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Abstract

The endpoint dilution assay’s output, the 50% infectious dose (ID50), is calculated using the

Reed-Muench or Spearman-Kärber mathematical approximations, which are biased and

often miscalculated. We introduce a replacement for the ID50 that we call Specific INfection

(SIN) along with a free and open-source web-application, midSIN (https://midsin.physics.

ryerson.ca) to calculate it. midSIN computes a virus sample’s SIN concentration using

Bayesian inference based on the results of a standard endpoint dilution assay, and requires

no changes to current experimental protocols. We analyzed influenza and respiratory syncy-

tial virus samples using midSIN and demonstrated that the SIN/mL reliably corresponds to

the number of infections a sample will cause per mL. It can therefore be used directly to

achieve a desired multiplicity of infection, similarly to how plaque or focus forming units

(PFU, FFU) are used. midSIN’s estimates are shown to be more accurate and robust than

the Reed-Muench and Spearman-Kärber approximations. The impact of endpoint dilution

plate design choices (dilution factor, replicates per dilution) on measurement accuracy is

also explored. The simplicity of SIN as a measure and the greater accuracy provided by

midSIN make them an easy and superior replacement for the TCID50 and other in vitro cul-

ture ID50 measures. We hope to see their universal adoption to measure the infectivity of

virus samples.

Author summary

The infectivity of a virus sample is measured by the infections it causes. One approach, the

endpoint dilution assay, aims to estimate the number of TCID50 contained in a sample,

where one TCID50 is the dose at which a virus sample is expected to infect a tissue or cell

culture 50% of the time, on average. Unfortunately, the commonly used methods to esti-

mate the TCID50 from the assay’s outcome yield biased approximations that relate poorly

to the number of infections the sample will cause. We propose replacing the TCID50 with
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a more accurate, robust, and biologically meaningful measurement unit we call Specific

INfection (SIN). It corresponds to the number of infections the virus sample will cause,

which can be used directly to achieve the desired multiplicity of infection. Computing the

SIN from one’s endpoint dilution assay outcome requires no change in experimental pro-

cedure, and can be done conveniently via a web-application we developed, called midSIN.

midSIN can be accessed for free on any device (laptop, cellular phone, tablet) from any

web browser, without the need to download and install software.

Introduction

The progression of a virus infection in vivo or in vitro, or the effectiveness of therapeutic inter-

ventions in reducing viral loads, are monitored over time through sample collections to mea-

sure changes (increases or decreases) in virus concentrations. As such, accurate measurement

of the concentration in a sample is critical to study and manage virus infections.

Methods to count infectious virus are based on counting the infections they cause, rather

than the particles themselves. In practice, however, not all infection-competent virions con-

tained in a sample will go on to successfully cause infection. Experimental conditions, cell type

used or temperature or acidity of the medium, can alter the rate at which virions, that were

infection-competent in the sample, will lose infectivity before they can cause infection and

thus be counted. This is why, hereafter, we will refer to the quantity measured by infectivity

assays as the infection concentration or the number of infections the sample will cause per unit

volume, rather than its concentration of infectious virions, which is not a measurable quantity.

Two main types of assays are used to quantify the infection concentration within a virus sam-

ple: (1) the plaque forming (PFU) or focus forming (FFU) assays; and (2) assays we will collec-

tively refer to as endpoint dilution (ED) assays, which include the 50% tissue culture infectious

dose (TCID50), or cell culture infectious dose (CCID50) or egg infectious dose (EID50) assays,

etc. Herein, we focus on ED assays. Technically, the plaque and focus forming assays are also

endpoint dilution assays because they rely on the counting of plaques or foci (the endpoint) as

a function of dilutions. However, herein, we will refer to them as plaque or foci forming assays

rather than endpoint dilution assays.

The ED assay has one major, remediable weakness: its output quantity, the TCID50 (or

CCID50 or EID50), does not directly correspond, or trivially relate, to causing one infected cell.

The simplistic calculations, introduced by Spearman-Kärber (SK) [1, 2] and Reed-Muench

(RM) [3] nearly a century ago, remain the most commonly used methods to quantify a virus

sample’s infectivity in units of TCID50 (or CCID50 or EID50) using the ED assay. Many

research groups rely on spreadsheet calculators that are passed down through generations of

trainees or found on the internet, and can contain errors (e.g., versions 2 and 3 of the spread-

sheet calculator provided by the Lindenbach Lab at Yale University (http://lindenbachlab.org/

resources.html), which have since been removed). Theoretically, a dose of 1 TCID50 is

expected to cause −1/ln(50%) = 1.44 infections [4]. However, the approximation used by the

RM and SK methods introduces an often overlooked bias where 1 TCID50� 1.781 infections

where 1.781 = eγ and γ = 0.5772 is the Euler-Mascheroni constant [5, 6]. This makes it prob-

lematic to experimentally achieve the desired multiplicity of infection when inoculating from a

sample quantified via the RM or SK methods. Many have proposed replacements for the RM

and SK calculations based on logit or probit transforms of the data [4, 6, 7] or on statistical

analysis of the ED assay output [7, 8] with some implemented as website applications [9, 10].

