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ABSTRACT

Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high
concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of
other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and
sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often
vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in
yeast as well as the relevance of these compounds for industrial applications and the factors that influence their
production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active
metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.

INTRODUCTION

When presented with the appropriate nutrients, yeasts pro-
duce complex bouquets of aroma compounds including esters,
higher alcohols, carbonyls, fatty acid derivatives and sulfur com-
pounds. Moreover, while not directly synthesized by yeasts,
volatile thiols and monoterpenes are sometimes released from
odorless precursors by yeast-derived enzymes (Tominaga et al.
1998; Moreira et al. 2005). Our understanding of the fermenta-
tion process and the associated aroma production by yeast has
increased exponentially over the last centuries, from the discov-
ery of yeast cells in 1680, to the sequencing of the entire Saccha-
romyces cerevisiae genome just two decades ago (Goffeau et al.

1996), and capping off with an in-depth look at the phenotypic
and genetic diversity of nearly 200 industrial yeasts last year,
including a detailed profiling of differences in aroma formation
(Gallone et al. 2016; Gonçalves et al. 2016). Interestingly, these re-
cent studies demonstrate that humans have helped drive the
domestication of yeasts, at least partly based on their ability to
selectively produce desired aromas and reduce unwanted com-
pounds.

Given its importance in product quality,much effort has been
devoted to fine-tune flavor production by yeast in an indus-
trial setting. Globally, two approaches can be applied to steer
the yeast’s physiology to alter aroma production: adjusting the
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Figure 1. Overview of aroma compound production. This review covers a large array of aroma compounds produced during yeast fermentation. The basic fermentation
of pyruvate (green/red) leads to several carbon-based compounds, including ethanol and carbon dioxide. Pyruvate also feeds into the anabolism of amino acids, leading

to production of vicinal diketones (pink). Metabolism of amino acids is responsible for numerous aroma compounds including higher alcohols and esters (purple) as
well as sulfur-containing compounds (blue). Additionally, the phenolic compounds are derived from molecules found in the media (orange). Compounds shown in
darker shades are considered intermediates while lighter shades are aroma compounds discussed in this review. Dotted lines indicate import/export of compounds,
solid lines represent biochemical reactions (not indicative of number of reactions).

fermentation environment or modifying the genotype of the
production strain. Adjusting the environmental parameters
can be a convenient, often very powerful, way to optimize
production without complex biotechnological procedures nor
a thorough understanding of basic yeast physiology. How-
ever, given the recent expansion of the available yeast bio-
diversity, strategies to modify yeasts and the genetic toolbox
to genetically engineer strains, biotechnologists can now se-
lect or develop new yeasts with aromatic properties far be-
yond what is achievable through adjustment of environmental
parameters.

While humans have been advancing, and refining the ex-
ploitation of yeast aroma for several millennia, it remained un-
known why yeast cells produce these flavor-active molecules
in the first place. Over the past decades, several hypotheses
for possible physiological roles have been proposed, includ-
ing synthesis of specific cellular building blocks, redox balanc-
ing and detoxification reactions, but the evidence for these re-
mained very limited. Recent studies, however, have begun to
uncover a fundamental and central role of aroma production
in the lifestyle of yeast. Specifically, it has been shown that
yeast-derived volatiles can have integral roles in natural envi-
ronments, ranging from signaling information to animal vec-
tors, regulation of fungal growth and communication between
yeast cells or colonies (Richard et al. 1996; Bruce et al. 2005;
Leroy et al. 2011; Davis et al. 2013). The interaction between
yeasts and insects has been studied intensively the past decade
and there is increasing evidence that attraction of many in-
sect species to fermenting fruits is mediated by the volatiles
emitted by the yeasts rather than by the fruit itself (Becher
et al. 2012).

In this review, we provide an overview of the current under-
standing of aroma production in yeasts in an industrial, phys-
iological and ecological context. We attempt to provide a more
global review covering major compounds discussed commonly
in industry and ecology (Fig. 1). For each metabolite category,
we first illustrate the biochemical pathways which are crucial
for understanding the rationale behind much of the industrial
research. Note that much of the biochemical review in this pa-
per will refer to Saccharomyces cerevisiae since research into the
specific mechanisms of the fermentation process is commonly
based on this species, given its central role as a model organism
and as a robust fermenter in industry. We then discuss the in-
dustrial roles of the aroma compounds that humans have devel-
oped. We also highlight key environmental parameters, such as
temperature and medium composition, that are commonly ad-
justed to affect specific compound production as well as some
modifications to genetic background that have been developed
to influence aroma production. Lastly, we explore some of the
possible physiological and ecological roles of these aroma com-
pounds.

PRIMARY FERMENTATION METABOLITES:
ETHANOL

In many industrial fermentation processes, ethanol is the most
important compound produced by yeast. Moreover, it is the pro-
duction of this primary metabolite that originally sparked inter-
est for the fermentation of beverages. Early civilizations devel-
oped fermentation methods to exploit the benefits of ethanol;
ethanol prolongs shelf-life, improves digestibility and acts as
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Figure 2. Production of ethanol, acetaldehyde, acetic acid, and CO2. Fermentable carbons are assimilated from the medium and converted to glycerol or pyruvate via
glycolysis. Pyruvate can be shuttled towards the TCA cycle and respiration (left) or towards alcoholic fermentation (right). For some conversions, multiple enzymes

can perform the reaction and are indicated on the figure. Note: Ald4, Ald5 and Adh3 are mitochondrial enzymes but perform the same reactions as the other cytosolic
ALD and ADH enzymes.

a euphoriant (Alba-Lois and Segal-Kischinevzky 2010). Today,
ethanol still forms the basis of many fermented products, ei-
ther destined for consumption or for renewable energy. More-
over, ethanol is a volatile aroma compound, although its sen-
sorial properties are perhaps less pronounced than some of the
more flavorful molecules that are also formed as byproducts of
the fermentation pathway.

Biochemistry of ethanol production

Although yeasts have been utilized for their fermentative capac-
ity for millennia, the molecular components of this basic path-
way were only discovered in the last few decades (Bennetzen
and Hall 1982; Schmitt, Ciriacy and Zimmermann 1983).

Central metabolism begins with the basic conversion of sug-
ars into pyruvate, yielding energy in the formof ATP and reduced
NADH cofactors. The divergence of pyruvate after glycolysis is
an essential regulatory point in metabolism, which has made it
a hotspot for biochemical and industrial research. There are two
basic directions pyruvate can take at this point: fermentation or
respiration. In most eukaryotes, this is dependent on the pres-
ence of oxygen. In aerobic conditions, pyruvatewill be converted
to acetyl-coA by actions of a pyruvate dehydrogenase and head
towards the citric acid cycle (Fig. 2). Under fermentative (anaer-
obic) conditions, pyruvate is diverted towards fermentation.

Conversion of pyruvate to ethanol is a two-step process. First,
pyruvate is converted to acetaldehyde by a pyruvate decarboxy-
lase (PDC), releasing carbon dioxide as waste. There are three
confirmed PDC enzymes encoded in the Saccharomyces cerevisiae
genome (Saccharomyces Genome Database; Cherry et al. 2012).
These enzymes act as a key metabolic branch point between

fermentation and respiration. In direct competition with pyru-
vate dehydrogenase, PDCs can remove excess pyruvate from the
pathway and divert it towards ethanol production.

Acetaldehyde is subsequently converted into ethanol by an
alcohol dehydrogenase (ADH). This type of oxidoreductase can
catalyze the reversible interconversion of alcohols and the cor-
responding aldehydes or ketones. The wide array of substrates
available for ADHs throughout the metabolic pathways requires
substantial regulation to ensure a balance of the desired prod-
ucts and intermediates. It is therefore not surprising that eu-
karyotes, even humans, have numerous ADH enzymes. Even a
simple eukaryote like S. cerevisiae has seven ADH genes as well
as several aryl-alcohol dehydrogenases (AAD). Adh1 is the pri-
mary enzyme for producing ethanol during fermentation and for
replenishing the pool of NAD+, while Adh2 is glucose repress-
ible and will oxidize ethanol as a carbon source when needed
(Leskovac, Trivić and Pericin 2002). Adh3 is constitutively ex-
pressed during both ethanol production and utilization but as
it is expressed in the mitochondria, its primary role is likely to
maintain redox balance (Bakker et al. 2001; de Smidt, du Preez
and Albertyn 2012).

Ethanol in industry

Ethanol is an important yeast metabolite for most products in-
volving yeast fermentation. It is a vital ingredient of fermented
beverages and is used as a prominent renewable biofuel but
ethanol also plays a role in product quality of other fermented
products where the connection is perhaps more obscure. For
example, during baking, ethanol produced by yeast has a
strong impact on dough extensibility and gluten agglomeration
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Table 1. Effect of environmental parameters on ethanol production.

Parameter Condition
Effect on ethanol
production Reference

Temperature Above optimal Decrease (lower ethanol
tolerance)

Coleman et al. (2007)

pH Increase Increase (increased
proton electrochemical
gradient)

Lam et al. (2014)

Oxygen Increase Increase (higher cell
viability)

Alfenore et al. (2004)

Medium composition

C source Preferred sugars
(glucose, sucrose)

Decrease (undesired
side effects on
physiology)

Verstrepen et al. (2004)

N source NH4, glutamate Decrease (compared to
amino acids)

Albers et al. (1996)

Metal ions Supplementation Increase Tosun and Ergun (2007)
Vitamins Supplementation Increase Alfenore et al. (2002)
Lipids (fatty acids, sterols) Supplementation Increase Pham et al. (2010)
Nutrient-rich mixtures Supplementation Increase Jones and Ingledew (1994)
Potassium Supplementation Increase (increased

potassium membrane
gradient)

Lam et al. (2014)

Electric field Application of 15V Increase (alternative
source of redox power)

Mathew et al. (2015)

Enzyme (Amylase) Supplementation Increase (more available
sugars)

Nigam and Singh (1995)

(Jayaram et al. 2014). During cocoa fermentations, the ethanol
produced by yeast serves as a carbon source for acetic acid bac-
teria (which are vital for cocoa flavor) and triggers biochemical
reactions within the cocoa bean that lead to the production of
various aromas and aroma precursors (Hansen, del Olmo and
Burri 1998).

Given the central role of ethanol in alcoholic fermentation
processes, much research has focused on improving speed and
efficiency of alcohol production by yeasts over the past few
decades, especially in the bioethanol industry. Interestingly,
there is also an emerging trend towards fermented beverages
with reduced ethanol content (Wilkinson and Jiranck 2013; WHO
2014). This is driven by the increasing demand from both con-
sumers and producers to reduce problems associated with high
alcohol levels. Too much ethanol can compromise quality of the
product and excessive alcohol intake is associated with various
health issues. From a financial standpoint, high alcohol content
can increase the costs to the consumer in countries where taxes
are calculated based on ethanol content.

Environmental parameters and ethanol production

Modifying the fermentation parameters, including carbon
sources, trace elements and even temperature, has proven to be
effective measures for altering ethanol production by industrial
yeasts (Table 1).

However, the positive effects of these medium adjustments
are often strain dependent (Remize, Sablayrolles and Dequin
2000), and in case of food production, the potentially disadvan-
tageous side effect on aroma must be assessed carefully. Other,
more adventurous, strategies have been recently described. For
example, ‘electro-fermentation’ imposes an electrical field on
the fermentation to serve as an alternative source of reducing

and oxidizing power (Schievano et al. 2016). Application of a
static potential of up to 15 V (without any resulting current) to a
S. cerevisiae culture resulted in a 2-fold yield of ethanol (reaching
14% v/v) and 2 to 3-fold faster fermentation rate (Mathew et al.
2015). In another strategy, Lam et al. (2014) strengthened the op-
posing potassium and proton electrochemical membrane gradi-
ents during fermentations, which led to an enhanced resistance
to multiple alcohols, including ethanol (Lam et al. 2014).

Genetic factors and ethanol production

One of the easiest ways to obtain yeasts withmodulated ethanol
production capacity is screening the available natural biodiver-
sity. Most fermentation processes are conducted with S. cere-
visiae, or very related species, such as S. pastorianus (lager beer)
or S. bayanus (some wines). It has been shown numerous times
that traits such as ethanol tolerance or ethanol accumulation
capacity are strain dependent within S. cerevisiae (Swinnen et
al. 2012; Snoek et al. 2015; Gallone et al. 2016) and nature of-
ten harbors superior variants. For example, Brazilian bioethanol
plants initially inoculated with baker’s yeasts but were rapidly
taken over by wild autochthonous strains (Basso et al. 2008).
These wild contaminants have been used as commercial starter
cultures ever since. Moreover, while Saccharomyces spp. are still
the preferred organism for most fermentation processes, alter-
native species such as Brettanomyces bruxellensis, Metschnikowia
pulcherrima, Torulaspora delbrueckii, Saccharomycodes ludwigii and
Zygosaccharomyces rouxii produce increased (Passoth, Blomqvist
and Schnürer 2007; Steensels and Verstrepen 2014; Radecka et al.
2015) or decreased (Contreras et al. 2015; De Francesco et al. 2015;
Morales et al. 2015; Canonico et al. 2016) levels of ethanol, thereby
further expanding the portfolio of potential industrial yeasts.
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Nevertheless, numerous research projects have aimed to
modify ethanol production, or fermentation efficiency in gen-
eral, within a specific strain by altering the genetic back-
ground. However, the large number of enzymes and branch
points involved can complicate the results of adjusting
genes and metabolites involved in central carbon metabolism.
Ethanol production of industrial strains has been adjusted
by various strategies, including increased ethanol tolerance
(Zhao and Bai 2009; Lam et al. 2014; Snoek et al. 2015;
Voordeckers et al. 2015; Ohta et al. 2016), reduced production of
alternative metabolites (e.g. glycerol) (Remize, Sablayrolles and
Dequin 2000; Pagliardini et al. 2013; Hubmann et al. 2013a) and
increased ethanol accumulation capacity (Pais et al. 2013; Snoek
et al. 2015).

