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Introduction
The issue of excessive blood loss, 
sometimes necessitating re‑exploration, 
often plagues cardiac surgery. Surgical 
blood loss has been found to be an 
independent predictor of in‑hospital 
mortality.[1] Re‑exploration for bleeding 
has been linked to numerous adverse 
events, such as renal failure, infections, 
arrhythmias, and prolonged hospital stay.[2] 
Besides these, delay in re‑exploration tends 
to use up the blood bank resources, thereby 
exposing the patients to the hazards of 
blood transfusion. Approximately 50% 
of cardiac surgical patients receive blood 
transfusion,[3] which can pose substantial 
risk.[4,5] Numerous strategies have been used 
to decrease the same.

Pharmacological strategies have been 
used from time‑to‑time to minimize 
perioperative bleeding and thereby 
transfusion. Of these, the antifibrinolytic 
drugs have been the most promising. This 
has led to their extensive use in cardiac 
surgery and has been recommended by the 
European Association of Cardio‑Thoracic 
Surgery and Anaesthesiology[6] and the 
American Heart Association.[7] Before 
its withdrawal, aprotinin was believed 
to be the most powerful and popular 
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Abstract
Cardiac surgery is usually associated with significant blood loss, which often necessitates blood 
transfusion. In order to decrease the risks associated with the latter, pharmacological as well as 
nonpharmacological strategies have been used to reduce blood loss. Among the pharmacological 
approaches, antifibrinolytic drugs are the mainstay. Aprotinin, which was the first ubiquitously used 
drug, fell into disrepute only to re‑emerge after much debate. The decline of aprotinin paved the way 
for the lysine analogs. However, we must be aware with the side effects of these drugs as well as the 
dose modification required in special situations. Nonsaccharide glycosaminoglycans have been under 
investigation to overcome the drawbacks of the lysine analogs. It remains to be seen whether these 
drugs can replace the traditional antifibrinolytics.
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antifibrinolytic.[8] Tranexamic acid (TA) 
and epsilon‑aminocaproic acid (EACA) 
are synthetic derivatives of lysine unlike 
aprotinin, which is a serine protease 
inhibitor derived from bovine lung.

The resurgence of aprotinin and the 
side effects of other antifibrinolytics, as 
demonstrated by some trials, have left us 
pondering as to which drug seems to be 
the most efficacious drug in controlling 
perioperative blood loss. In this editorial, 
the role of various antifibrinolytics in 
managing the perioperative blood loss will 
be discussed. We searched PubMed and 
Google Scholar database with the keywords 
as cardiac surgery and antifibrinolytic drugs 
for literature search.

Hemostatic Derangements During 
Cardiac Surgery
What exactly happens during surgery that 
promotes bleeding? Cardiac surgery, similar 
to any other surgical procedure, promotes 
tissue damage, inflammation, and thereby 
bleeding. Added to this is the insult from 
cardiopulmonary bypass (CPB), which 
promotes the activation of the coagulation 
system due to the contact of blood with 
foreign surfaces. Systemic heparinization 
and inadequate protamine reversal too take 
a toll on the patient, not to forget surgical 
hemostasis. It has been observed that 
the fibrinogen levels decrease by about This is an open access journal, and articles are 
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40% at the end of cardiac surgery.[9,10] The composition 
of the priming solution used in CPB has been shown to 
have an effect on the production of fibrinogen,[11] thereby 
impeding coagulation during on‑pump surgery. The 
fibrinolytic activity at the surgical site has been seen to 
increase by eight‑fold following extensive surgery.[12] The 
reduced generation of thrombin that occurs post cardiac 
surgery presents an additional insult to the bleeding 
patient.[13] Soluble fibrin is nonhemostatic fibrin formed 
due to dysregulation of hemostasis. Normally, only 
approximately 1% of the fibrin formed circulates as soluble 
fibrin with the rest residing in the wound.[14] When CPB 
commences, total fibrin formation is reduced because of 
heparinization whereas soluble fibrin formation is increased. 
The quality of fibrin‑based clot has more impact than the 
reduced thrombin generation and platelet dysfunction on 
the magnitude of bleeding.[15]