Sadly, none of these improvements were widely adopted to improve estimates of the TCID50,
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available on GitHub (https://github.com/cbeauc/

midSIN) and the midSIN tool is available as a web

application (https://midsin.physics.ryerson.ca).
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possibly due to a lack of visibility of these publications, or the lack of widespread awareness of

the limitations of the RM and SK methods. None proposed replacing the TCID50 measure-

ment unit, with a more meaningful measure.

The work herein proposes to:

1. Encourage the use of the ED assay (e.g., TCID50 assay), but replace its output, the TCID50/

mL (or CCID50/mL, EID50/mL, etc.), with a new quantity in units of Specific INfections or

SIN/mL which corresponds to the number of infections the sample will cause per mL. The

word specific highlights the fact that the infectivity of a sample is specific to the particulars

of the experimental conditions (temperature, medium, cell type, incubation time, etc.).

2. Replace the Reed-Muench and Spearman-Kärber approximations with a computer soft-

ware, midSIN (measure of infectious dose in SIN), that relies on Bayesian inference to mea-

sure the SIN/mL of a virus sample. To avoid calculation errors and make the new method

widely accessible, midSIN is maintained and distributed as free, open-source software on

GitHub (https://github.com/cbeauc/midSIN) for user installation, but also via a free-to-use

website application (https://midsin.physics.ryerson.ca) with an intuitive user interface.

Here, we present examples of midSIN being used to analyze influenza and respiratory syn-

cytial virus samples. We demonstrate that midSIN’s output, SIN/mL, is an accurate estimate

of the number of infections the sample will cause per unit volume. We show how the accuracy

of the SIN concentration estimate can be controlled by experimental choice of plate layout,

including the dilution factor, and the number of replicates per dilution. We compare midSIN’s

performance to that of the RM and SK methods, and demonstrate how the latter estimators

are inaccurate under various circumstances, underlining the need to adopt midSIN to quantify

virus samples via the ED assay.

Results

Key features of midSIN’s output

Let us consider a fictitious ED experiment, with 11 dilutions and 8 replicate wells per dilutions,

in which the minimum sample dilution, D1 ¼ 1=100 ¼ 10� 2, is serially diluted by a factor of

10−0.5� 0.32 (D2 ¼ 10� 2:5, D3 ¼ 10� 3, . . ., D11 ¼ 10� 7), and the total volume of inoculum

(diluted virus sample + dilutant) placed in each well is Vinoc = 0.1 mL. Now, consider that a

virus sample is measured using this ED experiment and one observes (8,8,8,8,8,7,7,5,2,0,0)

infected wells out of 8 replicates at each of the 11 dilutions, as illustrated in Fig 1A.

midSIN provides a graphical output of its results, shown in Fig 1B and 1C for this example.

Note how the posterior distribution for log10(SIN/mL) (Fig 1B) is approximately a normal dis-

tribution. This is why log10 of the infection concentration should be used and reported, rather

than the concentration itself. midSIN also graphically compares the number of infected wells

observed experimentally (Fig 1C, black dots) against the theoretically expected values (blue

curve and grey CI bands). This graphical representation makes it easy to identify issues with

the data entered or with the experiment itself.

Importantly, midSIN provides a more useful quantity to the user than the TCID50: an esti-

mate of the concentration of infections the sample will cause, SIN/mL. For this example, the

concentration is 106.2±0.1 SIN/mL, where 6.2 is the mode (most likely value) of log10(SIN/mL),

and ±0.1 is its 68% credible interval (CI). The SIN/mL corresponds to the number of infections

that will be caused per mL of the sample, which can be directly used to determine the sample

dilution required to obtain a desired multiplicity of infection (MOI).
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In a laboratory setting, ED experiments can be performed in batches, such as to quantify

the infectious concentration in samples collected at several time points over the course of a cell

culture infection. For such applications, midSIN provides a comma separated value (csv) tem-

plate file readily editable in a spreadsheet program, to collect and submit the results for batch