During many industrial fermentation processes, especially
in bioethanol fermentations or high-gravity brewing, yeast en-
counter extremely high ethanol concentrations, sometimes
reaching up to 20%–25% v/v. This can quickly become toxic
to the cells and has thus led to considerable efforts in in-
creasing ethanol tolerance of industrial yeast strains. There-
fore, many studies target the improvement of ethanol toler-
ance. Some recent and innovative approaches are highlighted
here (see Zhao and Bai 2009; Snoek, Verstrepen and Voordeck-
ers 2016 for amore comprehensive overview). Natural variations
in MKT1 (a nuclease), SWS2 (a mitochondrial ribosomal protein)
and APJ1 (a chaperone with a role in SUMO-mediated protein
degradation), though not traditionally linked to ethanol toler-
ance, account for the increased ethanol tolerance of the Brazil-
ian bioethanol strain VR1 (Swinnen et al. 2012). Variations in
the metabolome, namely accumulation of valine via deletion of
LEU4 and LEU9 (which encode for key enzymes connecting va-
line to leucine synthesis) or reduction of inositol levels by dele-
tion of INM2 (involved in inositol biosynthesis), also effectively
increase ethanol tolerance (Ohta et al. 2016). Global transcrip-
tionmachinery engineering, a high-throughput genetic technol-
ogy, was used to find variants of the global transcription factor
Spt1with increased ethanol tolerance (Alper et al. 2006). Themu-
tated versions of this protein led to widespread transcriptional
reprogramming when introduced in yeast, and some of the
resulting mutants demonstrated improved ethanol tolerance
(Alper et al. 2006). Other high-throughput strategies, such as
TALENs (transcription activator-like effector nucleases)-assisted
multiplex editing and robot-assisted genome shuffling, have
also yielded improvements in strain ethanol tolerance (Snoek
et al. 2015; Zhang et al. 2015c). Long-term evolution has also been
demonstrated as an effective measure to increase ethanol toler-
ance. Turbidostat cultures grown continuously for over 2 years
with gradually increasing ethanol concentrations yielded toler-
ant variants with mutations in PRT1 (subunit of the eukaryotic
translation initiation factor 3), VPS70 (involved in vacuolar pro-
tein sorting) andMEX67 (poly(A)RNA-binding protein involved in
nuclear mRNA export) (Voordeckers et al. 2015).

Modification of glycerol synthesis can also affect ethanol pro-
duction. During anaerobic growth, glycerol serves as an ‘elec-
tron sink’ to re-oxidize NADH generated during biosynthesis
and concentrations can reach up to 5 g/L during industrial fer-
mentations (Nielsen et al. 2013). Deletion of glycerol synthesis
genes GPD1 and GPD2 directly decreases glycerol levels with a
resultant increase in ethanol (Nissen et al. 2000). Natural varia-
tions of GPD1, HOT1 (a transcription factor involved in glycerol
synthesis), SSK1 (a phosphorelay protein involved in osmoreg-
ulation) and SMP1 (a transcription factor involved in osmotic
stress response) also result in decreased glycerol to ethanol ra-
tios during fermentation (Hubmann et al. 2013a,b). Additionally,

expression of a non-phosphorylating, NADP+-dependent GAP
reduces formation of cytosolic NADH and results in decreased
glycerol with increased ethanol (Bro et al. 2006).

Lastly, total ethanol accumulation can be improved. This trait
is related to ethanol tolerance, but different molecular mech-
anisms can underlie them (Pais et al. 2013). Reverse metabolic
engineering identified three natural alleles that can improve
ethanol accumulation capacity in yeast: ADE1 (a nucleotide syn-
thase), URA3 (a decarboxylase involved in pyrimidine synthesis)
and KIN3 (kinase involved in ethanol tolerance) (Pais et al. 2013).
In another study, large-scale, robot-assisted genome shuffling
yielded hybrids with an increased ethanol accumulation of up to
7% relative to a widely applied bioethanol strain (Ethanol Red),
but the underlying genetic factors were not identified (Snoek
et al. 2015).

Some studies aim to reduce ethanol production to fit grow-
ing trends of low alcohol beverages. The main challenge is to
achieve the ethanol reduction without the loss of product qual-
ity, as ethanol production is often tightly linked to production
of other volatile metabolites. Methods for removal of ethanol
during or after the fermentation process exist, however, while
efficient, current strategies are often costly or carry along un-
desired side effects, such as inferior aroma (Varela et al. 2015).
Newer strategies aim to limit the amount of ethanol produced
by the yeast, mainly by altering the central carbon flux or reg-
ulating redox balance (Kutyna et al. 2010; Goold et al. 2017). For
example, deletion of PDC1 or ADH1, the major ethanol produc-
tion line, reduces ethanol production (Nevoigt and Stahl 1996;
Cordier et al. 2007). Overexpression of glycerol synthesis genes
such as GPD1 and FPS1 shifts carbon flux away from ethanol and
towards glycerol synthesis (Nevoigt and Stahl 1996; Remize, Bar-
navon and Dequin 2001; Cambon et al. 2006; Cordier et al. 2007).

Physiological and ecological roles of ethanol

Eukaryotic cells typically opt for respiration when possible as
it offers a higher yield of ATP per molecule of glucose. Cer-
tain yeasts, including S. cerevisiae, opt to ferment even in the
presence of oxygen (De Deken 1966). This so-called Crabtree
effect is paradoxical, as the energy yield is significantly lower.
However, it is believed that the rate of ATP production (amount
per time) is actually higher through fermentation, allowing for
faster growth. Moreover, ethanol is highly toxic to most other
microbes, which may help yeast cells compete with faster-
growing competitors (Rozp

↪
edowska et al. 2011). Although much

of metabolic flux is diverted to ethanol, it is important to note
that a fraction of the carbon is still shuttled to the TCA cycle,
which forms important aroma precursors through reactions as-
sociated with amino acid metabolism.

Ethanol production by fermenting yeast cells may also have
an indirect role in ecology. Several studies indicate that ethanol
influences the behavior of insects that inhabit the same nat-
ural niches. Fruit flies are strongly attracted to rotting fruits
due to high concentrations of fermentation products, including
ethanol (Becher et al. 2012). In fact, ethanol provides a nuanced
signal for preferential oviposition sites among closely related
Drosophila (Diptera: Drosophilidae) species. Ethanol tolerance of
adult flies of different species seems to correlatewith preference
for ethanol-rich oviposition substrate (Sumethasorn and Turner
2016). Drosophila melanogaster is highly ethanol tolerant and in
laboratory conditions will lay twice as many eggs on ethanol-
rich media than the ethanol-sensitive D. mauritiana. Moreover,
the same species from differing climates can demonstrate vari-
ations in both ethanol tolerance and ovipositioning preference.
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Drosophila melanogaster from temperate populations, such as Eu-
rope, has higher ethanol tolerance than populations from Africa
(Zhu and Fry 2015) and higher ethanol concentrations increase
ovipositioning frequency from the European fly, but reduced fre-
quency from African flies (Sumethasorn and Turner 2016).

The effect of ethanol content on ovipositioning has also been
linked to the presence of parasitic wasps.Drosophila melanogaster
increases egg laying on ethanol-rich substrate when there are
parasitic wasps in the vicinity (Kacsoh et al. 2013). Subsequently,
eggs laid by the wasps suffer increased mortality if the host in-
gests ethanol-rich substrates (Milan, Kacsoh and Schlenke 2012)
and even dilute levels of ethanol can reduce the total number of
parasitoid eggs laid in the larvae. The preference for an ethanol-
containing ovipositioning site can strongly depend on the
presence of suitable, ethanol-free food sources nearby. When
the alternative ethanol-free substrate is close, flies prefer the
ethanol-containing substrate. As distance increases, prefer-
ence for the ethanol rapidly declines (Sumethasorn and Turner
2016). Taken together, this suggests that fruit flies are contin-
uously reevaluating the relative positions of the available sub-
strates, potentially to ensure survival. They seem to prefer harsh
(ethanol-rich) environments to protect the eggs and freshly
hatched larvae, but only if a suitable, less harsh food source is
nearby for the larvae to find.

The use ofmicrobially produced compounds is a relatively re-
cent and recurrent approach currently being used as attractants
for various biological pests, and several examples will appear
throughout this review. One very recent example of this tactic
is the use of ethanol-containing mixtures against the avian par-
asite Philornis downsi (Diptera: Muscidae). This South American-
native fly has recently invaded the Galapagos and its larvae have
been feeding on the nestlings of the famous Darwin’s finches
(Kleindorfer and Dudaniec 2016). Philornis downsi adults feed on
fermented substrates, and ethanol plays a crucial role in guiding
them to the food source.When ethanol ismixedwith acetic acid,
it effectively and specifically attracts P. downsi over non-target
insects (Cha et al. 2016). Similarly, the combination of ethanol
and acetic acid has been suggested as a useful and inexpensive
lure for trapping other insects such as pathogen-carrying Mus-
cina stabulans (Diptera: Muscidae) and Fannia canicularis (Diptera:
Muscidae) (Landolt, Cha and Zack 2015), as well as the corn pest
Carpophilus humeralis (Coleoptera: Nitidulidae) (Nout and Bartelt
1998).

Insects are not the only organisms to be affected by ethanol.
Originally thought to be solely soil dwelling, the nematode
Caenorhabditis elegans is frequently found in rotting fruits, stems
and flowers (Félix and Braendle 2010). It is therefore likely that
C. elegans larvae encounter ethanol from microbial fermenta-
tion in its natural environment. While high concentrations of
ethanol (above 100mM) result in slower development, decreased
fertility and shorter life span (Davis, Li and Rankin 2008), at lower
concentrations, ethanol appears to have beneficial survival ef-
fects, prolonging the lifespan of the stress-resistant larval stage
(Castro et al. 2012). Since the nematode larvae do not appear to
actively seek out ethanol (Patananan et al. 2015), it is hypothe-
sized that the ethanol could provide a temporary carbon source
to ensure the larvae survive until proper food sources are found.
Interestingly, ethanol can influence C. elegansnegatively through
a complex multispecies interaction: the yeast-produced ethanol
can enhance the growth of several Acinetobacter species, and in
turn make them more efficient to withstand and even kill their
natural predator, C. elegans (Smith, Des Etages and Snyder 2004).

Certain primates are also attracted to fermenting food. Com-
plex microbial communities in nectar sources produce diverse

volatiles that make them more attractive to potential ani-
mal pollinators. The nectar of bertam palm (Eugessona tristis),
a popular food source for several insects and small animals,
can contain up to 3.8% ethanol (Wiens et al. 2008). Behavioral
studies indicate that these nectar-seeking animals, specifically
the primate slow loris (Nycticebus coucana) and the lemur aye-
aye (Daubentonia madagascariensis), preferentially feed on nec-
tar containing ethanol (Gochman, Brown and Dominy 2016).
Interestingly, aye-ayes have a mutation in their ADH4 gene
resulting in a 40-fold increase of their ethanol metabolism
compared to most of the primates, potentially explaining why
they do not get intoxicated on the high-alcohol food (Carrigan
et al. 2015).

PRIMARY FERMENTATION METABOLITES: CO2,
ACETALDEHYDE AND ACETIC ACID

Biochemistry of CO2, acetaldehyde and acetic acid
production

Asmentioned, under fermentative (anaerobic) conditions, pyru-
vate is diverted towards ethanol in a two-step process (Fig. 2).
Pyruvate is first converted to acetaldehyde with concomitant re-
lease of carbon dioxide (CO2) by PDC. The two major PDC en-
zymes, Pdc1 and Pdc5, are the major contributors to the de-
carboxylation activity in the cell and therefore directly con-
trol levels of acetaldehyde and CO2 (Kulak et al. 2014). Pdc6
is primarily utilized during growth on non-fermentable carbon
sources (Hohmann 1991). One would expect then that in a PDC1
deletion the levels of acetaldehyde to significantly drop. How-
ever, in certain conditions, deletion of this enzyme demon-
strates an increase in acetaldehyde (Curiel et al. 2016). It is hy-
pothesized that Pdc5 can compensate for up to 70% of the re-
quired PDC activity, indicating a possible compensatory mech-
anism to maintain flux towards acetaldehyde and subsequent
ethanol production (Wang et al. 2015). Furthermore, Pdc5 has
a higher specific activity which may allow it to directly com-
pete with the respiratory pyruvate dehydrogenase andmay help
push more pyruvate towards ethanol (Agarwal, Uppada and
Noronha 2013).

Acetaldehyde can then continue towards ethanol via ADHac-
tivity, or it can be acted on by an aldehyde dehydrogenase (ALD)
to produce acetic acid. Like the ADHs, there are several ALDs,
further expanding the level of regulation centered around car-
bonflux. If acetaldehyde is produced cytosolically, it can be acted
on by Ald6 or Ald2; if produced in the mitochondria, it is con-
verted by Ald4 or Ald5. Additionally, an acetaldehyde molecule
still covalently linked to the PDC complex (via the bound thi-
amine pyrophosphate) can interact with an additional acetalde-
hyde to form acetoin (Fig. 2).

Carbon dioxide in industry

While humans do not typically associate an odor with carbon
dioxide, its production is important in some industrial pro-
cesses and is detectable by other organisms (see Physiological
roles of CO2). CO2 is responsible for the natural carbonation of
fermented beverages and adequate gas production is arguably
the most important selection criterion for commercial baker’s
yeasts, as proper leavening requires rapid and sufficient CO2

release (Randez-Gil, Córcoles-Sáez and Prieto 2013). Therefore,
most optimization for increased speed of CO2 production has
been performed in bread yeasts.



