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Abstract
A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consis-

tent differences between the values of power law scaling exponents of tree primary size

measures used to estimate mass and those predicted by MST. Here we consider why

observed scaling exponents for diameter and height relationships deviate from MST predic-

tions across three semi-arid conifer forests in relation to: (1) tree condition and physical

form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increas-

ing tree age, and (4) differences in site productivity. Scaling exponent values derived from

non-linear least-squares regression for trees in excellent condition (n = 381) were above the

MST prediction at the 95% confidence level, while the exponent for trees in good condition

were no different than MST (n = 926). Trees that were in fair or poor condition, characterized

as diseased, leaning, or sparsely crowned had exponent values below MST predictions

(n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree

model that disregarded tree condition (n = 3,740) was consistent with other studies that

reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited

greater morphological plasticity whereby the majority had characteristically fair or poor

growth forms. Fitting by least-squares regression biases the mean-tree model scaling expo-

nent toward values that are below MST idealized predictions. For 368 trees from Arizona

with known establishment dates, increasing age had no significant impact on expected scal-

ing. We further suggest height to diameter ratios below MST relate to vertical truncation

caused by limitation in plant water availability. Even with environmentally imposed height

limitation, proportionality between height and diameter scaling exponents were consistent

with the predictions of MST.
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Introduction
Estimating the mass (M) of an individual tree from primary size measures, i.e. bole radii or
diameter (D) and height (H, equivalent to path length of the longest branch), relies upon
assumptions about the conservation of allometric relationships within each tree relative to its
current health condition, physical form, and age. Across stands of trees, competition for
resources and differences in potential productivity caused by topographic variation affect tree
growth and physical responses, which are outwardly expressed via intraspecific allometry. Var-
iation in allometry, within individuals and amongst stands of trees, impacts the quantity of
tree-to-forest level biomass across a space-filled volume (in three dimensions) or area (in two
dimensions). Such responses have major implications for biomass models based on remotely
sensed measures, e.g. aerial lidar-derived forest canopy height profiles [1]. Metabolic Scaling
Theory (MST) [2–6] predicts rates of change between primary size measures across size classes
(the so-called ‘allometric covariation’) [7–11]. MST also predicts a space-filled density-depen-
dent stand of trees at resource and demographic steady state to have a rank size-frequency dis-
tribution which exhibits a power law as an emergent feature [2,3,6,10–12]. Invaluably, MST is
mechanistically grounded in open-system thermodynamics [4,13–15] which offers a frame-
work for testable hypotheses. Currently, MST does not account for morphologic variations that
result from life history, responses to physical damage, or to exogenous disturbance. Lines et al.
[16] reported allometric relationships of H:D ratios, as well as canopy diameter, to vary predict-
ably with environmental factors across a country-wide forest inventory. Duncanson et al. [17]
found considerable variability in H:D relationships in 125,395 US Forest Inventory and Analy-
sis (FIA) plots, suggesting that future extensions of MST should include demographic dynam-
ics and recruitment factors to explain allometric variation. While a series of studies in tropical
and temperate forests report that natural forests’ rank-size frequency distributions follow expo-
nential distributions [18–22], advocates for MST have attempted to explain why covariation
exists amongst primary size measures that deviate from predicted quarter power (¼ power-
law) scaling [10–12]. It has also been shown that mean-tree size models of biomass exhibit
increasing bias due to Jensen’s inequality [23], which in some cases may explain why MST pre-
dictions do not hold in real forests [24–26]. Still, uncertainty remains as to where the deviation
from power-law scaling comes from. Here we examined how traits related to tree health and
departure from physically ideal growth form leads to deviation in the exponents of MST-pre-
dicted allometric models.

MST predictions
Besides bole radius (r) and diameter (D) the other primary size measure for estimating the
aboveground volume of a tree, and thus its biomass, is branch path length equivalent to total
height (H). MST predicts that when bole radius is the independent variable of height: h/ rα

[Eq. 1], the value of α for the idealized H:D case is α = 2/3 [6]. MST also makes predictions
about the distribution of mass relative to radii wherem/ r8/3 [Eq. 2] (see S1 File for details).
Most allometric models use the logarithmic form: ln(h) = α ln(r) = β [Eq. 3][27–30], which is
equivalent to a power law: h = βrα [Eq. 4]. Importantly, most studies report an α [Eq. 2] which
is consistently less than the 8/3 predicted by MST [16–31]. We did not explicitly test biomass
in this study, however variation in the exponent for Eq. 1 should also apply to the allometry of
biomass in Eq. 2 [6,17].