The contact activation pathway is activated when blood 
comes in contact with the CPB circuit.[16] Biocompatible 
materials added to the CPB circuit have been shown to 
have an equivocal effect on bleeding and transfusion 
requirements.[17] However, the activation of the tissue 
factor (TF) pathway may be a primary reason of thrombin 
generation during CPB. This pathway gets activated when 
blood comes in contact with the pericardium and damaged 
tissues.[18] Washing and concentrating blood that has been 
aspirated from the pericardium[19] and tissue factor pathway 
inhibitor (TFPI) release by heparin administration[20] 
probably have an important role in the suppression of the 
TF pathway during CPB. CPB promotes the formation of 
bradykinin[21] that appears to be the primary stimulus for 
tissue plasminogen activator (tPA) secretion as documented 
by studies that have successfully employed bradykinin 
receptor blockers.[22] This tPA promotes fibrinolysis that 
has been shown to have a positive correlation with the 
magnitude of postoperative blood loss.[23,24]

Does off‑pump cardiac surgery fare better? It should, 
since CPB is eliminated from the scene, but that solves 
only one issue. The tissue trauma, which activates the 
TF, is inevitable.[25] There is activation of coagulation and 
subsequently fibrinolysis albeit to a lesser extent during 
off‑pump surgery.[26,27] However, in off‑pump as well as in 
on‑pump surgeries, fibrinolytic activity is similar by the end 
of 24 h.[28] Therefore, cardiac surgery can be considered a 
hostile milieu for the patient wherein derangements of the 
coagulation system are encountered.

Role of Antifibrinolytics
The technique of using pharmacological measures to reduce 
blood loss dates back to the 1980s when desmopressin and 
prostacyclins were introduced in cardiac surgery. However, 
they were found to be ineffective, except in selected 
cases.[29,30] Antifibrinolytics, by inhibiting fibrinolysis, and 
thereby fibrin degradation product formation have been 
shown to reduce transfusion requirements by up to 50%. 

The commonly used antifibrinolytics in today’s era include 
the protease inhibitors and lysine analogs. When aprotinin 
was banned in 2007, two additional pharmacological 
agents were clinically evaluated, namely, ecallantide 
and MDCO‑2010. Recently, synthetic allosteric plasmin 
inhibitors are undergoing research as a tool to reduce 
perioperative bleeding.

Aprotinin

α2‑plasmin inhibitor is a natural plasmin inhibitor in 
our body that rapidly inactivates free plasmin with little 
effect on the bound form. Free plasmin is associated with 
pathological fibrinolysis. Hence, hemostasis is maintained 
and physiological clot lysis is not inhibited.[31] Aprotinin, a 
serine protease inhibitor, inhibits free plasmin but with little 
effect on bound plasmin, similar to α2‑plasmin inhibitor. 
The initial plasma half‑life is 150 min and the terminal 
half‑life is 10 h. The kidneys eliminate aprotinin, with 
almost complete elimination in 4–5 h. Aprotinin clearance 
is reduced, and half‑lives are prolonged in patients with 
renal insufficiency undergoing CPB.[32] A full‑dose regimen 
consists of 2 million kallikrein international units (KIU) 
as a bolus, followed by the same bolus on CPB prime 
and a continuous infusion of 50,000 KIU. A half‑dosing 
regimen is also available. In addition, aprotinin possesses 
antiinflammatory properties,[33,34] thereby decreasing the 
systemic inflammatory response to cardiac surgery. There 
was a controversy regarding the optimal dose of aprotinin 
to be administered to produce the desired clinical effect. 
The 2 million KIU dose was found to be necessary to 
produce the plasma concentration of 200 KIU/ml associated 
with kallikrein inhibition.[35] Royston et al. demonstrated 
that in coronary artery bypass grafting (CABG), a 
full‑dose regimen was associated with a lower risk of 
adverse cerebrovascular outcomes and a reduced need for 
use of vasoactive drugs.[36] Hayashida et al. opined that 
minimal‑dose aprotinin inhibited enhanced fibrinolytic 
activity and reduced transfusion requirements after bypass 
equivalently to low‑dose aprotinin.[37] Lemmer et al. 
concluded that low‑dose and pump‑prime‑only aprotinin 
regimens provide reductions in transfusion requirements 
similar to those of high‑dose regimens.[38] A retrospective 
analysis by Strouch et al. showed that half‑dosing regimen 
was associated with a significant increase in blood products 
administration and re‑exploration rates as compared to the 
full dose.[39] However, recently it has been demonstrated 
that a half‑dosing regimen should suffice in low‑risk 
cardiac patients.[40]