Dzialo et al. S101

Environmental parameters and CO2 production

Most bread fermentations should only take 1–2 hwhich requires
a quick onset of the fermentation process to rapidly and ef-
fectively produce large volumes of CO2. To this end, various
dough parameters can be adjusted to speed up CO2 production
(Table 2). Optimization of the physiological state of the yeasts
before introducing them into the dough can drastically improve
leavening ability. This can be accomplished by pre-soaking and
thus reactivating dry yeast prior to starting the bread fermenta-
tion (Gelinas 2010). Additionally, adjusting theway that the dried
yeasts are produced, for example, by optimizing the medium in
which they are grown, the timing at which the yeast cells are
harvested, or the specific drying protocol, can increase yeast via-
bility and vitality during bread fermentations (Galdieri et al. 2010;
Rezaei et al. 2014).

Genetic factors and CO2 production

In general, the ability to ferment specific bread-associated sug-
ars (namely maltose, glucose, sucrose, and fructose) has been
altered to improve CO2 production, or the leavening ability, of
baker’s yeast. One of the most common problems associated
with dough fermentation is the considerable lag between fer-
mentation of preferred sugars, glucose and sucrose, and fer-
mentation of maltose, the principle fermentable sugar in bread
dough. Catabolite repression slows down the switch and sub-
sequently lengthens leavening time (Gancedo 1998). Therefore,
genes associated with glucose repression and maltose utiliza-
tion have often been strategically targeted for genetic mod-
ification (Osinga et al. 1989; Sun et al. 2012; Lin et al. 2014,
2015b; Zhang et al. 2015a,b). Alternatively, maltose utilization
can be improved by selecting mutants on medium containing
fermentable maltose with non-metabolizable glucose analogs.
Such strategies yield strains with deficiencies in catabolite re-
pression that could co-consume glucose and maltose resulting
in faster dough leavening (Randez-Gil and Sanz 1994; Rincón
et al. 2001; Salema-Oom et al. 2011). Similar mutants could po-
tentially reduce the lag time in the beer brewing fermentations
as well (New et al. 2014). Consecutive rounds ofmassmating and
selection have also yielded commercial strains with improved
maltose utilization (Higgins et al. 2001).

Yeast encounter various severe stresses during bread fer-
mentations, such as high sugar and salt concentrations, which
reduces their performance (Aslankoohi et al. 2013). Improve-
ments of general stress resistance of industrial yeast have been
shown to yield faster bread fermentations. This is generally
achieved by increasing production of glycerol and other small
protective molecules such as proline and trehalose (Shima and
Takagi 2009). Overexpression of glycerol synthesis genes, such
asGPD1, increases glycerol accumulation and subsequent osmo-
tolerance (Aslankoohi et al. 2015). Modification of proline perme-
ases (PUT4) or proline biosynthesis genes (PRO1) increases pro-
line accumulation and improves osmo-, cryo- and halotolerance
(Kaino et al. 2008; Poole et al. 2009; Sasano et al. 2012). Disrup-
tion of trehalose degradation (NTH1, ATH1) or efflux (FPS1) in-
creases intracellular trehalose levels and improves freeze tol-
erance (Shima et al. 1999; Izawa et al. 2004; Sasano et al. 2012;
Sun et al. 2016). Overexpression of CAF16 and ORC6, two genes
that are upregulated during osmotic and cryostress, also im-
proves overall stress tolerance of the yeast during baking (Pérez-
Torrado et al. 2010). Directed evolution has also been used to im-
prove stress tolerance in baker’s yeast. Ultraviolet mutagenesis
followed by 200 consecutive freeze–thaw cycles yieldedmutants

with improved freeze tolerance, without undesirable side effects
in other fermentation properties (Teunissen et al. 2002).

Acetaldehyde and acetic acid in industry

Acetaldehyde is the central intermediate between pyruvate and
ethanol but it is also an important aroma compound. It is quan-
titatively the most abundant aldehyde in most fermented prod-
ucts including apple juice and spirits (Miyake and Shibamoto
1993), beer (Margalith 1981; Adams and Moss 1995), cider and
perry (Williams 1975), wine (Liu and Pilone 2000), cheese (Engels
et al. 1997), yoghurt (Zourari, Accolas and Desmazeaud 1992) and
ripened butter (Lindsay, Day and Sandine 1965). Production of
acetaldehyde has direct influence on the final product’s aroma,
levels of ethanol production, as well as product stability and tox-
icology (Romano et al. 1994). At low levels, acetaldehyde provides
a pleasant, fruity aroma and is a decisive aromatic compound of
many sherry-type and port wines (Zea et al. 2015). However, it
is also notorious for its undesirable green apple-like or grassy
flavor when exceeding threshold levels. This threshold varies
drastically between matrices, with 10 μg/g (ppm) reported for
beer (Meilgaard 1982), 30 μg/g for cider (Williams 1974) and up
to 130 μg/g for certain wines (Berg et al. 1955). Chemical conver-
sions during aging can also increase overall acetaldehyde con-
centrations of fermented beverages over time (Vanderhaegen
et al. 2003).

Apart from its direct effect on flavor, acetaldehyde arguably
has even a more important role indirectly. The molecule is ex-
tremely reactive and can react with various other compounds.
In red wines, for example, acetaldehyde influences various pa-
rameters not directly linked to aroma. It can bind sulfur dioxide
(SO2), which drastically reduces the effectiveness of this antimi-
crobial agent, thereby facilitating spoilage (Liu and Pilone 2000).
Acetaldehyde can also react with tannins, which are naturally
occurring polyphenols in grapes, to form irreversible, covalent
bridges, resulting in a reduction of the dry, puckering mouth-
feel (‘astringency’) that is associated with these compounds
(Mercurio and Smith 2008). A similar condensation reaction be-
tween anthocyanins or between anthocyanins and tannins me-
diated by acetaldehyde-bridged complexes is observed, result-
ing in polymeric pigments that influence wine color. These
highly stable complexes are not susceptible to SO2 bleaching
or changes in wine pH, and are therefore desired for color sta-
bility (Boulton 2001). Similarly, interactions between the antho-
cyaninmalvidin 3-monoglucoside and catechins in the presence
of acetaldehyde, which also influence color and color stability in
redwine,were observed (Rivas-Gonzalo, Bravo-Haro and Santos-
Buelga 1995). The central role of acetaldehyde in these reactions
even inspired researchers to experiment with exogenous addi-
tion of acetaldehyde, yielding red wines with reduced astrin-
gency and more stable color (Sheridan and Elias 2015).

Acetic acid is referred to, in industry, as volatile acidity
or vinegar taint. While industrial Saccharomyces species can
produce acetic acid, the presence of high acetic acid concen-
trations often indicates the presence of other species. High
levels of acetic acid are typically associated with the respira-
tory metabolism of ethanol by acetic acid bacteria. However,
some yeasts, notably Brettanomyces spp., can produce acetic
acid in aerobic conditions (Crauwels et al. 2015). This trait is
highly strain and species dependent (Castro-Martinez et al. 2005;
Rozp

↪
edowska et al. 2011). One species, Brettanomyces bruxellensis,

is so efficient at producing acetic acid, it has been proposed as a
candidate organism for industrial production (Freer 2002; Freer,
Dien and Matsuda 2003).
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Table 2. Effect of environmental parameters on CO2 production.

Parameter Condition Effect on CO2 production Reference

Temperature Decrease storage T of
yeasted dough

Decrease Sasano et al. (2012)

Dough mixing time Increase Increase Sahlström et al. (2004)

Medium composition

C source availability Increase Increase, however, risk for
osmotic stress

Sahlström et al. (2004)

Salt Increase Decrease (stress), however,
better CO2 containment

Lynch et al. (2009), Toyosaki
and Sakane (2013)

Nutrient mixes
(wheat bran) Supplementation Increase Hemdane et al. (2016)

Enzyme (amylase) Supplementation Increase (more available
sugars)

Struyf et al. (2017)

In specific cases, the presence of these acid-producing
species is desired for the fermentation, but more commonly
acetic acid is a sign of spoilage. In wine, 0.2–0.4 g/L of acetic
acid is acceptable, but above 1.2–1.3 g/L, it is considered a fault.
In contrast, concentrations up to 1.5 g/L are common in Lambic
beers and, in combination with bacterially produced lactic acid,
are crucial for the sour characteristics of Lambic (Witrick 2012).

Environmental parameter effects on acetaldehyde and
acetic acid production

High levels of acetaldehyde are undesirable in an industrial
context and some simple adjustments to fermentation param-
eters have been suggested to alter the level of acetaldehyde
(Table 3). For example, acetaldehyde production in some wine
strains remains constant when fermented between 12◦C and
24◦C but drastically increases at 30◦C (Romano et al. 1994). Sup-
plementation of SO2 also induces acetaldehyde production, but
the underlying mechanisms are unknown (Herraiz et al. 1989;
Herrero, Garcı́a and Dı́az 2003).

Since acetic acid has different sources in fermented bever-
ages (yeast and bacteria), there are different strategies for tar-
geting its production. Here we focus on control of yeast-derived
acetic acid from two important yeast genera associated with
industrial fermentations (Table 3). Production by Brettanomyces
can be controlled by reducing oxygen availability (Rozp

↪
edowska

et al. 2011), supplementing the fermentation with antimicro-
bial agents (Portugal et al. 2014) or applying electric currents
(Zuehlke, Petrova and Edwards 2013). Production by Saccha-
romyces can be reduced by promoting general growth. Acetic
acid production is driven by accumulation of NAD+ during glyc-
erol production (Eglinton et al. 2002) and increasing biomass (i.e.
growth) can help regenerate the pool of NADH. Supplementation
of nitrogen or unsaturated fatty acids can promote yeast growth
with a subsequent reduction in acetic acid (Varela et al. 2012). Re-
ducing glycerol production by lowering the sugar concentration
can also decrease the levels of acetic acid in the final product
(Bely, Rinaldi and Dubourdieu 2003).

Genetic factors and acetaldehyde and acetic acid
production

Given the central role of acetaldehyde in carbon metabolism
(Fig. 2), it is not a straightforward task to specifically modu-
late its production. However, attenuation of ethanol metabolism
(Wang et al. 2013), increasing acetaldehyde scavenging via glu-

tathione (Chen et al. 2012), oxidation of acetaldehyde to acetic
acid (Yao et al. 2012) or increasing pyruvate flux into the mito-
chondria (Agrimi et al. 2014; Bender, Pena and Martinou 2015;
Jayakody et al. 2016) has been shown to reduce levels of ac-
etaldehyde. Strains selected for resistance to Adh2 inhibitor 4-
methylpyrazole demonstrated decreased ADH2 expression and
an 82% reduction in acetaldehyde production (Wang et al. 2013).
Similarly, direct disruption of ADH2 reduces acetaldehyde by
68% (Wang et al. 2006).

Reduction of volatile acidity is mainly a concern in the wine
industry. Aerobic fermentation can cause excess levels of acetic
acid. Due to the complexity of this part of the metabolic path-
way, direct disruption of associated genes can havemultiple and
sometimes undesired effects. Deletion of PDC1 or ALD6 can re-
duce acetate levels but significantly increases levels of acetalde-
hyde, limiting its applicability (Luo et al. 2013; Curiel et al. 2016).
The previously mentioned overexpression of GPD1 effectively
decreases ethanol production but also leads to excessively high
acetic acid levels in wine (Cambon et al. 2006). Combining this
overexpression with deletion of ALD6 reduces the acetic acid
but also increases acetaldehyde and acetoin. This can be com-
pensated by overexpression of BDH1, which diverts the excess
acetaldehyde and acetoin to 2,3-butanediol, which has no ef-
fect on overall flavor and aroma (Fig. 2) (Ehsani et al. 2009). Less
direct approaches require less genetic compensation. For ex-
ample, deletion of AAF1, a transcriptional regulator of the ALD
genes, reduces acetic acid levels without affecting acetaldehyde
production (Luo et al. 2013). Strains with mutations in YAP1, a
transcription factor involved in oxidative stress tolerance, also
demonstrate reduced acetic acid levels (Yamamoto et al. 2000;
Cordente et al. 2013).

Physiological and ecological roles of CO2, acetaldehyde
and acetic acid

Though not a distinguishable aroma for humans, other or-
ganisms have distinct sensory responses to carbon dioxide. In
yeast populations, including S. cerevisiae, CO2 can mediate cell–
cell interactions, inducing growth and budding of neighboring
colonies (Volodyaev, Krasilnikova and Ivanovsky 2013). In Can-
dida albicans, increasing concentrations of self-generated CO2

causes the cells to undergo morphological changes and switch
to hyphal growth (Hall et al. 2010). Interestingly, this mechanism
has been implicated in the pathogenicity of C. albicans, as the
switch to filamentous growth is important for biofilm formation
and invasive growth in the host (Hall et al. 2010; Lu et al. 2013).
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Table 3. Effect of environmental parameters on acetaldehyde, and acetic acid production.

Parameter Condition
Effect on acetaldehyde
production Reference

Temperature Increase Increase Romano et al. (1994)
Oxygen Increase Increase Branyik et al. (2008), Curiel

et al. (2016)

Medium composition

C source Non-fermentable Increase Romano et al. (1994)
SO2 Increase Increase Jackowetz et al. (2011)

Effect on acetic acid
production

Brettanomyces

Oxygen Increase Increase (direct effect on
production)

Rozpedowska et al. (2011)

Medium composition
Antimicrobial agents (sulfite, chitosans, . . . ) Supplementation Decrease (inhibits growth) Portugal et al. (2014)
Weak acids and sorbic acid Supplementation Decrease (inhibits growth) Wedral et al. (2010)

Low electric current Application of ∼200 mA Decrease (inhibits growth) Zuehlke et al. (2013)
Pulsed electric field Application of ∼30

kV/cm, 1–4 μs pulses
Decrease (inhibits growth) Zuehlke et al. (2013)

Saccharomyces

Temperature Decrease Decrease Beltran et al. (2008)
Oxygen Increase Increase Curiel et al. (2016)
Medium composition
C concentration Increase Increase (glycerol

production, redox
imbalance)

Bely et al. (2003)

N source Supplementation Decrease (stimulates yeast
growth, provides NADH)

Bely et al. (2003), Barbosa
et al. 2009

Copper Supplementation Increase Ferreira et al. (2006)
Yeast lees and insoluble material Increase Variable (some lead to

increase, others to
decrease)

Delfini and Costa (1993)

Accumulation of acetaldehyde in yeast cells results in growth
inhibition and a stress response (Stanley et al. 1993; Aranda and
Olmo 2004). When acetaldehyde diffuses out of the cell, it acts
as a volatile signalingmolecule. At high cell densities, yeast cells
coordinate their metabolism by sensing the secreted acetalde-
hyde, resulting in collective macroscopic oscillations and syn-
chronized phases of growth (Richard et al. 1996). Interestingly,
several cellular systems, from yeast colonies to human muscle,
and even tumors, demonstrate this type of synchronized oscil-
lations of glycolytic reactions (Betz and Chance 1965; Tornheim
and Lowenstein 1974; Nilsson et al. 1996; Richard 2003; Fru et al.
2015).