Objectives
Reported scaling exponents consistently below MST-predicted values in the literature [16–31]
spurred our interest in conducting these analyses. Our objective was to determine whether the
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allometric covariation amongst primary size measures which results in deviation fromMST
can be associated with either (a) endogenous or (b) exogenous factors which we had recorded
in our own data. Historically, semi-arid forests only exhibit density dependent self-thinning in
the most productive sites absent of disturbance. Past disturbances provided us with a wide
range of structural conditions across environmental factors [32,33], from which we could test
our simple hypotheses. Our null hypothesis was that the least-squares estimated exponent â
(Eqs. 2–4) would not be significantly different fromMST regardless of individual condition or
age (endogenous forcing), inter-tree competition or site productivity (exogenous forcing). Our
first and second alternate hypotheses were that â would be negatively, or positively, influenced
by each endogenous or exogenous forcing, respectively.

For the endogenous factors we evaluated individual trees by health condition class and age.
We evaluated condition class as a way of diagnosing which trees are successful competitors for
limiting resources in a stand. We evaluated age to determine whether trees exhibit a greater
deviation from expected scaling exponents as they get older. Exogenous factors included a
range of stand densities and a gradient in net primary productivity (NPP), as estimated by
‘effective energy to mass transfer’ (EEMT), a thermodynamic model of available free energy
that incorporates positive air and soil temperatures, annual precipitation, and vapor pressure
deficit derived from observational data in a generalized form that can be continuously pre-
dicted across a landscape [34,35].

Methods
To test our hypotheses, we used datasets from mixed conifer forests in two Madrean Archipel-
ago Sky Island mountain ranges in Arizona [36–40], and one Southern Rocky Mountains forest
in NewMexico [41–44]. All sites share similar climate and nearly identical forest types and spe-
cies, but have different geologies (Table 1), see S2 File for further details. The individual tree
data are available via the USFS Research Data Archive: http://dx.doi.org/10.2737/RDS-2016-
0015.

Study areas
The Santa Catalina and Pinaleño Mountains are characteristic of basin and range topography,
exhibiting complexes of steeply sided canyons at lower elevations with relatively gentle high
elevation uplands. The Santa Catalina are located north of Tucson, Arizona, at 32.4° N, 110.7°
W (Fig 1). The Pinaleños are located southwest of Safford, Arizona, at 32.7 N°, 109.9 W° (Fig
1). The Pinaleños are taller than the Santa Catalinas, rising to 3,267 meters (m) above mean sea
level (amsl) and exhibit a mixed-conifer and spruce-fir forest above 2,700 m amsl (Table 1).
Climatically, the Santa Catalinas and Pinaleños are nearly identical arid to semi-arid systems
with a winter rainy season from December to March and a summer monsoon from July to Sep-
tember (Table 1). The Jemez Mountains are west of Santa Fe, NewMexico, at 35.8° N, 106.5°
W (Fig 1). Elevation ranges from 2,300 m amsl to 3,431 m amsl (Table 1). The Jemez are con-
sidered continental sub-humid [38] though they are slightly drier (<50mm yr-1) and cooler
(<3°C) than the Pinaleño Mountains (Table 1).

Vegetation
Common tree species to this study occur across the Madrean Sky Island Archipelago, Mogo-
llon Plateau, and Southern Rocky Mountains [36–38,41,47]. Multi-species forests are common
in the study areas. For simplicity we use a simple classification system [48] for our forest types.
In S2 File we provide cross-walked descriptions of these forest types for the Southwestern USA
with associated references.
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Across all three study areas forest types are distributed along elevation gradients of tempera-
ture and precipitation (Table 1). Variability in temperature and precipitation in our study areas
is driven by orographic lifting related to topography and atmospheric lapse rates. Low eleva-
tions are generally hotter and drier, i.e. ‘xeric’, and high elevations are wetter and cooler, i.e.
‘mesic’. Forests generally extend lower in elevation along northern aspects and along mesic
riparian drainages than southern aspects of the same elevation [36–38].