Fig 1. Visual representation of midSIN’s output for the example ED plate. A: Illustration of the example ED plate

where Di are the chosen serial dilutions of the sample. For the example described in the text, D1 ¼ 10� 2, D2 ¼ 10� 2:5,

. . ., D11 ¼ 10� 7, with 8 replicates per dilution. The number of infected wells (# inf) is indicated at the bottom of each

dilution column. B: The midSIN-estimated posterior distribution of the log10 infection concentration, log10(SIN/mL),

for the example ED experiment. The vertical lines correspond to log10(SIN/mL), based on the most likely value (mode)

of midSIN’s posterior distribution (solid blue), or computed from the RM (solid orange) and SK (dashed green)

approximations of the log10(TCID50) (see Methods). The x-value of the white and light grey region on either sides of

the mode indicate the edges of the 68% and 95% credible interval (CI), respectively. The midSIN-estimated log10(SIN/

mL) mode ± 68% [±95%] CI are indicated numerically above the graph. C: The number of infected wells (black circles)

out of the 8 replicates, as a function of the 11 serial dilutions of the example ED plate, from the least (leftmost) to the

most (rightmost) diluted. For example, x = 3.0 corresponds to a sample dilution of 10−3 or 1/1,000. The average

(expected) number of infected wells, as a function of sample dilution, is shown for the most likely value of log10(SIN/

mL) (blue curve) or its 68% and 95% CI (inner and outer edge of the grey bands, respectively). The sample dilution (x-

value) at which the blue curve crosses the horizontal dotted line (50% infected wells) corresponds to a concentration of

1 TCID50 per ED well volume. The vertical lines indicate the sample dilution that yields a concentration of 1 TCID50

according to the RM and SK approximations.

https://doi.org/10.1371/journal.pcbi.1009480.g001
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processing. Details on the format of the template file are available on midSIN’s website

(https://midsin.physics.ryerson.ca). Fig 2 illustrates the output for a subset of measurements

for in vitro infection with the respiratory syncytial virus (RSV). Each sample was measured

twice, and midSIN’s estimates are in good agreement with one another (within 95% CI).

The y-axis in the left graph panels of midSIN’s graphical output is the non-normalized

scale of the posterior distribution for log10(SIN/mL), which ranges between 10−7 and 10−2. The

Fig 2. Quantification of RSV sampled from in vitro infections. Each row corresponds to a different experiment (mock-yield [my] or single-cycle [sc]) and sampling

time point (e.g., 8 h, 36 h), and each sample was measured in duplicate (rep1, rep2). These data were collected from in vitro infections with the RSV A Long strain, and

were previously reported in [11]. The ED measurement experiment were conducted using a plate layout of 11 dilutions, with 8 replicates per dilution, an inoculum

volume of Vinoc = 0.1 mL, serial dilutions from D1 ¼ 10� 1 to D11 ¼ 10� 6, separated by a dilution factor of 10−0.5.

https://doi.org/10.1371/journal.pcbi.1009480.g002
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scale loosely relates to the likelihood of observing a particular ED experimental outcome (see

Methods). Unlikely ED outcomes appear as large departures of the observed number of

infected wells (right panels, black dots) from what is theoretically expected (right panels,

curve). It is interesting that the uncertainty (CI) of midSIN’s estimated log10(SIN/mL) appears

to be independent of how much the ED outcome deviates from theoretical expectations. That

is, the accuracy of midSIN is not strongly affected even when it is provided more unlikely,

noisy experimental data. This robustness is explored further below.

Comparing SIN to TCID50 and PFU virus sample concentrations

The midSIN calculator provides an estimate of the number of infections that will be caused

per mL of a virus sample (SIN/mL). In principle, a plaque assay also measures the number of

infections a sample will cause, with each infection expected to develop into a plaque. If a plaque

assay is performed under experimental conditions and protocols as similar as possible to those

of the ED assay (i.e., using the same cells, medium, period of incubation, rinsing method, etc.),

midSIN’s SIN/mL estimate is expected to be comparable, in theory, to the number of PFU/mL

observed in the plaque assay. In practice, however, the plaque assay likely provides a biased

estimate of the true concentration of infections in a sample due to various experimental limita-

tions (e.g., distinguishing between two merged plaque and a larger one, or between small pla-

ques and staining artifacts). To evaluate midSIN’s performance compared to existing

methods, the infection concentration in two influenza A (H1N1) virus strain samples were

measured via both plaque and ED assays, and their concentration in units of PFU, TCID50,

and SIN were compared (Fig 3). Details regarding the samples, and how the plaque and ED

assays were performed are provided in Methods.