The Aprotinin saga: Introduction, decline, and 
resurgence

Aprotinin was isolated from bovine lung in 1936, and was 
first used by Royston et al.,[41] in redo cardiac surgery. 
Bidstrup et al.[42] used high‑dose aprotinin in cardiac 
surgery in 1989. The Food and Drug Administration (FDA) 
in 1993 gave the nod for its use in high‑risk CABG, which 



Aggarwal and Subramanian: The role of antifibrinolytic drugs in cardiac surgery

Annals of Cardiac Anaesthesia | Volume 23 | Issue 2 | April‑June 2020 195

ultimately expanded to all CABG patients. Post approval it 
was noticed that aprotinin was associated with decreased 
perioperative transfusion requirements not only in cardiac 
surgeries but also in noncardiac surgeries. Perhaps this led 
to misuse of the drug, thus landing it into controversy.

In 2006, FDA issued a public health advisory regarding 
the use of aprotinin, based on a series of observational 
studies. Mangano et al.[43] reported that aprotinin use 
might be associated with increased risk of cardiovascular, 
neurological, and renal events. They further stated 
that aprotinin was independently predictive of 5‑year 
mortality.[44] Karkouti et al.,[45] as well as Shaw et al.,[46] 
showed that patients who received aprotinin had a higher 
mortality rate and larger increases in serum creatinine levels 
than those who received EACA or no antifibrinolytic agent. 
By the end of 2006, FDA revised its guidelines and placed 
a ceiling on aprotinin’s use in surgeries. In 2007, the Blood 
Conservation using Antifibrinolytics in a Randomized 
Trial (BART) study was published, which saw the demise 
of aprotinin.[47] Instantaneously, the manufacturer of 
aprotinin (Bayer Inc.) temporarily suspended production 
and by mid‑2008, aprotinin was removed from the markets.

The withdrawal of aprotinin was not met with a favorable 
response from many quarters. Though a few studies 
had demonstrated a poor outcome with aprotinin, others 
did not. Schneeweiss et al.[48] concluded that in‑hospital 
mortality was higher with aprotinin, post cardiac surgery. 
Fan et al.[49] found that aprotinin did no good apart from 
decreasing postoperative bleeding in pediatric cardiac 
surgical patients. In fact, they concluded that its use was 
detrimental. On the contrary, Wang et al.[50] and Sniecinski 
et al.[51] concluded that aprotinin use was associated with 
less blood loss when compared to TA or no aprotinin at all. 
DeSantis et al.[52] in their retrospective analysis concluded 
that in the post aprotinin era with the exclusive use of 
lysine analogs, the relative risk of early postoperative 
outcomes such as mortality and renal dysfunction did 
not improve, but the risk for the intraoperative use of 
blood products had increased. Scott et al.[53] analyzed a 
retrospective data and concluded that bleeding in infant 
cardiac surgery increased following the change from 
aprotinin to EACA, thereby necessitating the use of factor 
VIIa. Many questions were raised regarding the validity 
of the studies that had disfavored aprotinin, especially the 
study by Mangano et al.[43,44] and the BART trial.[47] There 
were several issues with the data from Mangano et al.[43,44] 
First, the study was nonrandomized and used unmatched 
groups. Next, multivariate logistic regression analyses 
were used for between‑group differences at baseline. This 
analysis did not indicate as to which type of patients 
received aprotinin. Finally, the details of the surgery itself 
were not reported. Thus, the choice of antifibrinolytic drug 
and the outcome were biased. This led to a meeting by the 
regulatory authority of Canada in December 2008. It was 
seen that the primary outcome in BART was not mortality 

but massive bleeding and that the trial was underpowered. 
Similarly, the exclusion of 137 patients from the study 
after randomization of primary endpoints was questioned. 
The panel concluded that the reclassification of endpoints 
from the original reported data were in opposite directions 
for aprotinin and EACA, thereby favoring EACA. These 
changes were magnified with the duration of the study. The 
anticoagulant used in the BART trial was heparin, whose 
effect was not monitored appropriately, as activated clotting 
time could be influenced by aprotinin. Thus in 2011, 
Health Canada lifted the ban on aprotinin and licensed its 
use for isolated CABG in Canada, only after balancing 
the risk versus benefit.[54] Following this, the European 
regulatory authority gave a nod for the use of aprotinin 
for isolated CABG in Europe.[55] Interestingly, the authors 
of the BART study have refuted the criticism drawn from 
their work.[56] The use of aprotinin, post re‑introduction, in 
isolated CABG has been debated. Meybohm et al. found 
that the use of aprotinin is associated with an increased risk 
of mortality in low and intermediate risk cardiac surgery.[57] 
Likewise, the arterial revascularization trial (ART) showed 
a significant increased risk of early and late mortality with 
aprotinin.[58] However, Deloge et al. have demonstrated 
the superiority of aprotinin over TA in isolated CABG.[59] 
Currently, the European guidelines recommend the use of 
aprotinin only in adult patients undergoing isolated CABG, 
who are at a high risk of major blood loss.[60]