Monitoring plots
Permission to collect samples and observational data were granted by the United States Forest
Service Coronado National Forest, or were collected by USFS staff, for the Santa Catalina and

Table 1. Location, climate, geology, and generalized forest types (Ponderosa Pine = PP, Mixed-Conifer = MC, White-fir dominated =WF, Spruce
and Fir = SF, and Aspen Disclimax = AD) of the three study areas (see S2 File for a cross-walk of forest type descriptions). Weather data are from
theWestern Regional Climate Center [45] and Liu et al. [46]; forest type details are given the S2 File.

Site N Lat.,W Long. Elevation(m amsl) MAT(C°) MAP(mm yr-1) Forest type

Santa Catalina 32.4°, -110.7° 2100–2,700 10°– 12° 420–940 PP, WF, MC

Pinaleño 32.7°, -109.9° 2300–3,267 5°– 12° 480–850 PP, WF, MC, SF, AD

Jemez 35.8°, -106.5° 2,234–3,431 3°– 9° 476–850 PP, WF, MC, SF, AD

doi:10.1371/journal.pone.0157582.t001

Fig 1. Study Area locations and plot design. (A) Location of the three study areas, (B) Surface models showing topographic variability and plot
location, and (C) sampling plot layouts. Shaded relief in left panel via US Geological Survey, The National Map.

doi:10.1371/journal.pone.0157582.g001
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Pinaleño data sets, and a research permit was granted by the Valles Caldera National Preserve
for the Jemez data set. Common tree observations made at all locations included: species, con-
dition, DBH (measured 1.37 m above ground level), and maximum vertical height (m). Tree
height was measured with a hypsometer (Laser Technologies Inc. Impulse 200, Pinaleño; and
Nikon Forester 550, Santa Catalina and Valles Caldera). Plot center locations were determined
with a Trimble GeoXH global positioning system (GPS) with root mean square error (RMSE)
of ±0.3 m horizontal distance.

In the summers of 2008 and 2009 technicians permanently staked, tree-tagged, and mea-
sured 79, 0.05 ha circular plots located along a systematic grid with 500 m spacing in the Pina-
leño Mountains (Fig 1) [39,40]. Trees with DBH> 19.5 centimeters (cm) were measured over
the entire plot area; trees with DBH 19.5 cm or smaller were measured within a 0.017 ha inner
plot equivalent to 1/3 total plot area. Up to three increment cores were collected from each
measured tree stem at a coring height� 20 cm. Plots were limited to the area above 2,300 m
amsl (Fig 1). Rationale for the use of systematic gridded plots for dendrochronological studies
are described in further detail in previous studies at these sites [49–51].

In the summer of 2010 and spring of 2012, thirteen 0.1 ha plots were measured along a 1
km grid in the Santa Catalina Mountains using a tree sampling protocol identical to the Pina-
leño Mountains (Fig 1). Tree measurements were identical to those of the Pinaleño plots. Also,
in summer 2010, technicians established and measured 42, 0.1 ha plots in the Valles Caldera
National Preserve (Fig 1). Locations were selected from a random distribution of points within
200 m of existing roads. The plot design and sampling protocol was identical to that used for
the Santa Catalina.

Tree condition
We partitioned our data by the trait “tree condition”, based on the Field Sampled Vegetation
(FSVeg, [52]) inventory technique (see S3 File). Tree condition was determined by evaluating:
(1) leaf condition including the color of the needles or leaves, (2) the density of needle fascicles
per branch and overall volume and proportion of live canopy, (3) the vertical straightness of
the standing bole, (4) evidence of parasites, diseases and physical damage, and (5) condition of
the apical meristem leader. Condition was qualitatively categorized into (1) ‘excellent’, (2)
‘good’, (3) ‘fair’, or (4) ‘poor’ based on these five criteria and their associate scores (see S3 File
for details). For the evaluation of dead standing trees we included only trees with intact brown
needles or fine branches with unbroken leader stems.