The TCID50 concentrations estimated via the RM and SK methods are *1.5–1.7 times

larger (Fig 3C and 3D) than the SIN concentration, and the set of ratios are statistically incon-

sistent with the assumption of equality (p-value: 0.01–0.03). Theoretically, 1 TCID50 is

expected to cause 1.44 infections (= 1/ln(2)) [4]. However, the RM or SK approximations are

known to introduce a bias such that 1 TCID50 estimated by these methods is expected to

cause 1.781 infections (= eγ where γ = 0.5772 is the Euler-Mascheroni constant) [5, 6]. Using

the RM, SK, and SIN measurements presented in Fig 3A and 3B, we confirmed (the mean

log10(ratio) was re-computed for ratio = (RM/1.781)/SIN and (SK/1.781)/SIN, and found to be

0.85–0.93, which is statistically consistent (p-value: 0.1–0.3) with the assumption of equality,

i.e., ratio = 100 = 1.) that 1.781 SIN� 1 TCID50 when the latter is estimated via the RM or SK

approximations, as expected theoretically if SIN is indeed measuring the infection concentra-

tion in a sample.

Similarly, the ratio of the PFU concentration determined via the plaque assay and the SIN

concentrations estimated by midSIN is *0.89–0.93, which is statistically consistent with the

assumption of equality (p-value: 0.2–0.5). These results confirm the theoretical expectation

that 1 PFU� 1 SIN when the plaque and ED assays are performed in the same manner, as was

the case here. This provides further support, via two independent assays, that the SIN concen-

tration estimated by midSIN from the ED assay is a robust measure of the infection concentra-

tion of a virus sample.

Comparing midSIN’s performance to that of the RM and SK methods

The RM and SK methods rely on the number of infected wells decreasing as dilution increases.

Their estimates are affected when the number of infected wells remains unchanged or even

increases as dilution increases, which statistics and experimental data herein (Fig 2) tell us can

reasonably occur experimentally. The RM and SK methods also mostly require that at the
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lowest and highest sample dilutions, all wells be infected and uninfected, respectively. Fig 4

provides a graphical representation of how the RM and SK methods estimate the TCID50 con-

centration from an ED assay. Simply stated, the RM and SK methods use geometric arguments

to estimate the sample dilution at which 50% of wells would be infected. While they are

Fig 3. Comparing SIN to TCID50 and PFU for influenza A virus samples. A,B: The infection concentration in two influenza A (H1N1)

virus strain samples was measured via both an ED assay and a plaque assay (x, PFU). The ED assay was quantified in log10(TCID50) using the

RM (square) or SK (triangle) methods, or in log10(SIN) using midSIN (circle with 68%,95% CI). Each of the 2 strain samples was measured

over 2 separate experiments (Exp. #1, #2), performed each time by 2 different researchers (Researcher A or B), with 5 biological replicates

each. The grey bars indicate the range of log10(SIN) values across the 5 replicates. The RM, SK, and SIN measures were estimated for each

replicate based on the same ED plate. The experimental details are provided in Methods. C,D: The log10 of the ratio between either the

TCID50 via the RM or SK method or the PFU, over the SIN via midSIN. The ratios were computed for each replicate (5 × 5 replicates), per

experiment, per researcher (25 replicates × 2 researchers × 2 experiments = 100 ratios) shown as individual symbols (dots) for each method

(RM, SK, PFU). The mean and 68% CI of the 100 ratios are indicated numerically and as black circles with error bars. The p-value indicates

whether the ratios are statistically different from unity.

https://doi.org/10.1371/journal.pcbi.1009480.g003
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sometimes accurate (Fig 4A and 4B), their simplicity often leads to biased estimates (Fig 4C

and 4D).

In contrast, midSIN is robust to these issues. Fig 5 demonstrates how midSIN can provide

an estimate for the log10(SIN/mL) in a sample using the number of infected wells at a single

dilution, as long as at least one well is uninfected if all others are infected or vice-versa. This is

because midSIN relies on Bayesian inference, i.e., when more than one column is available, it

uses information from each column successively to revise and improve its estimate. This allows

midSIN to correct for even large deviations from theoretical expectations, and thus improves

its accuracy.