Although aprotinin use is associated with nephrotoxicity, 
Bosman et al.[61] opined that there is no evidence for an 
increased risk of developing new renal failure requiring 
dialysis/renal replacement therapy. Maslow et al. echoed 
similar findings in their assessment of perioperative renal 
outcome in cardiac surgical patients with preoperative 
renal dysfunction when comparing EACA with 
aprotinin.[62] Aprotinin‑induced anaphylaxis is yet another 
major concern, especially after a second exposure.[63,64] A 
6 months gap between the first and the subsequent exposure 
might alleviate this problem.

Ecallantide and MDCO‑2010

Ecallantide is a recombinant human peptide derived from 
the first Kunitz domain of the TF pathway inhibitor‑1 
that inhibits the TF pathway.[65] FDA approved it for the 
treatment of hereditary angioedema. It was demonstrated 
to decrease perioperative transfusion in cardiac surgery. 
Bokesch et al.[66] found out that ecallantide was less 
effective at reducing perioperative blood loss than TA and 
the study had to be prematurely terminated due to mortality 
in the study group.

MDCO‑2010 is a synthetic molecule inhibiting plasmin, 
kallikrein, Xa, Xia, and protein C. It exerts more potent 
inhibitory activity than TA and aprotinin toward plasma 
kallikrein, plasmin, and FXa.[67,68] However, further studies 
are needed to demonstrate its safety and efficacy.[69]
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Tranexamic acid and epsilon amino caproic acid

TA and EACA are the most widely used antifibrinolytics 
in this era, especially following the withdrawal of 
aprotinin. Both are synthetic derivatives of lysine. They 
prevent excessive plasmin formation by binding to the 
lysine‑binding site on plasminogen, thereby preventing 
fibrin from binding to plasminogen. They primarily 
inhibit tPA‑induced physiological fibrinolysis.[70] Both 
are eliminated through the kidneys necessitating dose 
reduction in renal failure and have a half‑life of 3 and 2 h, 
respectively. Age has been shown to be a better covariate 
than body weight, affecting both the distribution and the 
elimination of TA.[71] TA can be given as a high dose of 
30 mg/kg bolus, 2 mg/kg on CPB, and 16 mg/kg/h later or 
as a low dose of 10 mg/kg bolus, 1–2 mg/kg on CPB, and 
1 mg/kg/h. It has been approved for use in USA, Canada, 
and Europe. EACA is given in a dose of 100 mg/kg 
bolus, 5 mg/kg on CPB, and 30 mg/kg/h. TA is at least 
7–10 times as potent as EACA. Both TA and EACA have 
been shown to reduce the need for transfusion as compared 
with controls.[72]

The optimal plasma concentration of TA to inhibit 
80‑85% fibrinolysis has been set at 10–20 mcg/ml. 
100 mcg/ml of TA completely inhibits fibrinolysis.[73] 
Sharma et al. analyzed plasma TA concentrations of eight 
patients undergoing elective cardiac surgery with CPB 
and high‑dose TA. The authors found that actual plasma 
levels of TA were significantly higher than expected, 
and that 100% inhibition could be achieved at lower TA 
doses.[74] There is also a considerable debate on its dosing. 
Hodgson et al. concluded that patients with a high risk 
of bleeding should receive high‑dose TA, while those 
at low risk of bleeding should receive low‑dose TA.[75] 
Sigaut et al.[73] found that although a high dose of TA does 
not reduce the incidence of blood product transfusion up 
to day 7, it is more effective than a low dose of TA in 
decreasing transfusion, blood loss, and repeat surgery. This 
study was criticized for its design and analysis, but the need 
for high dose was partially accepted. However, Du et al.[76] 
showed that lower‑dose TA regimen was as effective as the 
higher‑dose regimen in reducing postoperative bleeding 
and transfusion needs in patients undergoing cardiac valve 
surgery. Faraoni et al.[77] evaluated the effect of two doses 
of TA on fibrinolysis during cardiac surgery and concluded 
that dose does not make a difference in clinical outcome.