Acetic acid is potentially used by Brettanomyces as a strat-
egy to outcompete other microbes (Rozp

↪
edowska et al. 2011).

The ‘make-accumulate-consume’ strategy allows Brettanomyces
yeast to accumulate high levels of acetic acidwhich dramatically
lowers the pH of the environment. Since this yeast has a higher
tolerance for low pH than most microbes, it can withstand the
extreme environment and later consume the acetic acid as an
extra carbon source.

These three compounds also play an important role in in-
sect behavior. Acetaldehyde is a core component of a compound
blend used to attract and trap pest beetles from the genus Car-
pophilus (Phelan and Lin 1991; Nout and Bartelt 1998). In sev-
eral reports, CO2 had a repulsive effect on fruit flies (Suh et al.

2004; Turner and Ray 2009). Recent studies indicate that this re-
pulsion highly depends on the behavioral context, i.e. whether
the flies are walking on surface or flying in the air (Wasserman,
Salomon and Frye 2013). When in flight, Drosophila melanogaster
are attracted to CO2, possibly due to modulations of neurotrans-
mitters which occur during flight (Orchard, Ramirez and Lange
1993). The current hypothesis is that in crowded conditions,
when flies are gathered on a surface, CO2 is repulsive but when
in flight and searching for food, CO2 can act as an attractive sig-
nal to indicate the presence of fermenting fruits.

Acetic acid is also an important volatile for mediating the
behavior of D. melanogaster. This fruit fly is reported to have a
highly selective olfactory neuron for detection of acids which
is generally connected with observed acid-avoiding behavior
(Ai et al. 2010). However, D. melanogaster is also known to be lured
by acetic acid (Hutner, Kaplan and Enzmann 1937; Knaden et al.
2012), which accounts for its attraction to vinegar and nickname
as the ‘vinegar fly’. Females looking for ovipositioning sites are
strongly attracted by acetic acid, whereas flies not ready to de-
posit eggs show little or no attraction (Joseph et al. 2009; Gou
et al. 2014). The closely related species, D. simulans, is repulsed
bymicrobially produced acetic acid; this behavior strongly corre-
lateswith the increasing acid concentration (Günther et al. 2015).
These examples suggest a complexity in the perception and pro-
cessing of sensory information, both gustatory and olfactory,
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Figure 3. Production of vicinal diketones. The vicinal diketones are produced as by-products during the isoleucine-leucine-valine (ILV) biosynthetic pathways. Gene

names correlate with nomenclature from S. cerevisiae (Saccharomyces Genome Database). OYE = ‘Old Yellow Enzyme’. Dotted lines indicate import/export, solid lines
indicate biochemical reactions. Note: dotted line from sugar to pyruvate also encompasses glycolysis.

to modulate behavior. In this example, it has been hypothe-
sized that the egg-laying preference on acetic acid-containing
substrates depends on gustatory inputs (females will taste the
acetic acid when on the surface). However, when not in direct
contact with the medium, olfactory information only leads to
aversion of acetic acid-containing food (Joseph et al. 2009). To-
gether with ethanol, acetic acid has also been found as an im-
portant volatile to attract flies such as Fannia canicularis, Muscina
stabulans and Philornis downsi (Diptera: Muscidae) to fermenting
substrates as a food source (Landolt, Cha and Zack 2015; Cha
et al. 2016). Furthermore, when acetic acid is combined with
other fermentation compounds, such as phenylacetaldehyde,
stronger attraction of insects is achieved (Becher et al. 2010, 2012;
Cha et al. 2012).

AMINO ACID METABOLITES: VICINAL
DIKETONES

Biochemistry of vicinal diketone production

Vicinal diketones (i.e. compounds containing two adjacent
carbon-oxygen double bonds) can be produced during fermen-
tation through non-enzymatic decarboxylation of intermediates
in the valine and isoleucine anabolic pathways (Fig. 3). Dur-
ing fermentation, pyruvate can be converted to various carbon
compounds such as acetolactate. The acetolactate can then be
diverted towards synthesis of valine and leucine. Inefficiency
of the valine biosynthesis pathway during growth results in a
buildup of acetolactate which is then secreted into the medium.
Similarly, during isoleucine biosynthesis, acetohydroxybutyrate
is produced and is also secreted. Both compounds are non-
enzymatically converted to diketones: decarboxylation of aceto-
lactate forms diacetyl (2,3-butanedione) while decarboxylation

of acetohydroxybutyrate forms 2,3-pentanedione. Towards the
end of fermentation, these compounds can be reabsorbed by the
cell and converted to acetoin (and subsequently 2,3-butanediol)
and 3-hydroxy-2-pentanone by various reductases (van Bergen
et al. 2016).

Vicinal diketones in industry

Vicinal diketones can provide a pleasant nutty, toasty and toffee-
like flavor in fermented foods and beverages, most notably beer,
wine and dairy products (Molimard and Spinnler 1996; Bar-
towsky and Henschke 2004; Krogerus and Gibson 2013a). How-
ever, they are considered off-flavors when present in high con-
centrations, changing their sensory perception to ‘buttery’ or
‘rancid’. Especially in beer brewing, vicinal diketone production
is an ongoing challenge. Diacetyl is rarely perceived positively
in beer, except in a few specific styles (e.g. sour ales, Bohemian
Pilsner and some English ales).

Diacetyl is generally more of a focus in industrial beer fer-
mentation than 2,3-pentanedione for two reasons. First, it has
a significantly lower sensory threshold (0.1 μg/g versus 1.0 μg/g)
whichmakes it more detectable in the final product. Second, the
direct connection between diacetyl and pyruvate has implica-
tions in managing ethanol production levels. In wine, diacetyl is
considered less of a problem and low (1–4 μg/g) concentrations
positively contribute to desirable buttery or butterscotch notes.
Moreover, excessively high concentrations are rare but rather in-
dicate bacterial spoilage or other irregularities duringmalolactic
fermentation (Bartowsky and Henschke 2004). Additionally, di-
acetyl is masked in part by the presence of SO2 in wine which
results in a marked increase in threshold levels (Bartowsky and
Henschke 2004).
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Table 4. Effect of environmental parameters on vicinal diketone production.

Parameter Condition Effect on vicinal diketone production Reference

Temperature Increase Decrease during fermentation or
maturation (higher cell density, more
acetolactate to diacetyl conversion)

Bamforth and Kanauchi (2004)

pH Decrease Increase (increased enzyme efficiency) Bamforth and Kanauchi (2004)
Fermentation time Increase Decrease (more acetolactate to

diacetyl conversion and diacetyl
reduction)

Bamforth and Kanauchi (2004)

Oxygen Increase Decrease (higher cell density) Portno (1966)

Medium composition

Valine supplementation Increase Decrease (less acetolactate
production, see Figure 2)

Krogerus and Gibson (2013b)

Sugar concentration Increase Decrease Saerens et al. (2008b)
Enzyme (α-Acetolactate decarboxylase) Supplementation Decrease (acetolactate to acetoin

conversion)
Godtfredsen and Ottesen (1982)

Environmental parameters and vicinal diketone
production

Due to the highly reductive conditions that exist at the end of
alcoholic fermentations, the concentration of diacetyl is usu-
ally below (or close to) its sensory detection threshold in fresh
beer (Haukeli and Lie 1972). Diacetyl reduction effectively elimi-
nates the undesired flavors as acetoin and 2,3-butanediol do not
contribute to the aroma profile. Therefore, some beers are sub-
jected to a maturation phase of 2–3 weeks after fermentation
to allow any residual acetolactate to decarboxylate and subse-
quently be reduced by the yeast to below its detection limit.
This maturation phase requires storage capacities and limits
the output of beer from a brewery and the economic feasibil-
ity. Therefore, there have been some considerable efforts to find
alternative ways to reduce natural diacetyl formation or speed
up diacetyl reduction by modifying various process parameters
(Table 4).

The connection to amino acid metabolism directly affects
synthesis of these two compounds; if nitrogen is low and the
cell needs to synthesize its amino acids, production of these
by-products will also increase (Krogerus and Gibson 2013a).
Simply supplementing fermentation media with exogenous va-
line can dramatically decrease production of diacetyl (Krogerus
and Gibson 2013b). Since the conversion of acetolactate to di-
acetyl is non-enzymatic, heating after fermentation increases
the rate of conversion of excess acetolactate, which can subse-
quently be reduced (Kobayashi et al. 2005). The use of a contin-
uous fermentation setup minimizes yeast growth, and thus va-
line biosynthesis, and reduces formation of diacetyl (Verbelen
et al. 2006).

Genetic factors and vicinal diketone production

Arguably one of themost promising and cheaper strategies to re-
duce vicinal diketones ismodification of yeastmetabolism.Most
commonly, this is done by increasing the metabolic flux from
acetolactate to valine or promoting conversion of acetolactate
to acetoin. Mutation of ILV2 (acetolactate synthase) reduces di-
acetyl formation by 64% (Wang et al. 2008). Similarly, increased
expression of ILV5 (acetohydroxyacid reductosiomerase), the
rate-limiting step in valine synthesis, reduces diacetyl forma-
tion 50%–60% (Mithieux and Weiss 1995; Kusunoki and Ogata

2012). Heterologous expression of a bacterial acetolactate decar-
boxylase gene (ALDC) catalyzes the non-oxidative decarboxyla-
tion of acetolactate to acetoin and bypasses diacetyl production
(Kronlof and Linko 1992).

Physiological and ecological roles of vicinal diketones

As described, production of the vicinal diketones is done ex-
tracellularly following the secretion of accumulated acetolac-
tate and acetohydroxybutrate. The biological role of this phe-
nomenon is not known, but protection from carbonyl stress and
subsequent cellular damage has been suggested (van Bergen
et al. 2016). Additionally, the reduction of the diketones is phys-
iologically favorable for yeast, as the resulting end products are
less toxic and the reactions replenish the NAD+ and NADP+

pools (De Revel and Bertrand 1994).
Diacetyl has a ‘masking’ role in ecological settings rather

than a direct role as a signalingmolecule.Drosophila melanogaster
has high specificity neurons for detecting diacetyl and CO2

(de Bruyne, Foster and Carlson 2001). As discussed earlier,
CO2 can elicit avoidance behavior in fruit flies, which seems
somewhat counterintuitive, since CO2 is a signal of ferment-
ing fruit, a suitable food source and ovipositioning site. Diacetyl
masks the avoidance signal by blocking the receptor, result-
ing in attraction to the fermentation source (Turner and Ray
2009; Turner et al. 2011). A reversed interplay is observed in
several mosquito species, where mosquitoes are attracted to
CO2 which is then blocked by the presence of diacetyl (Turner
et al. 2011).

AMINO ACID METABOLITES: HIGHER
ALCOHOLS

Perhaps the most well-characterized biochemical pathway in
yeast aroma production is the Ehrlich pathway. This is likely due
to the very desirable and recognizable compounds produced by
this pathway—the higher (fusel) alcohols and subsequently, the
acetate esters. Felix Ehrlich first posited the connection between
amino acid metabolism and higher alcohol formation in 1907
based on their structural similarity (Fig. 4). This led to a sim-
ple, classic experiment of varying the concentration of specific
amino acids in the fermentation media and noting changes in
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Figure 4. The Ehrlich pathway. There are several routes that can direct carbon compounds into the production of amino acids and subsequently the higher alcohols.
This scheme depicts themost direct connections between the amino acids and the respective higher alcohols through the three-step Ehrlich Pathway (general reactions
depicted at top). Dotted lines indicate multiple steps. Note: the reduction step can be carried out by over 10 different enzymes which vary in localization, regulation

and substrate specificity; AdhX = alcohol dehydrogenase (Adh1, Adh2, Adh3, Adh4, Adh6, Adh7); AadX = aryl alcohol dehydrogenase (Aad3, Aad4, Aad6, Aad10, Aad14,
Aad15, Aad16).



Dzialo et al. S107

production of the corresponding fusel alcohols (Ehrlich 1907).
Over the next century, the details of this biochemical process
have been greatly uncovered leading to significant improve-
ments in the fermentation industry.

Biochemistry of higher alcohol production

The Ehrlich pathway is a three-step process thatmodifies assim-
ilated amino acids, the major source of nitrogen in many fer-
mentation processes. In general, amino acids are deaminated,
decarboxylated and finally reduced to their respective alcohol
derivatives (Fig. 4). By sequentially modifying amino acids, yeast
cells can harvest and utilize the essential nitrogen as needed
and in turn produce an array of fragrant and distinct aroma com-
pounds (Hazelwood et al. 2008; Pires et al. 2014). Given the chem-
ical similarities of the intermediates to pyruvate, acetaldehyde,
and ethanol, many of the same enzymes involved in production
of the primary fermentationmetabolites are also involved in this
pathway.