Fig 6 illustrates how well the midSIN, RM, and SK methods recover a known input sample

concentration in simulated ED experiments, based on a plate layout consisting of 11 dilutions

(D1 ¼ 10� 2 to D11 ¼ 10� 8), a dilution factor of 1/4, and 8 replicates per dilutions. The infec-

tion concentration estimated by midSIN is in excellent agreement with the input concentra-

tion. For the RM and SK methods, which estimate the log10(TCID50/mL) rather than the

log10(SIN/mL), the agreement is generally poor due to the bias they introduce. Furthermore,

Fig 4. Visualizing TCID50 estimation by the RM and SK methods. A,C: The RM method first smooths the data by taking

the cumulative sum of the number of infected wells from the highest to the lowest dilution, and that of uninfected wells from

the lowest to the highest dilution (grey dashed curve). It then identifies the dilution (vertical solid orange line) corresponding

to the smooth curve’s 50% crossing point (4/8 wells, horizontal grey line) based on the highest dilution with> 50% wells

infected, and the lowest dilution with< 50% wells infected. B,D: The SK method identifies the dilution (vertical dashed green

line) such that the area under the curve to its right (pale red) would exactly fill the area over the curve to its left (pale blue).

The agreement between the true TCID50 (blue plus) and the RM and SK estimates is good for the symmetric ED plate

outcome in (A,B), but poor for the more irregular outcome in (C,D).

https://doi.org/10.1371/journal.pcbi.1009480.g004
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the RM and SK predictions are more variable (wavy pattern), and lose accuracy dramatically

as the sample concentration approaches the limits of detection (the 2 ends) which, for the

example plate layout simulated here, is around 103 SIN/mL and 109 SIN/mL. Interestingly, the

basic calculations behind the RM and SK methods constrain the set of values they can return

(sparsely populated grey histograms), compared to the more continuous range returned by

midSIN, which contributes to its increased accuracy.

Estimate accuracy as a function of plate layout

In Fig 2, we observed that even for large discrepancies between the expected (right panels, blue

curve) and observed (right panels, black dots) ED assay outcome, the uncertainty (CI) of mid-

SIN’s estimate remains relatively unchanged. This apparent robustness is because the uncer-

tainty is primarily determined by the experimental design, namely the change in dilution

between columns (dilution factor) and the number of replicate wells per dilution. Fig 7

explores the impact of varying either only the dilution factor, or only the number of replicates

at each dilution, or varying one at the expense of the other by using a fixed number of wells (96

wells). When using midSIN, smaller changes in dilution (e.g., going from a dilution factor of

2.2/100 to 61/100) or more replicates per dilution (4 to 24) each improves the measure’s accu-

racy (narrower CIs) by comparable amounts, but only when the total number of wells is

allowed to increase to accommodate the change. When the total number of wells used is fixed,

changing one at the expense of the other leaves the accuracy (CI) unchanged. This is somewhat

also true for the log10(TCID50) output concentration estimated by the RM and SK methods.

However, at the smallest dilution factors (10/100 and 2.2/100), the bias introduced by the RM

and SK methods becomes even larger and more unpredictable. For the input concentration

Fig 5. midSIN’s estimate of a sample’s infection concentration based on a single dilution. Simulated example of an ED plate with an inoculation volume of Vinoc =

0.1 mL. Instead of serial dilutions, a single dilution (D1 ¼ 0:01) is used, and either 1, 2 or 3 well(s) out of the 4 replicate wells are infected. As the fraction of infected

wells increases, the uncertainty on the estimate (68% and 95% CIs) decreases, and the posterior distribution becomes more symmetric (Normal-like). Other features

are as explained in the caption of Fig 1. The RM and SK methods cannot provide an estimate for these outcomes.

https://doi.org/10.1371/journal.pcbi.1009480.g005
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considered in Fig 7 (105 SIN/mL), the dilution at which 50% of wells are infected is near the

middle dilution. For sample concentrations such that 50% infected wells occur near or at the

lowest or highest dilution chosen, the effect is even more significant.

Fig 7 also demonstrates that varying the dilution by smaller increments (e.g., a dilution fac-

tor of 61/100 rather than 10/100) provides greater granularity (uniqueness) of ED plate out-

comes, and thus, greater accuracy of the log10 infection concentration estimates. Here, a

distinct plate outcome means a distinct number of infected wells at each dilution, with no

Fig 6. Comparing known input to estimated output concentrations. For each input concentration between 102.2 and

109.4, one million random ED experiment outcomes (# of positive wells in each dilution column) were generated. For

each ED outcome, either A: midSIN was used to determine the most likely log10(SIN/mL); or the B: RM or C: SK

method was used to estimate the log10(TCID50/mL). Vertically stacked grey bands at each input concentration are

sideways histograms, proportional to the number of ED outcomes that yield a given y-axis value. The black curves join

the median (thick), 68th (thin) and 95th (dashed) percentile of the histograms, determined at (but not between) each

input concentration. A plate layout of 11 dilutions, with 8 replicates per dilution, an inoculum volume of Vinoc = 0.1

mL, serial dilutions from D1 ¼ 10� 2 to D11 ¼ 10� 8, separated by a dilution factor of 10−0.6� 1/4 were used in the

simulated ED experiments.