Age determination
Increment cores were mounted and sanded until individual cell structure was observable fol-
lowing standard dendrochronological procedures [53,54]. All samples used in the analysis were
cross-dated using a combination of visual pattern matching [55], skeleton plots [54], and statis-
tical pattern matching [56,57]. Reference chronologies used for cross-dating the Pinaleño sam-
ples were collected by Grissino-Mayer et al. [58]. Pith dates were estimated on samples that did
not include pith but had enough ring curvature to uses concentric ring pith locators [59]. Only
trees with estimated pith 10 years or fewer from the innermost sampled ring were used in tree-
age analyses.

Allometric models
We based our null model for H:D scaling on the MST prediction fromWest et al. [6,7] where α
= 2/3. The relationship between height and diameter result in an equivalent scaling for the esti-
mated tree aboveground biomass (AGB), M (kg), which is based on an assumption of volume
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preservation from the ‘pipe-model’ [60,61] in which trees support their phytomass through
size-variable capillary networks that preserve cross-sectional area as they branch. This relation-
ship is supported by recent tree dissection work of several tree species from the American
southwest including trees from the Santa Catalina Mountains [7–9]. For the pipe model, tree
total cubic volume (V) [cm3] is considered proportionate to a cylinder: V/ πr2h [Eq. 5], where
bole radius r and h is tree height [cm] [15,27]. Mass is given as:M = V � ρ [Eq. 6], whereM is
the AGB, and ρ is the mean specific gravity [ g

cm3] of each species [27,62]. The use of an addi-

tional taper term in Eq. 6 is also used in some examples [24] but was not considered here.
Because we did not measure biomass directly in this study, our models of estimated biomass
should be considered theoretical in practice (see S1 File for full details).

Productivity measured by EEMT
Historical observations of the flora and fauna in the Santa Catalina and Pinaleño Mountains
[36] led to the concept of ‘gradient ecology’ [37], linking temperature, precipitation, and solar
irradiation to NPP, species distributions, and biodiversity dynamics [38]. More recently, spatial
models of EEMT [34,35,63,64] that account for the effects of forests on soil production rates
and ridge-to-valley distances were developed in these same mountain ranges and applied to the
stability of plant functional types following a change in disturbance frequency [47]. The form
of the model is: EEMT[Mjm−2yr−1] = f(T, VPD, PPT, Rn, CO2)[Wm−2], where T is temperature
[K], VPD is vapor pressure deficit [Pa], PPT is precipitation [kg m-2 s-1], Rn is net solar radia-
tion [Wm-2], and CO2 is carbon dioxide [kg m-2 s-1] [64]. The components of EEMT are
equivalent to the requirements of plants for conducting metabolic activity, e.g. sunlight, posi-
tive air temperatures, and the presence of liquid water, and make it a suitable model for evalu-
ating potential NPP [63]. We used the 10 m EEMT spatial GIS models from Rasmussen et al.
[34] and Pelletier et al. [63] which represent the summation of the average EEMT over an
entire year [MJ m-2 yr-1] to categorize the potential plant available free energy at each observed
plot location for all three study areas. We extracted the EEMT value of each georeferenced plot
location in ArcGIS 10.1 [65]. Santa Catalina and Jemez EEMT layer data are online available
from: http://criticalzone.org/catalina-jemez/data/, the Pinaleño EEMT are available on request
from the corresponding author of Ref. 63.

Distribution fitting
Model fitting used non-linear least-squares regression with a Trust-Region algorithm in Matlab
2014a [66] Curve Fitting Tool. The continuous data for H:D were fit to a power law (Eq. 4) for
a general model as well as (1) five condition classes, (2) three linearly binned age classes, and
(3) five linearly binned EEMT categories. We used binning because the size of the samples for
individual plots or ages was too small to generate narrow confidence intervals. We report the
estimated α as â, and its upper and lower 95% confidence intervals (ci) for Eq. 4. Estimating
power law exponents using least-squares regression and reporting their 90% to 95% ci is a com-
mon technique used by others [17,17–31], despite its known biases [23].