Transamination
After uptake from the media, amino acids are converted to their
respective α-keto acid by a transaminase capable of transferring
amine groups between amino acids. In Saccharomyces cerevisiae,
there are six enzymes capable of this type of reaction: Bat1,
Bat2, Aat1, Aat2, Aro8 and Aro9 (SGD, Cherry et al. 2012). Aat1
and Aat2 do not play a role in higher alcohol production; these
enzymes act specifically on aspartate as part of the malate-
aspartate shuttle to move electrons from the cytosol to the mi-
tochondria for respiratory energy production (Cronin et al. 1991;
Morin, Subramanian and Gilmore 1992). The other four enzymes
have been directly linked to higher alcohol synthesis but, as seen
with the ADHs discussed above, each contributes differently to
the Ehrlich pathway. Bat1 and Bat2 are primarily involved with
transamination of the branched chain amino acids, whereas
Aro8 and Aro9 are aromatic amino acid transaminases acting on
phenylalanine and tryptophan, respectively (Kispal et al. 1996;
Iraqui et al. 1998).

Decarboxylation
The second step of the Ehrlich pathway is the irreversible de-
carboxylation of the α-keto acid to an aldehyde. The same three
PDCs used in the production of acetaldehyde (Pdc1, Pdc5 and
Pdc6) have all been implicated in the production of the fusel
aldehydes. Additionally, Aro10 is capable of this reaction, and
is primarily responsible for decarboxylating 2-phenylpyruvate
to 2-phenylacetaldehyde (Vuralhan et al. 2003). Aro10 is also a
likely candidate for some variations in higher alcohol produc-
tion between species. Saccharomyces kudriavzevii produces more
higher alcohols than S. uvarum or S. cerevisiae (Stribny et al.
2016). ScAro10 prefers phenylpyruvate but SkAro10 has a broader
substrate preference, almost equally acting on phenylpyruvate,
ketoisocoaproate, ketoisovalerate, ketomethylvalerate and even
keto-γ -methylthiobutyrate (Stribny et al. 2016). Interestingly, the
interspecies hybrid, S. pastorianus, harbors three copies of the
S. cerevisiae ARO10 gene and one copy from S. eubayanus. While
both isozymes prefer phenylpyruvate as a substrate, SeuAro10
has much higher activity towards ketoisovalerate (Bolat et al.
2013). Copy number variation and slight discrepancies in sub-
strate preference add a level of aroma complexity to hybrid
brewing yeasts.

Reduction
At this point, the fusel aldehydes can undergo an oxidation or
a reduction. The various ADHs and AADs catalyze the reduc-
tion step and complete the Ehrlich pathway. Any one of the ADH
enzymes can catalyze this last step, but research indicates that
Adh1 and Adh2 mainly participate in ethanol metabolism (de-
scribed above). If the fusel aldehydes undergo an oxidation re-
action by an ALD, they are converted into their respective fusel
acids.

Higher alcohols in industry

Higher alcohols can impart a much-desired effect on the prod-
uct’s flavor despite their higher sensory threshold, which can
differ several orders of magnitude compared to their corre-
sponding acetate esters. The major fusel alcohols found in al-
coholic beverages are 1-propanol (alcoholic aroma), 1-butanol
(alcoholic), isobutanol (alcoholic), 2-phenylethanol (roses, flow-
ery) and isoamyl alcohol (banana, fruity).

The rose-like fragrance of 2-phenylethanol has made it a
desirable compound for use in many perfumes, cosmetics and
beverages (Etschmann et al. 2002). Currently, the greater part
of its commercial production is done synthetically, but this
process requires use of carcinogenic precursors, such as ben-
zene and styrene, and yields various difficult-to-remove by-
products. It is possible to extract 2-phenylethanol from the es-
sential oils of plants, but this process is excessively expen-
sive due to low yields (Etschmann et al. 2002). Therefore, re-
searchers have turned tomicrobial production of this compound
(Carlquist et al. 2015). Genetically modified or mutagenized
Saccharomyces cerevisiae strains have been utilized to convert
phenylalanine into 2-phenylethanol, typically by enhancing the
Ehrlich pathway (Kim, Cho and Hahn 2014). Non-conventional
yeasts have also been explored as production strains includ-
ing Kluyveromyces marxianus, which naturally produces more 2-
phenylethanol than S. cerevisiae (Ivanov et al. 2013). Additionally,
K. marxianus grows quickly and is thermotolerant making it an
interesting candidate for commercial production (Etschmann,
Sell and Schrader 2003; Gao and Daugulis 2009; Morrissey et al.
2015).

The associated fusel acids are also of industrial interest.
The production of these compounds can be perceived posi-
tively or negatively depending on the context. In soy sauce,
flor-forming strains of Zygosacharomyces rouxii can produce
2-methylpropanoic acid (isobutyric acid) and 3-methylbutanoic
acid (isobutyric acid) (corresponding alcohols isobutanol and
isoamyl alcohol), compounds associated with foul, spoiled aro-
mas. In some cases, metabolic engineering approaches have
been employed to actually increase production of these acids.
Short branched-chain fatty acids such as 2-methylbutanoic acid,
isobutyric acid and isovaleric acid are valuable compounds in
the food and pharmaceutical industries. The acids and their
derivatives can be used as fragrances and flavorings (Yu et al.
2016).

Environmental parameters and higher alcohol
production

The three-step process described above is situated amongst a
complex network of amino acid metabolism: there are multi-
ple paths to each of the major alcohols that require significant
regulation and balance during the fermentation process. Addi-
tionally, levels of each compound are dramatically affected by
themedium composition, especially carbon source and nitrogen
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Table 5. Effect of environmental parameters on higher alcohol production.

Parameter Condition
Effect on higher alcohol
production Reference

Temperature Increase Increase Landaud et al. (2001)
Oxygen Increase Increase Valero et al. (2002)

Medium composition

C source Maltose Decrease (compared to sucrose,
fructose, glucose)

Younis and Stewart (1998)

Sugar concentration Increase Decrease (not always) Younis and Stewart (1999)
N source (total) Increase Decrease (co-regulation of LEU and

BAT genes)
Yoshimoto et al. (2002)

NH4 Supplementation Decrease Vidal et al. (2013)
Amino acids Supplementation Increase in respective higher

alcohol (see Fig. 3)
Hernandez-Orte et al. (2005)

Vitamins Supplementation Increase Etschmann et al. (2004)
Maillard compounds Increase Increase Dack et al. (2017)

sources (Table 5). Since higher alcohols aremainly produced dur-
ing active growth, factors that positively influence yeast growth
simultaneously promote higher alcohol synthesis (Dekoninck
2012). If there is a surplus of exogenous amino acids, as shown
by Ehrlich and others, production of these alcohols increases
(Ehrlich 1907; He et al. 2014). If amino acids are in short supply,
the pathways will inevitably favor anabolic routes. This under-
standing has been adopted by industry as a powerful way to di-
rect higher alcohol production (Etschmann et al. 2002; Vidal et al.
2013; Lei et al. 2013a).

Genetic factors and higher alcohol production

Engineered yeast strains for increased higher alcohol produc-
tion are utilized both for increasing concentrations of the
alcohols themselves and their respective esters. Overexpres-
sion of ADH6 can increase isobutanol production (Kondo et al.
2012) whereas overexpression of ADH1 can increase levels of
2-phenylethanol (Shen et al. 2016). Our understanding of the
ILV biosynthetic and Ehrlich pathways allows for complex, mul-
tistep metabolic engineering to increase specific higher alco-
hols. For example, overexpression of ILV2, ILV3, and ILV5 in-
creases the flux towards isoleucine production (Fig. 3). If this
is coupled with deletion of BAT1 (transaminase) and ALD6
(the aldehyde dehydrogenase) plus overexpression of ARO10
and ADH2 (both alcohol dehydrogenases), the α-keto acid and
aldehyde derivatives of isoleucine are pushed towards produc-
tion of the higher alcohol (Fig. 4) (Park, Kim and Hahn 2014).
Conversely, deletion of the alcohol dehydrogenase ADH with
overexpression of BAT1, ALD2 and ALD5 increases the produc-
tion of the fusel acids by diverting flux at the last Ehrlich
step towards oxidation. These acids are also intermediates for
production of value-added products in the chemical industry
(Yu et al. 2016).

Due to the complexity and intricate nature of these path-
ways, simple mutation does not always have the desired ef-
fect. For example, some studies show that deletion of ARO8
(one of the aromatic amino transferases) increases catabolism
of phenylalanine to its higher alcohol 2-phenylethanol (Romag-
noli et al. 2015; Shen et al. 2016) while others have demonstrated
that overexpression of the same gene also increases produc-
tion of higher alcohols (Yin et al. 2015; Wang et al. 2016b). Ad-
ditionally, deletion of ARO9 has no apparent effect (Shen et al.

2016) but its overexpression causes an increase in production of
higher alcohols (Kim, Cho and Hahn 2014). These conflicting re-
sults could be due to amultitude of factors including differences
in strain background or variations in media used for fermenta-
tions. Regardless, this points to a significantlymore complicated
relationship between the aminotransferases that may help con-
tribute to the diversity of higher alcohol production in different
strains.

As becomes apparent from the previous examples, sophisti-
cated metabolic engineering is needed to obtain highly produc-
tive strains for higher alcohols. Several research teams focus on
butanol isomers as these compounds can be used as alternative
fuels. An exhaustive overview of metabolic engineering strate-
gies for butanol isomer production has recently been published
elsewhere (Generoso et al. 2015). But, despite the extensive ef-
forts to improve the production yield of butanol isomers (and
higher alcohols in general) in S. cerevisiae, the efficiency that can
be achieved by metabolic engineering is still significantly lower
compared to other hosts, such as Escherichia coli. Comparison
of central metabolism of metabolically engineered E. coli and S.
cerevisiae revealed that flexibility of this metabolism is an im-
portant factor in efficient production of butanols and propanols
(Matsuda et al. 2011).

Physiological and ecological roles of higher alcohols

Given the significant variation in higher alcohol production from
different yeasts, it is perhaps not surprising that insects have
developed an ability to utilize these compounds as chemical
signatures. Many insect olfactory receptors are specifically at-
tuned to the detection of higher alcohols and many of these
compounds can elicit antennal and behavioral responses in in-
sects (Hallem and Carlson 2004; Saerens, Duong and Nevoigt
2010; Knaden et al. 2012; Witzgall et al. 2012). It has been demon-
strated on several occasions that cultures of the yeast-like fun-
gus Aureobasidium pullulans can lure a variety of insects, in-
cluding hoverflies (Diptera: Syrphidae) (Davis and Landolt 2013)
and social wasps (Vespula spp. (Hymenoptera: Vespidae) (Davis,
Boundy-Mills and Landolt 2012). In both cases, a synthetic blend
of higher alcohols, namely 2-methyl-1-butanol, isoamyl alco-
hol and 2-phenylethanol, proved to be even more attractive to
the insects than the yeast culture. The wasps are known to
act as vectors for A. pullulans, suggesting a strong interaction
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between the wasps and the yeast species (Davis, Boundy-Mills
and Landolt 2012).

Compound blends to mimic fermenting yeasts are com-
monly being implemented to combat agricultural pests. Many
of the blends contain higher alcohols since these tend to assist
in eliciting antennal responses and attraction. The beetle Car-
pophilus humeralis infests and damages corn crops, and higher
alcohol-containing blends are designed tomimic S. cerevisiae fer-
menting corn and lure them (Nout and Bartelt 1998). The re-
lated beetle, C. hemipterus, is similarly attracted to S. cerevisiae-
produced higher alcohols, namely 2-pentanol, isoamyl alcohol,
isobutanol and butanol (Phelan and Lin 1991). The weevil Arae-
cerus fasciculatus (Coleoptera: Anthribide), a coffee bean pest,
was recently found to be attracted to 2-phentylethanol imply-
ing that the compoundmight serve as a potential lure (Yang et al.
2016).

Higher alcohols can also serve as directory signals for insects.
Fermentations of S. cerevisiae or a synthetic blend of five fer-
mentation compounds, including ethanol, isoamyl alcohol and
2-phenylethanol, is sufficient to attract D. melanogaster (Becher
et al. 2012). Among other compounds, higher alcohols produced
by Metschnikowia, including isoprenol, 2-phenylethanol and cit-
ronellol, can elicit antennal responses in the codling moth Cy-
dia pomonella (Lepidoptera: Tortricidae) (Witzgall et al. 2012). The
moths utilize the emitted aromas to orient themselves towards
suitable oviposition sites, such as yeast-infested apples that pro-
vide a food source for larvae and protection from harmful fungal
infestations.

Some higher alcohols have antifungal properties. Isoamyl al-
cohol produced by Candida maltosa inhibits the germination of
filamentous fungi (Ando et al. 2012). Pichia anomala produces
2-phenylethanol potentially as a biocontrol agent against As-
pergillus flavus; the compound inhibits spore germination and
the production of the carcinogenic mycotoxin produced which
can contaminate the crops P. anomala grows on (Hua et al. 2014).
Kloeckera apiculata likewise produces 2-phenylethanol to inhibit
growth of various Penicillium molds (Liu et al. 2014). Other stud-
ies have also demonstrated anti-fungal effects of yeast volatiles
from various species (several Candida species, S. cerevisiae, A. pul-
lulans, Metschnikowia pulcherrima), but the specific effector com-
pounds have not yet been identified (Fiori et al. 2014; Parafati et al.
2015; Lemos Junior et al. 2016).

Several higher alcohols such as 2-phenylethanol, tryptophol,
tyrosol and farnesol can act as quorum-sensingmolecules in di-
morphic yeasts, including S. cerevisiae, Debaryomyces hansenii and
Candida albicans. Secretion of the alcohols regulates the switch
between unicellular yeast forms and filamentous forms (Chen
et al. 2004; Chen and Fink 2006; Gori et al. 2011). Moreover, it has
been speculated that these quorum-sensing molecules can play
a role on the population level and influence the establishment of
microbial communities in (semi-) spontaneous fermentations,
such as wine, lambic beers and/or cheese, but evidence for such
interactions is still lacking (Ciani and Comitini 2015).