https://doi.org/10.1371/journal.pcbi.1009480.g006
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distinction as to exactly which of the replicate wells (e.g., the second versus the fourth) is

infected at each dilution. An ED plate with serial dilutions ranging over 6 orders of magnitude

(e.g., 10−2 to 10−7), with 4 different dilutions and 24 replicates/dilution (i.e., dilution factor of

2.2/100) provides *106 ([24 + 1]4) possible, distinct ED plate outcomes (Fig 7C, 7F and 7I,

leftmost histogram). In contrast, a plate with the same serial dilution range, but with 24 differ-

ent dilutions and 4 replicates/dilution (i.e., dilution factor of 61/100) yields *1017 ([4 + 1]24)

Fig 7. Comparing the effect of the dilution factor and number of replicates per dilution. The effect of either A,D,G: decreasing the change in

dilution (from a dilution factor of 2.2/100 to 61/100) while keeping 8 replicates per dilution; or B,E,H: increasing the number of replicates per dilutions

(4 to 24) while keeping a fixed dilution factor (� 35/100); or C,F,I: increasing the dilution factor while decreasing the number of replicates, keeping a

fixed number of 96 wells used in total to titer one virus sample. Different rows represent the ratio of the estimated output concentration using (A–C)

midSIN in SIN/mL, (D–F) RM or (G–I) SK in TCID50/mL, and the input concentration. In all cases (A–I), the input concentration was 105 SIN/mL,

and as the dilution factor was varied, the highest and lowest dilutions in the simulated ED plate were held fixed to D1 ¼ 10� 2 and Dlast ¼ 10� 7,

respectively, by changing the total # of dilutions performed (simulated). Everything else is generated, computed, and represented visually as described in

the caption of Fig 6.

https://doi.org/10.1371/journal.pcbi.1009480.g007
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distinct outcomes (Fig 7C, 7F and 7I, rightmost histogram). More generally, [reps + 1]dils is the

number of distinct plate outcomes for a chosen number of dilutions (dils) and replicates

(reps). Having fewer possible plate outcomes means that a larger range of concentrations

would share the same most-likely ED plate outcome, yet each plate outcome only maps to one

(the most likely) concentration estimate. This means that with fewer dilutions, the concentra-

tion estimate is forced to take on the nearest possible value it can take (Fig 7, the next closest

grey band in the stack), and the accuracy of the concentration estimate is therefore reduced. So

although having a greater number of dilutions is more labour intensive, it should be preferred

over having a greater number of replicates per dilution.

Discussion

We have introduced a new calculator tool called midSIN to replace the Reed-Muench (RM)

and Spearman-Kärber (SK) calculations to quantify the infectivity of a virus sample based on

an endpoint dilution (ED) assay. Rather than estimating the TCID50 of a virus sample, midSIN

calculates the number of infections the sample will cause, reported in units of specific infec-

tions (SIN). It does so without requiring any changes to current ED assay protocols, and can

be accessed for free via an open-source web-application (https://midsin.physics.ryerson.ca).

Importantly, because the SIN of a virus sample corresponds to the number of infections it will

cause, it can be used directly to determine what dilution of the sample will achieve the desired

multiplicity of infection (MOI).

Using a combination of in vitro and simulated experimental data, we demonstrated that

midSIN provides more accurate and robust estimates than the biased RM and SK approxima-

tions. We confirmed that the RM and SK approximations overestimate the TCID50 by 23.5%,

such that 1 TCID50 estimated by these methods will cause 1.781 rather than 1.44 infections [5,

6]. While, in theory, the intended MOI can be obtained by multiplying the TCID50 by 0.7 (or

rather ln(2) = 0.693), one should instead multiply by 0.561 to account for the overestimation

by RM and SK. Even when accounting for the overestimation, we showed that these methods

perform particularly poorly when too few replicate wells per dilutions are used or when the

change in dilution is large between successive serial dilutions. The two methods perform espe-

cially poorly when quantifying samples whose infection concentration approaches, but is still

well within, the detection limit of the ED assay. In such cases, the bias introduced by these

methods becomes even larger and more significant. For example, if the minimum and maxi-

mum dilutions of an ED plate are 10−2 and 10−8, virus samples with a concentration less than

102.2 SIN or greater than 107.6 SIN per inoculated well volume (typically 0.1 mL), will see their

concentration estimated with an even larger bias by the RM and SK methods.

