algorithm that attempts to find the best solution by
incrementally changing a single element of the solution until
no further improvements can be found. The search process
is recorded so that the process is not repeated. Furthermore,

Table 7: Comparison between average computational time of
BHFBA and BAFBA for 1000 iterations.

Model Method Computation time (seconds)

E. coli

BHFBA 3223
BAFBA [9] 10253
OptKnock [3] N/A
SA + FBA [5] N/A

B. subtilis

BHFBA 7028
BAFBA [9] 22515
OptKnock [3] N/A
SA + FBA [5] N/A

C. thermocellum

BHFBA 2880
BAFBA [9] 10282
OptKnock [3] N/A
SA + FBA [5] N/A

Note. The bold numbers represent the best result. N/A represents that the
results are not reported in literature.

one of the advantages of the Hill Climbing algorithm is that it
can return a valid solution even if it is interrupted at any time
before it ends. OptKnock is widely used for in silicometabolic
engineering. It has been proven that it can produce promising
simulated results and help in the experiments.

4. Conclusions and Future Works

It is crucial to develop more accurate and efficient mod-
elling and optimisation methods in metabolic engineering
because theywill have a significant impact on commercialised
biotechnology engineering, which will lead to substantial
economic gains in the production of pharmaceuticals, fuels,
and food ingredients. In this paper, the extension of BHFBA
is proposed for use in predicting optimal sets of gene dele-
tions to maximise the production of the desired metabolite.
The extension of BHFBA improves the performance of the
BAFBA by implementing the Hill Climbing algorithm, which
is a promising algorithm for finding local optimum. It is
extended by integrating OptKnock into BHFBA. Experimen-
tal results with E. coli iJR904, B. subtilis, and C. thermocellum
showed that extension of BHFBA is effective in generating
optimal solutions for gene knockout prediction; therefore,
it is a useful tool in metabolic engineering. In the future
because biological models incorporate a set of parameters
that represent the physical properties of real biological sys-
tems, it is advisable to extend the capability of the parameter
estimation method in dealing with the structural nonidenti-
fiability problem. This is because the problem often involves
prior knowledge of the structure of the model, which can
lead to more discoveries while selecting possible routes of
the pathways that are particularly important in the field of
bioengineering [24].
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“Robust design of microbial strains,” Bioinformatics, vol. 28, no.
23, pp. 3097–3104, 2012.
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