Results
Estimates of the H:D scaling exponents (Eq. 4) were based on tree health condition of 3,740
physically intact trees. A total of 368 pith-dated trees from the Pinaleños were used for the age
analysis. In Tables A, B, and C in S1 File we include estimates of M:D and M:H general models
by study area, forest type, and species.
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Tree condition
We grouped trees into four live condition classes and a single dead class (Fig 2, Table 2). The
scaling exponent â (Eq. 4) of trees in excellent condition (n = 381) was significantly greater
than the prediction of α = 2/3 predicted by MST (â2 ¼ 0:726� 0:046). The scaling exponent
of trees in good condition (n = 926) (â2 ¼ 0:659� 0:032) was not significantly different
than the MST prediction. In contrast, the scaling exponents of trees in fair condition (n = 923)
(â2 ¼ 0:590� 0:025), and poor condition (n = 1135) (â2 ¼ 0:602� 0:029) were signifi-
cantly less than MST predictions (Table 2). Scaling exponents of recently dead trees (n = 375)

Fig 2. Scaling exponent values for Eq. 4 by tree condition classes. Least-squares regression of h ¼ br â , estimated scaling exponent â ± the
95% ci [Eq. 2, on the y-axis] (vertical black lines) tree condition [on the x-axis]. Trees with the most vigorous growth forms resulted in power law
models with scaling exponents slightly above and not significantly different from the MST predicted 2/3 scaling (horizontal dashed black line). Trees in
lower condition classes were significantly below MST-predicted scaling, as was the average of all trees.

doi:10.1371/journal.pone.0157582.g002

Table 2. Qualitative tree condition categories with least-squares regression: h ¼ bβ1 r
bα1r (Eq. 4); thesemodels do not differentiate between species

or location. The ca1r � ci is graphically shown in Fig 2; ** denotes significantly greater than α1r at 95% ci; * denotes significantly less than α1r at 95% ci.

Condition n ^β1 � ci cα1r � ci RMSEm R2

Excellent 381 2.016 ± 0.269 0.726 ± 0.046** 3.52 0.711

Good 926 2.635 ± 0.328 0.659 ± 0.032 3.46 0.702

Fair 923 3.112 ± 0.222 0.591 ± 0.025* 3.14 0.733

Poor 1,135 2.732 ± 0.233 0.602 ± 0.029* 4.00 0.640

Dead 375 2.835 ± 0.532 0.589 ± 0.055*

All 3,740 2.762 ± 0.136 0.622 ± 0.016* 3.65 0.689

MST – – 0.666 – –

doi:10.1371/journal.pone.0157582.t002
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were also significantly less than the MST prediction (â2 ¼ 0:589� 0:055) (Fig 2). The
mean-tree model, regardless of condition, was significantly less than the MST prediction
(â2 ¼ 0:622� 0:016).

Diameter, height, and age
In general, there was a weak relationship between tree size and age (Fig 3). The relationship
between DBH and age (r2 = 0.274, RMSE = 49.97 years) was stronger than height and age
(r2 = 0.152, RMSE = 52.01 years) but both distributions show characteristically poor fits (Fig 3)
which exhibit wide heteroscedasticity. To compare the estimated scaling exponents of Eq. 2 by
age, we grouped trees into three 100-year age classes. While there was a declining trend in the
value of â1r for trees of increasing age, the difference in α2 was not significant at the 95% confi-
dence level (Fig 4).

Productivity gradient
The largest trees by species in this study were Douglas-fir growing in mesic mixed-conifer/
white-fir forest. The highest EEMT sites were the most productive and had the greatest biomass
(S4 File). We grouped all plotted trees regardless of study area into five equally sized linear bins
and assigned trees by plots to each bin. Binning was necessary because there are not enough
trees in each plot to produce a reasonably narrow estimate of the scaling exponent values. As
EEMT increased the â value decreased across each successive group (Fig 5). The â value was
not significantly different fromMST predictions for the first four bins, i.e. trees located in sites
with EEMT<42 Mj m-2 yr-1. Only the last group (42–46 Mj m-2 yr-1), was significantly less
than the MST prediction, as was the average of all trees for the entire study.