Using midSIN to measure the infectivity of a virus sample based on an ED assay does not

require any change to ED experimental protocols and methods currently in use in one’s labo-

ratory (e.g., dilution factor, replicate per dilution, minimum dilution). Indeed, we demon-

strated that midSIN can estimate a virus sample’s SIN concentration based on even just a

single dilution, as long as replicate wells at that dilution are not all infected or all uninfected.

For a given number of ED wells used to titrate the sample and fixed minimum and maximum

dilutions (ED detection range), we showed that having smaller changes between dilutions

should be favoured over more replicates at each dilution. For example, using 11 dilutions, with

a 4-fold dilution factor between dilutions and 8 replicate wells per dilution uses up 88 wells,

leaving 8 wells of a 96-well plate for controls. This ED plate design, analyzed using midSIN,

accurately measures virus sample concentrations ranging over *6 orders of magnitude (e.g.,

[101–107] SIN/mL, or [106–1012] SIN/mL, etc.) with an accuracy of *1.6-fold (×10±0.2, 95%

CI). In comparison, using 7 dilutions, with a 10-fold dilution factor, and 4 replicates (which
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uses 28 rather than 88 wells) would also span 6 orders of magnitude, but with an accuracy of

*3.2-fold (×10±0.5, 95% CI). To put these 2 accuracies in perspective: 1 mL of a sample mea-

sured to contain 10 SIN/mL, is expected to yield either 6–16 or 3–31 infections 95% of the

time, given an accuracy of either ×10±0.2 or ×10±0.5 SIN/mL, respectively. Such an important

decrease in accuracy means a reduced ability to detect experimental changes as statistically sig-

nificant, with the ×10±0.5 accuracy requiring a >10-fold change for statistical significance. Fail-

ing to identify a change as statistically significant as part of a study is far more costly than

using more wells for each sample to increase measurement accuracy, and thus the statistical

power of the study.

The midSIN-estimated SIN obtained from an ED assay was also compared to the PFU

from a plaque assay for a set of influenza A virus samples. When the plaque and ED assays are

performed as identically as possible (cell type, incubation time, etc.), as was the case here, 1

SIN� 1 PFU. This demonstrates that indeed midSIN’s SIN is a measure of the number of

infections a virus sample will cause. However, the plaque and focus forming assays have exper-

imental limitations (time required, sensitivity of target cells to overlay, limited to viruses that

cause CPE, subjectivity in counting plaques/foci, etc.) that cause many researchers to titrate

virus using ED assays. Indeed midSIN’s SIN is a measure of the number of infections a virus

sample will cause, and estimating the SIN concentration of a virus sample using data from ED

assays is accessible, accurate, and predictive.

The work herein focused on the virus sample infectivity estimated from an unmodified ED

assay. In principle, further improvements in accuracy could be achieved through the use of

machine-automated scoring of infected wells using fluorescence intensity or colorimetry. Plate

readers can be quite expensive, as are the consumable compounds they require, such as fluo-

rescent antibodies, or antibodies loaded with compounds that can precipitate in the presence

of another (colorimeter). In contrast, staining with crystal violet, trypan blue, etc. is an inex-

pensive and efficient way to identify the widespread cellular pathogenic effect of infection by a

lytic virus, as are red blood cells to identify the presence of notable virus concentration in the

supernatant of a well infected with a hemagglutination-capable virus. Since the aim of the ED

assay is merely to establish whether or not infection occurred, the scoring of a well as having

been infected or not, even when done visually, is likely less ambiguous. Therefore, in future

work, it would be interesting to compare human- vs machine-scoring of wells to evaluate this

step’s contribution to the accuracy of the measure obtained.

Beyond the work presented herein, the development of midSIN will continue online as we

implement new features and inputs for integration with various colorimetric and fluorescence

instruments. The ease of use of midSIN and the greater usefulness and relevance of SIN as a

measure of a virus sample’s infectivity make them far superior to the TCID50, and other ID50

measures. We hope to see them adopted widely.

Methods

The mathematics of the dose-response assay

Considering a single well. Consider a virus sample of volume Vsample which contains an

unknown concentration of infectious virions, Cinf, which we aim to determine. Drawing a

small volume, Vinoc < Vsample, from the sample of volume Vsample, is analogous to drawing

balls out of a bag containing green and yellow balls, and considering green balls a success, and

yellow ones a failure. It is a series of Bernoulli trials where
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n = Vinoc/Vvir is the number of draws, i.e., the number of virion-size volumes (Vvir) drawn

from the sample to form the inoculum volume (Vinoc), analogous to the number of balls

drawn.

k is the number of successes, i.e., the number of infectious virions drawn from the sample to

form the inoculum, analogous to the number of green balls drawn.

p is the probability of success, i.e., the fraction of virion-size volumes in the sample that are

occupied by infectious virions, analogous to the probability of drawing a green ball.