AMINO ACID METABOLITES: ESTERS

Biochemistry of ester production

Esters are formed by a condensation reaction between
acetyl/acyl-CoA and an alcohol (Fig. 5). The use of acetyl-
CoA or acyl-CoA divides esters into two different categories,
acetate esters and fatty acid ethyl esters, respectively. The small
size and lipophilic nature of acetate esters allow them to readily
diffuse from the cytoplasm into the extracellular medium

whereas the longer hydrocarbon tails of fatty acid ethyl esters
reduce their capacity to diffuse across the membrane. There-
fore, acetate esters impart significantly more influence over
flavor and fragrance than the fatty acid counterparts.

Ester synthesis is carried out by alcohol-O-acetyl (or acyl)-
transferases (AATases). In Saccharomyces cerevisiae, there are four
known enzymes: Atf1 and Atf2 are responsible for most acetate
ester production and Eeb1 and Eht1 synthesize the fatty acid
ethyl esters (SGD, Cherry et al. 2012). There is definitive evidence
that there are additional enzymes of both types in S. cerevisiae.
Double deletion of ATF1 and ATF2 results in complete loss of
isoamyl acetate production but only a 50% reduction in ethyl ac-
etate (Verstrepen et al. 2003c). Similarly, a double deletion of EEB1
and EHT1 does not eliminate fatty acid ethyl esters (Saerens et al.
2006).

Recently, a third ethyl acetate-forming enzyme has been de-
scribed (Kruis et al. 2017). The ethanol acetyltransferase 1 (Eat1)
was identified in Wickerhamomyces anomalus and defines a new
family of enzymeswhich is distinct from the canonical AATases.
Eat1 is actually a hydrolase that can perform thioesterase and
esterase reactions in addition to formation of ethyl acetate. Ho-
mologs are found in several ethyl acetate-producing yeasts. Al-
though a triple deletion has not yet been attempted, deletion of
the S. cerevisiae Eat1 homolog, YGR015C, results in a 50% reduc-
tion in ethyl acetate production, which complements the Atf1
and Atf2 production.

The enzymatic activities of these enzymes can differ sig-
nificantly, even more so between different species and strains,
adding to the variation of the final fermentation product. For
example, Atf1 has equal substrate specificity for isoamyl alco-
hol and 2-phenylethanol whereas Atf2 prefers isoamyl alcohol
(Stribny et al. 2016). However, both Atf1 and Atf2 from S. kudri-
avzevii or S. uvarum, have higher preference for 2-phenylethanol
compared to the S. cerevisiae homologs. This is directly re-
flected under fermentation conditions, where strains harboring
S. kudriavzevii and S. uvarum enzymes produce much more 2-
phenylethyl acetate.

Esters in industry

Esters are generally accepted as some of the most important
contributors to the flavor and aroma of alcoholic beverages,
imparting fruity and flowery notes to the product (Nordström
1966; Verstrepen et al. 2003a). During industrial fermentations,
yeasts produce esters in very low concentrations, often only a
few parts per billion (ppb) (Lambrechts and Pretorius 2000). In-
cidentally, these natural concentrations hover around the fla-
vor threshold for humans and consequently, small changes in
ester production can significantly alter perception of the prod-
uct. There is a synergistic effect in the perception of many es-
ters, where a mixture of compounds will highlight or mask the
presence of others (Nordström 1964a; Suomalainen 1971). How-
ever, an excess of esters often results in an unpalatable prod-
uct, highlighting the importance of balance in the production of
aroma compounds (Liu, Holland and Crow 2004).

The overall importance and complexity of ester production
has led to considerable industrial research to optimize produc-
tion. Interestingly, these compounds affect the quality of prac-
tically all food fermentations that involve yeasts, ranging from
fermented beverages (Lilly, Lambrechts and Pretorius 2000; Ver-
strepen et al. 2003a), over bread (Birch et al. 2013; Aslankoohi et al.
2016), to chocolate (Meersman et al. 2016). Moreover, biotech-
nological production of high ester concentrations, especially
ethyl acetate, has been studied for several years. Ethyl acetate
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Figure 5. Ester synthesis in yeast. Left: general scheme of both types of ester production. Esters are the result of condensation reactions between an alcohol and an
acetyl/acyl-CoA. (A) Acetate esters are produced through the actions of Atf1 and Atf2. (B) Fatty acid esters are produced by Eeb1 and Eht1. Right: examples of some of

the most common esters discussed in this review. General aroma descriptors are listed in italics.

is an environmentally friendly solvent with many industrial
applications but its production involves energy-intensive petro-
chemical processes. Several non-conventional yeasts, more
specifically W. anomala, Candida utilis and especially
Kluyveromyces marxianus, all species with inherently high
ethyl acetate production, have been explored (Löser, Urit and
Bley 2014).

Environmental parameters and ester production

There are a multitude of parameters that can influence ester
production in yeast which allows for significant modulation of
the ester profile of foods or beverages without genetic manipu-
lation (Table 6). However, given the complexity of the regulation
of enzyme and substrate availability, the exact outcome of mod-
ifying one specific parameter is still hard to predict. In general,
acetate and ethyl ester production are often affected in the same
way by the same parameters (Saerens et al. 2008a).

The concentration and composition of fermentable carbon
sources as well as the carbon-to-nitrogen ratio have dramatic ef-
fects on ester production (Table 6) (Piddocke et al. 2009; Dekon-
inck et al. 2012). The direct connection to higher alcohols and
their amino acid precursors makes ester production highly de-
pendent on the nitrogen source. The concentration of free amino
nitrogen (FAN), including amino acids and small peptides, pos-
itively correlates with acetate ester production (Procopio et al.
2013; Lei et al. 2013a, b). Increased nitrogen can also increase ex-

pression of ATF1 and BAT1 and subsequently alter ester levels
(Saerens, Thevelein and Delvaux 2008).

In general, higher temperatures result in higher alcohol pro-
duction and subsequent acetate ester production (Landaud, La-
trille and Corrieu 2001) though this effect can vary given differ-
ences in fermentation matrix, genetic background and the es-
ters of interest (Molina et al. 2007; Birch et al. 2013). Additionally,
ATF1 andATF2 expression are positively correlated with temper-
ature and would result in increases in acetate ester production
(Saerens et al. 2008b). However, the volatile nature of acetate es-
ters would lead to an overall decrease in concentration at exces-
sively high temperatures. This is the case in chocolate produc-
tion; during post-fermentation processing, the chocolate mass
is subjected to an hour-long mixing at temperatures as high as
75◦C (Meersman et al. 2016). This production step results in the
loss ofmany yeast-derived aroma compounds, including acetate
esters. However, fatty acid esters, which dissolve more easily
into the fat fraction of chocolate, are largely retained.

Dissolved oxygen and unsaturated fatty acids are negative
regulators of ATF1 expression and, consequently, ester synthe-
sis (Dufour, Malcorps and Silcock 2003). Interestingly, both com-
pounds are shown to act on the same part of the ATF1 promo-
tor, namely the low-oxygen response element (Jiang et al. 2001).
Therefore, oxygenation of the fermenting medium is a power-
ful and straightforward tool to modulate ester production. How-
ever, it is not always feasible to increase or decrease the oxygen
content of the medium, as it can have undesirable side effects
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Table 6. Effect of environmental parameters on ester production.

Parameter Condition Effect on ester production Reference

Temperature Increase Increase (not always) Molina et al. (2007), Saerens et al. (2008a)
Oxygen Increase Decrease (decreased expression of

ester synthesis genes)
Fujii et al. (1997), Anderson and Kirsop (1974)

Medium composition

Unsaturated fatty acids Increase Decrease (decreased expression of
ester synthesis genes)

Fujii et al. 1997, Anderson and Kirsop (1974)

Free amino nitrogen (FAN) Increase Increase (precursor availability
and increased expression of ester
synthesis genes)

Saerens et al. (2008a), Lei et al. (2013ba)

Sugar concentration Increase Increase (increased expression of
ester synthesis genes)

Saerens et al. (2008b)

C source Glucose, fructose, sucrose Increase (compared to maltose) Verstrepen et al. (2003b), Piddocke et al. (2009)
Maillard compounds Increase Decrease Dack et al. (2017)

Hydrostatic pressure Increase Decrease (increased dissoved CO2) Landaud et al. (2001), Meilgaard (2001)

(e.g. irregular yeast growth, impaired flavor stability or increased
risk of contamination). Adding unsaturated fatty acids can be
an interesting alternative without the undesired effects (Moon-
jai et al. 2002).

Modifications to the fermentation vessel can alter the yeast
cells’ microenvironment and affect physiological changes. A
shift from small fermenters to tall, cylindroconical vessels in
large breweries resulted large decreases in ester production
(Meilgaard 2001). This was explained by the increased concen-
tration of dissolved carbon dioxide which inhibited overall de-
carboxylation reactions, resulting in lower substrate levels for
ester production (Landaud, Latrille and Corrieu 2001).

Genetic factors and ester production

As acetate esters are quantitatively the most abundant group of
esters in industrial fermentations, and are shown to have a ma-
jor impact on flavor, it is not surprising that researchers have of-
ten aimed to hijack the yeast’s ester production to diversify the
organoleptic characteristics of many diverse fermented foods.
The total ester production and the relative proportions of each
individual ester differs dramatically between species and strains
(Steensels et al. 2014a; Padilla, Gil and Manzanares 2016). Thus,
the most straightforward way to vary ester levels in fermenta-
tion is to vary the yeast strain. Metabolic engineering to control
ester formation has mostly targeted ATF1 and ATF2 expression
or activity (Lilly, Lambrechts and Pretorius 2000; Hirosawa et al.
2004; Lilly et al. 2006; Swiegers et al. 2006). Modulating expression
of IAH1, an esterase, also affects ester concentrations (Lilly et al.
2006; Zhang et al. 2012). Sexual hybridization has also been suc-
cessfully applied to modulate ester production. Breeding meth-
ods have helped increase and diversify ester production of com-
mercial ale (Steensels et al. 2014a), lager (Mertens et al. 2015),
sake (Yoshida et al. 1993; Kurose et al. 2000), wine (Bellon et al.
2013) and even chocolate (Meersman et al. 2016).

Since formation of these compounds does not necessarily
impart a fitness advantage, there is no straightforward way
to select for desired ester production in experimental evolu-
tion, mutagenesis or breedings set ups. Therefore, other ap-
proaches have been developed to select for enhanced esters.
Growth in the presence of a leucine analog (5,5′,5′′-trifluor-DL-
leucine) selects for variants with reduced positive feedback on
leucine production which results in increased production of

isoamyl alcohol and isoamyl acetate (Oba et al. 2005). Similarly,
growth with phenylalanine analogues (o-fluoro- and p-fluro-
DL-phenylalanine) selects for 2-phenylethyl acetate producers
(Fukuda et al. 1990, 1991). There have been interesting attempts
to selectively enhance variations in eitherATF1 orATF2 given the
variations in which types of acetate esters are produced. Growth
with farnesol analogs (1-farnesylpyridinium) favors Atf1 activity
(Hirooka et al. 2005), while supplementing medium with preg-
nenolone favors Atf2 activity (Tsutsumi et al. 2002; Kitagaki and
Kitamoto 2013). In the latter example, the harmful steroid isme-
tabolized by Atf2 and therefore selects for strains with enhance-
ments of Atf2 activity. Those mutants would be able to increase
levels of isoamyl acetate without affecting ethyl acetate.

Experimental evolution utilizing lipid synthesis inhibitors
has also resulted in strains with enhanced ester production. Se-
lection on aureobasidin, a sphingolipid biosynthesis inhibitor,
resulted in mutations in MGA2 which has been implicated in
ATF1 regulation (Takahashi et al. 2017). Growth on cerlulin, a
fatty acid synthesis inhibitor, selected for mutants of FAS2, a
fatty acid synthetase, with enhanced production of ethyl es-
ters and the additional benefit of reduced acetic acid levels (see
Fig. 5) (Ichikawa et al. 1991). A self-cloning sake strain equipped
with this mutation became the first genetically modified mi-
croorganism approved for industrial use in Japan (Aritomi et al.
2004).

Physiological and ecological roles of esters

The physiological role of ester production in yeast has been
under debate for several decades. It has been hypothesized
that ester synthesis helps to tune intracellular redox balance
(Malcorps and Dufour 1992) and that some esters help to
maintain plasma membrane fluidity under stressful conditions
(Mason and Dufour 2000). Additionally, esterification of toxic
medium-chain fatty acidsmay facilitate their removal from cells
via diffusion through the plasmamembrane (Nordström 1964b).
While the intracellular roles are not quite understood, recently
it has become clear that esters have significant roles extracellu-
larly.

Of the many volatile compounds produced by yeast, esters
represent one of the most important groups that can act as
insect semiochemicals, signaling the presence of rotting fruits
(El-Sayed et al. 2005). Fruity esters such as isoamyl acetate, ethyl
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acetate and 2-phenylethyl acetate represent the core attractants
of various insects (Davis et al. 2013; Christiaens et al. 2014; Schei-
dler et al. 2015). Deletion of ATF1 in S. cerevisiae significantly
reduces attraction of Drosophila melanogaster and simple re-
addition of isoamyl acetate or ethyl acetate can restore the flies’
behavior (Christiaens et al. 2014). Isoamyl acetate is also respon-
sible for attraction of D. simulans, but the attraction is strongly
dependent on the background chemical matrix (Günther et al.
2015). There are also examples of possible species-specific re-
sponses to various ester compounds. Drosophila suzukii has a
significantly higher response to isobutyl and isoamyl acetate,
whereas D. melanogaster responds to ethyl hexanoate (Keesey,
Knaden and Hansson 2015; Scheidler et al. 2015). The herbivo-
rous drosophilid, Scaptomyza flava, a relative of D. melanogaster,
has lost its ability to detect most yeast volatiles (Goldman-
Huertas et al. 2015). Genes encoding for neuronal receptors re-
sponsible for detecting esters are either deleted or have loss
of function mutations in S. flava, demonstrating the important
connection between yeast volatiles and locating microbial food
sources.