EACA causes inhibition of fibrinolysis at 130 mcg/ml.[78] 
There is no consensus on the dosage on EACA too. 
Different dosage regimens have been experimented by 
Chauhan et al.[79] and Hardy et al.[80] Sarupria et al.[81] 
compared two different protocols of EACA in pediatric 
cardiac surgery, namely continuous and discontinuous 
regimen. One group received 100 mg/kg of EACA after 
induction, upon initiation of CPB, and after protamine. 
Group 2 received 75 mg/kg of EACA after induction, 

followed by a maintenance infusion of 75 mg/kg/h until 
chest closure, and an additional 75 mg/kg upon initiation 
of CPB. Group 3 did not receive any antifibrinolytic agent 
or placebo. They noted that both the regimens were equally 
effective in reducing blood loss.

Seizures have been reported with the use of lysine 
analogs,[82] especially TA that could be due to γ‑amino 
butyric acid receptor antagonism or due to cerebral 
vasospasm/thrombosis. However, the clinical impact of 
TA‑induced seizures is difficult to determine. A large 
retrospective study reported an incidence of 0.9%, with a 
2.5–3 times mortality in patients treated with TA. In this 
study, TA administration was shown to be an independent 
predictor of seizures. The occurrence of seizures has been 
linked to the dose, with larger doses being implicated in the 
development of seizures.[75,83] Sharma et al.[84] found that 
independent predictors of postoperative seizures included 
age, female sex, redo surgery, hypothermic circulatory 
arrest, increased duration of aortic cross‑clamp, and TA. 
When tested in a multivariate regression analysis, TA was 
a strong independent predictor of seizures. A follow‑up 
of three patients who presented with seizures after TA 
administration might support the hypothesis of cerebral 
hypoperfusion as a cause of seizures.[85] Montes et al. 
linked preoperative renal dysfunction to the development 
of seizures and opined that the drug dose should either be 
reduced or completely avoided in such patients.[86] Further 
well‑designed prospective studies are required to come to 
a firm conclusion on this aspect. In order to reduce these 
undesirable side effects, topical application of TA and 
EACA has been described. This has shown promising 
effects with some authors reporting an increased efficacy 
when topical and systemic methods are combined as 
compared to individual technique.[87,88]

Recent Developments
The lysine analogs can provoke convulsive seizures 
from their effects on the central GABA receptor. 
In particular, the variable efficacy of TA sometimes 
necessitating high doses causes postoperative seizures 
and renal dysfunction. Thus, discovering more potent 
and safer plasmin inhibitors became important. Research 
into glycosaminoglycans (GAGs), which are known to 
allosterically inhibit plasmin, has led to the synthesis 
of small, synthetic, homogenous, nonsaccharide GAG 
mimetics (NSGMs). Among the 55 NSGMs investigated, 
the flavonoid quinazoline heterodimers and bisflavanoid 
homodimers afford allosteric inhibition of plasmin. 
Advantages of these NSGMs include: (i) adequate aqueous 
solubility which is expected to help antifibrinolytic use 
during surgeries, (ii) limited cellular and central nervous 
system toxicity, (iii) reasonable chemical stability, and 
(iv) ease of chemical synthesis.[89] Further efforts are 
necessary to develop these sulfated NSGMs into clinically 
relevant molecules.[90]
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Conclusion
Prophylaxis for blood loss in cardiac surgery is desirable, 
of which antifibrinolytic drugs have been the most sought 
after. Literature recommends their use, albeit with other 
methods to prevent and treat bleeding. Their use should be 
driven by cost, clinician’s familiarity with the drug, drug 
profile, and institution protocol. The development and 
increased use of point‑of‑care‑based, whole‑blood assays 
of the coagulation system may have a role in the detection 
of intraoperative hyperfibrinolysis and be able to guide the 
more rational use of antifibrinolytic agents. No particular 
drug is recommended, although TA is more potent than 
EACA. Though the regulatory agencies have licensed 
aprotinin only in isolated CABG, its use in other cardiac 
surgeries needs to be reassessed. In the absence of lucid 
Indian guidelines on aprotinin, we recommend that either 
we do not use it or use it in accordance with the European 
guidelines. Thus, we have to rely only on lysine analogs 
with low‑dose TA being the most appropriate. The allosteric 
plasmin inhibitors seem a viable option, but warrant further 
research.
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