Discussion
MST predictions were only met for trees with characteristically healthy growth forms (and in the
case of the most robust canopy trees, exceeded); MST was rejected for trees in fair and poor health,

Fig 3. Least squares regressions of age, bole diameter, and height for dated trees from the Pinaleño (n = 368). (A) For diameter to height the
correlation is fairly strong (r2 = 0.652); (B) diameter to age have a very weak correlation (r2 = 0.274) with wide heteroscedasticity; (C) similarly height
has almost no correlation with increasing age (r2 = 0.152).

doi:10.1371/journal.pone.0157582.g003
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as well as recently dead trees (Fig 2). Within the overall population, the number of ‘healthy’ trees
(n = 1,307) are a little more than half the number of ‘unhealthy’ trees (n = 2,058). A non-linear
least squares regression based on an entire population is therefore likely to skew the scaling expo-
nent away from anMST prediction as seen in our data; for this reason, we suggest other forest
studies which have rejected MST when developing models of M:D (see Tables A, B, C in S1 File)
may do so because of the bias in their inventory related to mean-tree health.

Allometric scaling exponents of trees in our study were not significantly affected by increas-
ing age, although there was a declining trend. Trees in lower density stands had a greater likeli-
hood of exhibiting idealized MST scaling relationships, suggesting that trees with reduced
competition are able to optimize resource uptake and allocation to wood production. Trees in
denser stands that experienced direct competition for limiting resources deviated from ideal
scaling, suggesting that competition has a direct negative effect on tree form.

Peak values in individual tree and total plot biomass increased along the increasing EEMT
gradient (see S4 File). Stands with higher EEMT typically had a higher density of trees and a
higher proportion of trees in below average health condition. This suggests that an increase in
interspecific competition contributes to a greater number of individuals exhibiting poor growth
form as they undergo density-dependent self-thinning. Plots with lower EEMT generally had

Fig 4. Estimated scaling exponent for Eq. 4 based increasing on tree age. The estimated scaling exponent â ± 95% ci for diameter to height
proportionality [Eq. 3, on the y-axis] of tree age. As trees increased in age there was a general decline in the estimated value for the proportionate
scaling of â , though the difference was not significant at the 95% ci (vertical black lines).

doi:10.1371/journal.pone.0157582.g004
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lower biomass, conceivably a consequence of reduced water availability and the higher fre-
quency, lower-severity fire regime common in pine-dominated stands of the region [40]. Trees
in open stands tended to maximize their crown volume relative to trees in denser stands on
higher EEMT sites.

The trees in this study had increasing divergence fromMST for H:D with increasing age
(Fig 3). One possible explanation involves limitations to maximum tree height [67–69], which
are also in agreement with Darcy’s Law [70,71]. This concept of water-mediated vertical trun-
cation is further supported by the finding that trees on well-drained ridge and hillslope sites
are much shorter than trees in drainages and low topographic profile positions where water
subsidy is greater [72]. Relative to temperate forests in Oregon andWashington with the same
species, the trees from Arizona and NewMexico are little more than half the height of the larg-
est members of their species [42–44,68]. Height limits to trees of the Southwestern USA more
likely related to water availability, and not a mechanical limitation [69]. Anecdotally, trees that
have met local critical thresholds in water movement up their meristem [71,73] could continue
to accumulate mass as secondary growth on their branches [74]. Stephenson et al. [74] and Sil-
lett et al. [75] report on an increasing rate of carbon accumulation in trees with increasing size
and age. In studies of tree crown plasticity [76,77] trees subject to competition for light were
not able to maximize crown volume or biomass.

Fig 5. Estimated scaling exponent of Eq. 2 by EEMT. Least-squares regression by EEMT (MJ m-2 yr-1) [on the x-axis] versus the estimated scaling
exponent â ± 95% ci for diameter to height proportionality [Eq. 3, on the y-axis] (vertical black lines). There was no significant difference between the
first four EEMT groups. There was a trend of declining â as EEMT increased.