The black calla lily (Arum palaestinum) has taken advantage of
the drosophilids’ ability to detect esters. This plant has evolved
to mimic yeast fermentation volatiles specifically by producing
2,3-butanediol acetate and acetoin acetate to lure drosophilids
for pollination (Stökl et al. 2010).

Recent evidence indicates that interactions within the D.
melanogaster microbiome can alter behavior of the fly (Fischer
et al. 2017). While the flies feed on yeasts, lactic and acetic acid
bacteria are major constituents of its gut microbiome. In fer-
menting fruits, all three microorganisms co-exist and the grow-
ing microbes create a collaborative volatile profile which en-
hances attraction of D. melanogaster. Acetate esters (isobutyl ac-
etate, isoamyl acetate, 2-phenylethyl acetate, 2-methylbutyl ac-
etate, methyl acetate, ethyl acetate) along with acetic acid and
acetoin were determined as the key compounds in this interac-
tion (Fischer et al. 2017).

In combination with higher alcohols, esters can be attractive
for agricultural pests such as the coffee bean weevil Araecerus
fasciculatus (Coleoptera: Anthribidae) and Carpophilus beetles as
they mimic volatiles of fermenting fruits (described in the pre-
vious section) (Phelan and Lin 1991; Nout and Bartelt 1998; Yang
et al. 2016). Codlingmoths Cydia pomonella, a common apple pest,
utilizes esters and other aroma compounds emitted by Metch-
nikowia yeasts to locate suitable ovipositioning sites (Witzgall
et al. 2012).

In addition to insects, the earthworm Eisenia fetida uses
volatile cues, such as ethyl pentanoate and ethyl hexanoate, to
navigate towards its food source Geotrichum candidum, a yeast-
like mold frequently used in the dairy industry (Zirbes et al.
2011). Additionally, esters emitted by S. cerevisiae, such asmethyl
acetate, ethyl acetate, propyl acetate, butyl acetate and amyl
acetate, have strong attractive effects on nematode worms
(Balanova et al. 1979).

Yeast-produced esters can also mediate host–parasite inter-
actions. Honey bees produce isoamyl acetate-containing alarm
pheromones that defend the hive against several predators and
parasites. The beetle Aethina tumida (Coleoptera: Nitidulidae) is
attracted to the isoamyl acetate. The beetles can vector the yeast
Koamaea ohmeri to the hive which then begins to ferment and
produce more isoamyl acetate in high concentrations. This am-
plifies the attraction of beetles and results in a vast infestation of
beetles and larvae, causing enormous damage to the hive (Torto
et al. 2007). Similarly, the parasitic wasp Leptopilina heterotoma is
attracted to ethyl acetate (along with ethanol and acetaldehyde)

which puts it in proximity to its potential host, D. melanogaster
(Dicke et al. 1984).

Similar to the higher alcohols, esters can have antifungal ef-
fects, possibly to eliminate competition for the yeasts producing
them. Pichia anomala, P. kluyveri or Hanseniaspora uvarum all se-
crete 2-phenylethyl acetate which can strongly inhibit growth
and mycotoxin production by the fungus Aspergillus ochraceus
(Masoud, Poll and Jakobsen 2005).

AMINO ACID METABOLITES: SULFUR
COMPOUNDS

The generic classification of ‘sulfur-containing’ opens a large
and diverse array of compounds to consider including ev-
erything from basic thiols (such as hydrogen sulfide or
methanethiol) and sulfides (dimethyl sulfide, dimethyl disulfide,
etc.), thioethers and thioesters, sulfur-containing aldehydes and
alcohols, aswell as larger, polyfunctional thiols. Given the exten-
sive list of potential compounds, we focus on the assimilation of
sulfur, the connections to amino acid metabolism and industri-
ally relevant sulfur compounds.

Biochemistry of sulfur assimilation and metabolism

All yeast-produced sulfur compounds arise during the
catabolism or anabolism of the sulfur-containing amino
acids methionine and cysteine. Since these amino acids are
found at relatively low concentrations in both natural and
industrial environments, yeasts are required to assimilate inor-
ganic sulfur via the sulfate reduction sequence (Fig. 6). Sulfates
are sequentially reduced to sulfide which can combine with
a nitrogen source (O-acetyl-serine or O-acetyl-homoserine)
to form cysteine and subsequently, methionine. From this
point, the amino acids can be incorporated into protein or
re-metabolized to form other volatile sulfur compounds. In
cases of low nitrogen, the amount of available O-acetyl-serine
or O-acetyl-homoserine is limited, and there is an overproduc-
tion of sulfide. This is converted to hydrogen sulfide to allow
for diffusion out of the cell (Jiranek, Langridge and Henschke
1995; Spiropoulos et al. 2000; Mendes-Ferreira, Mendes-Faia
and Leão 2002; Swiegers and Pretorius 2005). Additionally, it
has recently been shown that some sulfur compounds, such
as ethanethiol, S-ethyl thioacetate and diethyl disulfide, can
be synthesized from excess H2S, independent of methionine
synthesis (Kinzurik et al. 2016).

From newly synthesized or exogenously added methionine
and cysteine, all other volatile sulfur compounds can be pro-
duced. Some of these pathways have not been fully mapped in
S. cerevisiae, but a general scheme can be drawn based on stud-
ies done on sulfur pathways in bacteria and other yeast species
(Fig. 6). Bacteria have been more widely studied in regard to sul-
fur production since the negative odors are generally associated
with spoilage or desired aromas in specific types of cheesewhich
utilize lactic acid bacteria (Kieronczyk et al. 2003). Tracing stud-
ies and genetic engineering attempts tomanipulate levels of H2S
and themore desirable sulfur compounds have provided insight
into potential biosynthetic pathways (Arfi, Landaud and Bonn-
arme 2006; Cordente et al. 2012).

Cysteine and methionine breakdown has been linked to
dimethyl sulfide (DMS) production but it can also be formed
from the reduction of dimethyl sulfoxide (DMSO) by Mxr1 (me-
thionine sulfoxide reductase) (Hansen 1999). For most other
sulfur-containing compounds, methanethiol is considered the
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Figure 6. Sulfate reduction pathway leading to the production of sulfur-containing amino acids and compounds. (1) Extracellular sulfate is taken up through two
transporters, Sul1 and Sul2, and sequentially reduced to sulfite and sulfide. (2) Excess sulfide can be converted to hydrogen sulfide which diffuses out of the cell or (3)
assimilated into amino acid synthesis pathways. (4) Production of α-ketobutyrate links this pathway to threonine and the branched amino acid synthesis pathways

(Fig. 2). (5) Methionine can be acted on by a lyase to formmethanethiol, which is amajor precursor for numerous sulfur-containing aroma compounds. (6) Methanethiol
can also be produced via transamination of methionine, which is also the first step of the Ehrlich pathway (Fig. 3). Adapted from Landaud (2008), Pereira et al. (2008),
and Saccharomyces Genome Database (Cherry et al. 2012).

primary precursor. Two different pathways lead to the produc-
tion of methanethiol: the lyase pathway or the transamina-
tion pathway (Fig. 6, step 5). Demethiolation of methionine by
a lyase is more comprehensively understood in bacteria but it
does occur in yeasts (Landaud, Helinck and Bonnarme 2008).
The transamination pathway is essentially the Ehrlich pathway.
The intermediate keto-γ -methylthiobutyrate (also referred to as
4-methylthio-2-oxobutyric acid or MOBA) can undergo a vari-
ety of chemical and enzymatic reactions including conversion to
methanethiol. If MOBA continues via the Ehrlich pathway, there
is subsequent production of methional, then methionol (via re-
duction) or methylthio-propionic acid (via oxidation). Cysteine
can also undergo conversion to the respective higher alcohol,
2-mercaptoethanol. Methanethiol can be produced through ox-
idation or acylation reactions (Landaud, Helinck and Bonnarme
2008).

There is an important category of sulfur-containing com-
pounds that are not directly synthesized by yeast. Polyfunctional
thiols are present in the biomass used for fermentation but as
non-volatile precursors. The cystathionine lyases Cys3, Irc7 and
Str3 release the polyfunctional thiols from the cysteine conju-
gates (Tominaga et al. 1998; Howell et al. 2005; Holt et al. 2011;
Roncoroni et al. 2011).

Sulfur compounds in industry

Sulfur compounds are most relevant in beer, wine and cheese-
making industries. Unlike fusel alcohols or esters, some sulfur
compounds are classified as positivewhile others are considered
negative odors. For example, the classic ‘rotten-egg’ odor usually
associated with sulfur comes from hydrogen sulfide (H2S) while
furfurylthiol smells of roasted coffee. Other negative sulfur
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Table 7. Effect of environmental parameters on sulfur compound production.

Parameter Condition
Effect on sulfur compound
production Reference

Temperature Increase Increase (thiols) Howell et al. (2004), Masneuf-Pomarede et al. (2006)
pH Decrease Decrease (H2S, methanethiol,

DMS)
Bekker et al. (2016)

Oxygen (fermentation) Increase Decrease (H2S, methanethiol,
ethanethiol, methylthioacetate,
ethylthioacetate, DMS)

Bekker et al. (2015)

Oxygen (post-bottling) Increase Decrease (H2S, methanethiol) Ugliano et al. (2012)

Medium composition

Copper sulfate Supplementation Decrease (H2S and thiols;
oxidation)

Kreitman et al. (2016)

N source (total) Increase Decrease (H2S; dependent on
timing and methionine
concentration)

Mendes-Ferreira et al. (2010), Spiropoulos et al. (2000)

Botrytis cinerea infection Increase Increase (thiols) Thibon et al. (2010)

compounds include methanethiol (cooked cabbage), sulfides
(cabbage, cauliflower, garlic) and methylthioesters (cheesy,
chives) (Cordente et al. 2012). Interestingly, the perception of
these compounds is highly context specific.While DMS typically
smells of cabbage, it can convey desired aroma notes to lager
beers and whiskey (Anness and Bamforth 1982; Hansen et al.
2002). Similarly, some of the sulfur-containing aromas are pro-
duced by yeasts on the surface of soft cheeses and contribute to
their distinctive odor (Landaud, Helinck and Bonnarme 2008).

Some aroma-enhancing volatile thiols are produced by wine
yeast from precursors present in grape must. Of interest are
4-mercapto-4-methylpentan-2-one (4MMP), 3-mercaptohexan-
1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), which impart
box tree (4MMP), passionfruit, grapefruit, gooseberry and guava
aromas (3MH and 3MHA) on the wine (Tominaga et al. 1998;
Dubourdieu et al. 2006).

Sulfites can act as an antioxidant in wine and beer as well
as protect against bacterial and Brettanomyces spoilage (Suzzi,
Romano and Zambonelli 1985; Divol, Toit and Duckitt 2012).
However, sulfites produced by yeast are at relatively low lev-
els since they are reduced to be incorporated into amino acids.
Therefore, these are sometimes added prior to bottling to help
stabilize the final product.

Environmental parameters and sulfur compound
production

Since several sulfur compounds are considered to negatively
affect product quality, several strategies have been developed
to reduce their emission (Table 7). Low nitrogen conditions in-
crease the yeast cell’s need for amino acids which would in-
crease general sulfur assimilation. This leads to increased pro-
duction of H2S so it has been common practice for decades to
add nitrogen sources to fermentation medium (Jiranek, Lan-
gridge and Henschke 1995; Mendes-Ferreira, Mendes-Faia and
Leão 2004). However, this effect is dependent on the timing of
supplementation, yeast strain and the presence of methionine
(Spiropoulos et al. 2000; Mendes-Ferreira et al. 2010; Barbosa,
Mendes-Faia and Mendes-Ferreira 2012). The strongest decrease
in H2S levels is obtained when nitrogen source is added concur-
rently with methionine.

Perhaps one of the most common problems in the wine in-
dustry is finding a balance between limiting production of the
undesirable H2S while increasing levels of aroma-enhancing
volatile thiols. Complete wine fermentations are sometimes
treated with copper sulfate, a process referred to as copper fin-
ing, which effectively removes H2S (Clark, Wilkes and Scollary
2015). However, the copper only requires presence of a free thiol
group to form a stable complex and will therefore also decrease
levels of desirable thiol compounds. Furthermore, this strategy
is ineffective in removing several sulfuric off-odors that lack a
free thiol group, such as disulfides, thioacetates and cyclic sul-
fur (Kreitman et al. 2016).

Oxygenation both during fermentation or post-bottling can
also influence volatile sulfur compound profiles in wine.
Oxygen treatment during fermentation can reduce concentra-
tions of H2S, methanethiol and ethanethiol (Bekker et al. 2015).
The effect of exposure after bottling is dependent on oxygen
ingress through the bottle cap or cork. More porous closures al-
low for some gas exchange and are correlated with lower H2S
and methanethiol levels (Ugliano et al. 2012). DMS and DMDS
levels are unaffected; however, desirable volatile thiols are also
reduced and are thus better conserved in air-tight conditions
compared to oxygen permeable conditions (Lopes et al. 2009).

Genetic factors and sulfur compound production

Sulfur compound production widely varies between S. cerevisiae
strains and other species. Genetic engineering strategies have
targeted several of the genes associated with sulfur assimila-
tion (Fig. 6). Mutation of MET5 or MET10 blocks the conversion
of sulfite to sulfide and reduces H2S production (Sutherland
et al. 2003; Cordente et al. 2009; Linderholm et al. 2010; Bisson,
Linderholm and Dietzel 2013). Overexpression of the cystathio-
nine synthetase CYS4 also reduces H2S production by driving
the sulfide towards amino acid synthesis (Tezuka et al. 1992).
Mutating MET14 limits sulfur assimilation overall (Donalies and
Stahl 2002). Additionally, mutations inMET2 (produces O-acetyl-
homoserine) or SKP2 (a potential regulator of sulfur assimilation
genes) increase levels of sulfite and H2S (Hansen and Kielland-
Brandt 1996; Yoshida et al. 2011). DMS levels can be reduced by
disrupting MXR1, which prevents the conversion of DMSO to
DMS (Hansen et al. 2002).
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Table 8. Effect of environmental parameters on phenolic compound production.