doi:10.1371/journal.pone.0157582.g005
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Amore nuanced perspective of Metabolic Scaling Theory
Our findings suggest that when mean-tree condition diminishes, either from physical damage
or disease, or from increased competition at higher stand densities, a non-linear least squares
regression results in deviation from idealized MST scaling. This provides a possible explanation
for the rejection of MST in numerous other forest ecology studies studying H:D andM:D rela-
tionships. We found that trees in the best physical condition exhibited MST-predicted scaling
exponents. Intriguingly, the most vigorous trees with the largest crowns classified as being in
‘excellent’ condition had scaling exponents slightly greater than predicted by MST. Averaging
the larger number of less healthy trees, essentially losing the long-term competition, with the rel-
atively fewer healthy trees that are winning, results in forest-level scaling exponents that are
lower than expected by idealized MST. We surmise that idealized scaling predicted by Eq. 4
[5,6,10] is conserved in healthy trees, but as trees becomemore stressed, either through competi-
tion, damage, or disease, their scaling is altered in the way Price et al. [11] demonstrated across a
range of species. Allometric models developed from the mean-tree population using least-
squares regression, calculated in a similar fashion as other studies [24,25,30,31] (Table A in S1
File), suggest when a large number of suppressed and stressed trees are present there is a reduc-
tion in the scaling exponent. This may explain why some MST predictions have been found to
be inconclusive or unsupported by others [19,26]. A more nuanced interpretation of MST sug-
gests that healthy trees, not subject to damage, disease or intense competition, are more likely to
exhibit idealized MST scaling, while trees that are diseased, damaged, or losing the competition
for light and water by self-thinning are more likely to scale belowMST predictions.

Conclusions
We found a common divergence fromMST idealized exponents in mean-tree models to be
explained by: (1) a majority of individuals exhibiting poor or fair growth form likely from
increased resource competition and (2) a vertical height limitation that results in trees with
lower than expected H:D proportionalities. Deviation in exponent values of height, radius and
mass relationships, while significantly different from idealized MST, when averaged across all
trees, were found to be consistent with MST for trees in good to excellent physical condition.
Further, similar results across the study areas suggests our models are consistent enough to be
applicable to other semi-arid forests in the Southwestern USA. Quantitative assessments of
how competition, prevalence of disease, physical damage, mechanical stress, chronic moisture
stress, or temperature extremes lead to covariation require further study. The difference
between predicted and measured biomass for tall trees and old growth stands in vertically-
truncated forests such as those of the Southwestern US also has important implications for cali-
brating aerial lidar-derived models [1], removing biases in allometric models [23, 78], particu-
larly when large trees account for the majority of standing biomass [79].

While resolving specific mechanisms is beyond the scope of this study, we suggest future
research should be directed at refining and testing possible mechanisms for deviation from ide-
alized scaling, e.g. within trees the influence of scaling water flux with mass, as shown by Sperry
et al. [80]; and outside of trees, the differences in soil depth and ground water availability
which differentiate between specific drivers of tree height [72].

Supporting Information
S1 File. General forest biomass models and species biomass models. This file contains text,
one figure and three tables labelled A, B, and C.
(PDF)
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S2 File. Vegetation classification schemes common for all three study areas. The suggested
biomass model for each classification scheme: Plant Functional Type (PFT, Smith et al. 1993),
Existing Vegetation Type (EVT, Comer et al. 2003, Brohman and Bryant 2005, Muldavin et al.
2006, LANDFIRE 2010), USFS mid-scale dominance types (Mellin et al. 2008), Plant associa-
tions (Stuever and Hayden 1997), Potential Natural Vegetation Type (PNVT, Nature Conser-
vancy 2006, 2007), ReGap Analysis (Lowry et al. 2007, Prior-Magee et al. 2007), and Whittaker
and Niering (1975)/Niering and Lowe (1984).
(PDF)

S3 File. Tree Condition Codes. This file contains a workflow for classifying trees, a table of
tree decay classes, and example plates of various tree species by class.
(PDF)

S4 File. Pairwise comparisons of plot metrics for the Pinaleño and Valles Caldera study
sites. Scatter plots for the Pinaleño (n = 79, gold circles) and Valles Caldera (n = 48, blue cir-
cles) inventory plots are classified by: Canopy Cover percentage (CC%), EEMT (MJ m-2 yr-1),
biomass M (Mg ha-1), Basal Area (m2), trees per hectare (t / ha-1), and plot average Tree Health
(excellent = 4, good = 3, fair = 2, and poor = 1). A least-squares trend line is included for each
study area. The Santa Catalina data are not shown.
(PDF)
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