Parameter Condition
Effect on phenolic compound
production Reference

Brettanomyces

Medium composition

Antimicrobial agents
(sulfite, chitosans, . . . ) Supplementation Decrease (inhibits growth) Portugal et al. (2014)
Weak acids and sorbic acid Supplementation Decrease (inhibits growth) Wedral et al. (2010)

Low electric current Application of ∼200 mA Decrease (inhibits growth) Zuehlke et al. (2013)
Pulsed electric field Application of ∼30 kV/cm,

1–4 μs pulses
Decrease (inhibits growth) Zuehlke et al. (2013)

Saccharomyces

Temperature Increase Increase Vanbeneden (2007), Cui et al. (2015)
Medium composition
C source Glucose Increase (compared to fructose,

maltose, sucrose, galactose)
Vanbeneden (2007)

C source Fructose, maltose, sucrose Increase (compared to galactose);
decrease (compared to glucose)

Vanbeneden (2007)

C source Galactose Decrease (compared to glucose,
fructose, maltose, sucrose)

Vanbeneden (2007)

Top pressure Increase Decrease (increase in dissolved CO2) Vanbeneden (2007)
Fermentation practice Top cropping Decrease (less yeast sedimentation) Vanbeneden (2007)

Enhanced release of aromatic thiols from biomass precur-
sors can be achieved by variations in the lyases, specifically the
β-lyases IRC7 and STR3. Many S. cervisiae strains have 38 bp dele-
tion in the IRC7 gene, resulting in low levels of 4MMP. Strain
selection for β-lyase activity or overexpressing STR3 or a full-
length copy of IRC7 greatly enhances 4MMP and 3MH release
(Holt et al. 2011; Roncoroni et al. 2011; Belda et al. 2016).

Physiological and ecological roles of sulfur compounds

Hydrogen sulfide plays an important role in the physiology of
yeast cells. As described above in the acetaldehyde section, yeast
cells exhibit glycolytic oscillations, in which they coordinate
their metabolism. Hydrogen sulfide can also cause respiration
inhibition and therefore plays a role in regulating respiratory os-
cillations (Sohn, Murray and Kuriyama 2000; Lloyd and Murray
2006).

Methionol has been shown to activate an olfactory response
neuron in D. melanogaster (de Bruyne, Foster and Carlson 2001)
and attract the fruit flies (Farhadian et al. 2012; Knaden et al. 2012)
but concentrations used in those studies were higher than what
is typically produced by fermenting yeasts. However, it has been
shown that natural levels of methionol from vinegar and wine
elicit an antennal response fromD. suzukii andwhenmixedwith
other compounds (acetic acid, acetoin and ethanol) it effectively
attracts the flies (Cha et al. 2014). This indicates that methionol
could play a relevant ecological role in yeast–drosophilid com-
munication.

Truffles host various yeast and bacteria and while the pro-
duction of volatile compounds overlaps between the species, it
has been speculated that yeasts contribute to the truffle aroma,
largely defined by sulfuric compounds such as DMS, DMTS and
3-(methylsulfanyl)-propanal (Buzzini et al. 2005; Vahdatzadeh,
Deveau and Splivallo 2015). DMS is one of the defining cues for
pigs, which use truffles as a food source, as well as for dogs,

which are trained by humans to locate underground truffles
(Talou et al. 1990).

PHENOLIC COMPOUNDS

Biochemistry of phenolic compound production

Pre-treatment of various lignin polymers of plant cell walls is
a common practice in the fuel and beverage industries. The
bioprocessing of these polymers prior to the fermentation pro-
cess releases a variety of furans, carboxylic acids and phenolic
compounds which can greatly inhibit microbial growth (Klinke,
Thomsen and Ahring 2004). Many microbial species, such as
Saccharomyces cerevisiae, Aspergillus niger, Pseudomonas aeruginosa
and Escherichia coli, counteract the negative impact by convert-
ing these compounds into less toxic molecules. For example,
vanillin, a phenolic guaiacol, can be detoxified by conversion to
vanillyl alcohol by yeast Adh6 (Wang et al. 2016a). Several of the
hydroxycinnamic acids, such as cinnamic acid (phenylacrylic
acid), caffeic acid, ferulic acid and p-coumaric acid, can be decar-
boxylated to less toxic phenolic compounds which have a large
impact on industrial fermentations (Fig. 6).

In S. cerevisiae, there are two enzymes essential for decar-
boxylation of the hydroxycinnamic acids encoded by PAD1 and
FDC1 (phenylacrylic acid decarboxylase and ferulic acid decar-
boxylase). For several years, it was unclear how the genes inter-
acted to produce phenolic compounds. In some studies, PAD1
was assumed to be the sole responsible enzyme for this reac-
tion as deletion or mutation resulted in complete loss of activity
but it was clearly demonstrated that both PAD1 and FDC1 are re-
quired for the decarboxylation of hydroxycinnamic acids (Mukai
et al. 2010). It has now been shown that PAD1 possesses no de-
carboxylase activity but instead is responsible for formation of
a modified flavin mononucleotide (FMN) which is required for
FDC1 decarboxylase activity (Lin et al. 2015a; Payne et al. 2015;
White et al. 2015).



S116 FEMS Microbiology Reviews, 2017, Vol. 41, No. Supp 1

Figure 7. Production of phenolic compounds. Hydroxycinnamic acids are released during pre-processing of biomass. Yeast cells can decarboxylate these toxic com-
pounds to less harmful forms through the actions of Fdc1. Fdc1 requires a cofactor FMN which is produced by Pad1. The compounds are then secreted and can be

further reduced by a vinylphenol reductase, typically by contaminating yeast or bacterial species.

Phenolic compounds in industry

During fermentation, the actions of Pad1 and Fdc1 convert fer-
ulic acid, p-coumaric and caffeic acid to 4-vinylguaiacol (4-VG),
4-vinylphenol (4-VP) and 4-vinylcatechol (4-VC), respectively
(Fig. 7). Subsequently, these compounds can be reduced to form
4-ethylguaiacol (4-EG), 4-ethylphenol (4-EP) and 4-ethylcatechol
(4-VC) by vinylphenol reductase (Vanderhaegen et al. 2003; Van-
beneden, Delvaux and Delvaux 2006; Hixson et al. 2012). Both
4-VG and 4-EG are associated with more pleasant clove-like or
spicy aromas, while 4-VP and 4-EP aromas are considered more
medicinal and ‘Band-Aid’-like. As Saccharomyces generally lacks
reductase activity, 4-EG, 4-EP production during fermentation
is an indicator of the presence of Brettanomyces (Steensels et al.
2015). These phenolic compounds are significant contributors to
fermentation aromas but their role is ambiguous. In certain spe-
cialty beer styles, such as wheat, Hefeweizen, Lambic, American
coolship ale and acidic ale beer, the phenolic flavors are desired
and help define the style. However, the same compounds are
perceived negatively in most other fermented beverages and are
commonly referred to as ‘phenolic off-flavors’ (POF) (Vanbene-
den 2007).

Environmental parameters and phenolic compound
production

Given the general association as ‘off-flavors’, several aspects of
the fermentation process have been modified to reduce pheno-
lic compound production (Table 8). The undesired presence of
Brettanomyces during fermentation can be attenuated by various
inhibitors (e.g. sulfites or chitosans) or electric currents. Produc-
tion of phenolic compounds by Saccharomyces heavily depends

on the precursor availability in the fermentation medium. In-
creased precursor concentrations not only increase substrate
availability but also activate transcription of PAD1 and FDC1
(Vanbeneden 2007). Other fermentation parameters, such as
temperature and carbon source, have been shown to affect for-
mation of phenolic compounds, but the underlyingmechanisms
are not understood (Vanbeneden 2007; Cui et al. 2015).

Genetic factors and phenolic compound production

Surprisingly few attempts have been performed to modify phe-
nolic compound production in industrial strains. This is due
in part to the simplicity of their production and the fact that
many industrial yeasts have already acquired natural mutations
to block phenolic compound production. It has recently been es-
tablished that selection for PAD1 and FDC1 loss-of-function mu-
tants is one of the key drivers in the domestication of industrial
S. cerevisiae lineages associated with beer and sake production
(Gallone et al. 2016; Gonçalves et al. 2016). This selection is not
observed in baking or bioethanol strains as in these cases, phe-
nolic compounds are likely less detrimental, either because the
flavor disappears during baking or the product is not destined
for consumption. Additionally, for strains used in beer styles
where phenolic compounds are desired, selection for mutations
in these genes is not observed.

Physiological and ecological roles of phenolic
compounds

The POF-negative character of many industrial yeasts is espe-
cially striking since the phenotype is preserved in all wild strains
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Figure 8. Summary of the ecological roles of aroma compounds. This review has summarized a variety of physiological and ecological roles of yeast aroma compounds.
This figure depicts some of themajor organisms described to illustrate the vast number of compounds that they interact with. Positive (+) indicates a generally positive
interaction such as attraction, increased growth or behavior. Negative (–) indicates a negative interaction such as inhibited growth or repulsion.

that have currently been analyzed, which indicates a strong fit-
ness advantage of these genes in natural environments (Gallone
et al. 2016). Since hydroxycinnamic acids are antimicrobial com-
pounds, the ability of some yeasts to convert these acids to less
harmful phenolic compounds provide themwith resistance and
promotes growth (Baranowski et al. 1980; Larsson, Nilvebrant
and Jönsson 2001; Richard, Viljanen and Penttilä 2015). Addition-
ally, formation of the ethyl derivatives could play a role in main-
taining redox balance in the cell in oxygen-limited conditions.

Low oxygen enhances activity of the vinylphenol reductase
(Fig. 7) and subsequently reduces levels of its cofactor, NADH
(Curtin et al. 2013).

Drosophila melanogaster uses volatile ethyl phenols as indica-
tors for the presence of hydroxycinnamic acids which are potent
dietary antioxidants. Since the insects do not possess the ability
to detect the acids directly, they have developed specialized ol-
factory neurons for detecting the ethyl phenols instead (Dweck
et al. 2015).
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CONCLUSION

Humans realized the potential of fermentation several thousand
years ago, and have since been exploiting the natural versatility
of yeast aroma production. Fermented foods and beverages pro-
vide several advantages including longer shelf lives and a pleas-
ing euphoric effect. Over time, the procedures for fermentations
became more sophisticated and more refined. Eventually, other
uses for fermentation became apparent and the use of yeast for
industrial purposes sparked a whole new field of research and
development. There is now genetic evidence that demonstrates
howmuch humans have driven the evolution of industrial yeast
species to select for desired aroma traits (Gallone et al. 2016,
Gonçalves et al. 2016). Moreover, in the past few decades, new
technologies have significantly advanced and refined the selec-
tion process (Steensels et al. 2014b).We now utilize specific yeast
strains to produce biofuels, pharmaceutical compounds, flavors
and fragrant additives.

Selection for specific aromas has also been observed in nat-
ural strains (Gallone et al. 2016) but in some cases, wild yeasts
maintain some aromas that humans have deemed undesirable.
There are also species-specific enhancements of various aroma
compounds through small variations in the biosynthetic genes.
This leads to questions about what possible physiological roles
the different aroma compounds may have and whether there
are fitness advantages to produce them.

Microbial aroma compound production is important in both
industrial and ecological settings. Aroma compounds very of-
ten signal desirability or identify potentially harmful conditions.
In many cases, the physiological role of aroma formation re-
mains unknown, but several hypotheses have been proposed.
Some aromas are simply by-products of detoxification of other-
wise harmful compounds, such as the conversion of hydroxycin-
namic acids and esterification of toxic medium chain fatty acids
(Nordström 1964b, Klinke, Thomsen and Ahring 2004). Similarly,
the vicinal diketones are an indirect result of secreting com-
pounds that otherwise can cause stress on the cell (van Bergen
et al. 2016). Moreover, compounds such as acetaldehyde can
coordinate physiological oscillations between neighboring cells
and provides a larger ecological context for aroma production
(Richard et al. 1996).

Yeasts inhabit a large array of ecological niches, from the
guts of insects to the fruits and nectar of various plant species.
Emissions from microorganisms may signal aspects of food and
habitat suitability and therefore attract or repel foraging insects
(Fig. 8). Yeasts associated with insects are known to provide
nutrition for the insects so it would seem counterintuitive for
yeasts to enhance attraction for potential predators. However,
recent work has shown that production of insect-attracting
volatiles by yeasts represents a clever strategy to travel to new
environments, and thus enhances the dispersal and survival of
otherwise non-motile yeasts (Davis, Boundy-Mills and Landolt
2012, Christiaens et al. 2014).

While there aremany examples of yeast aromas affecting the
behavior of insects, our understanding of the interactions be-
tween yeast and their vectors using volatile cues is still far from
complete. The perception of many yeast aroma compounds is
strongly dependent on synergistic effects between compounds.
This is observed in industrywhere individual compounds can be
masked or highlighted when combined with other compounds.
This type of synergism is even more clearly manifested in na-
ture, where most yeast volatile compounds elicit stronger be-
havioral responses when presented in blends or with a relevant
background chemical context (Davis and Landolt 2013; Günther

et al. 2015). Though we know quite a lot about individual aroma
compounds, the complex interactions between them are rela-
tively understudied. Additionally, it is likely that there are more
aroma compounds to be identified, especially in an ecological
context. Moreover, it is yet unclear if the insect and animal re-
cipients perceive the compounds discretely or as a blend. Such
interactions could also be interesting from a human perspective
especially in the case of bioremediation in agriculture, where
microbial-produced compounds can be exploited as insect re-
pellants or attractants. The plethora of already observed inter-
actions that are influenced by aroma compounds illustrates that
aroma-producing microbes may play important, yet underesti-
mated roles in the ecosystem.
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