The probability of success, p, is related to the concentration of infectious virus in the sam-

ple, Cinf, as

p ¼
Number of virions in sample

Number of virion-size volumes in the sample
¼

CinfVsample

Vsample=Vvir
¼ CinfVvir;

where Cinf is the quantity we aim to estimate. Unlike the ball analogy where it is easy to count

how many green balls k were drawn, after having drawn n virion-size volumes from the sample

into our inoculum, we cannot count how many infectious virions were drawn into the inocu-

lum. However, if this inoculum is deposited onto a susceptible cell culture, we can observe

whether or not infection occurs, and this would indicate that the inoculum contained at least

one or more infectious virions. Note that, as explained in the Introduction, even a productively

infectious virion, i.e., one capable of completing the full virus replication from attachment to

progeny release, might not result in a productive infection. As such, from hereon, Cinf is used

to designate the concentration of specific infections in the sample, which is smaller or equal to

the concentration of infectious virions, i.e., measures the subset of the infectious virions.

Having deposited the inoculum into one well of the 96-well plate of our ED experiment, the

likelihood that the well will not become infected, qnoinf, corresponds to the likelihood of having

drawn k = 0 infectious virions (or rather, specific infections) out of the n virion volumes that

make up our inoculum, namely

qnoinf ¼ Binomialðk ¼ 0jn ¼ Vinoc=Vvir; p ¼ CinfVvirÞ

¼
n!

0!ðn � 0Þ!
p0ð1 � pÞn� 0

¼ ð1 � pÞn

qnoinf ¼ ð1 � Cinf VvirÞ
Vinoc=Vvir

ð1Þ

where qnoinf can be simplified by realizing that

lnð1 � xÞ ¼jxj<1
� x �

x2

2
�
x3

3
� . . . �

jxj�1

� x

lnðqnoinfÞ ¼
Vinoc

Vvir
lnð1 � Cinf VvirÞ �

Vinoc

Vvir
ð� Cinf VvirÞ ¼ � Cinf Vinoc :

As such,

qnoinf ¼ ð1 � Cinf VvirÞ
Vinoc=Vvir � exp½� Cinf Vinoc� ð2Þ

where qnoinf and (Cinf Vvir) 2 [0, 1] because Cinf = Nvir/Vsample and the number of specific infec-

tions in the sample, Nvir, is at a minimum zero, and at most the maximum number of virion-

size volumes that can physically fit in the sample volume, namely Vsample/Vvir. As such, the

maximum possible infection concentration, given a sample of volume Vsample, is Cinf = (Vsam-

ple/Vvir)/Vsample = 1/Vvir, and Cinf 2 [0,1/Vvir].
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Considering replicate wells at a given dilution. The ED assay is based on serial dilutions

of the sample, with each dilution separated by a fixed dilution factor. We define the dilution

factor 2 (0,1) as the fraction of the inoculum volume drawn from the previous dilution. For

example, if the inoculum for a well, Vinoc = 100 μL, comprises 10 μL drawn from the previous

dilution and 90 μL of dilution media, the dilution factor is 10/100 = 0.1. If the serial dilution

begins with a dilution of D1 ¼ 0:2, then the following dilution will be D2 ¼ 0:02. In Eq (1),

the dilution under consideration, Di, will affect n, the number of virion-sized volumes drawn

from the sample and deposited into the wells of the ith dilution, such that now

n ¼ DiVinoc=Vvir. Therefore, the probability that a well at the ith dilution will not become

infected is given by

qi � qDi
noinf ¼ ð1 � CinfVvirÞ

DiVinoc=Vvir � exp½� CinfVinocDi� ð3Þ

where 1 − qi is the probability of infection for a well at the ith dilution, where Di 2 ½0; 1�.

When conducting an ED assay, each dilution in the assay contains a number of indepen-

dent infection wells (replicates), all inoculated with the same dilution, Di. This is analogous

again to drawing balls out of a bag, but this time there are ni draws (replicate wells), and the

probability of success (i.e., that a well becomes infected) is simply one minus the probability of

failure (i.e., that a well does not become infected, qi). The probability that ki out of the ni wells

become infected at dilution Di, is described by the Binomial distribution

Binomialðk ¼ kijn ¼ ni; p ¼ 1 � qiÞ ¼
ni!

ki!ðni � kiÞ!
ð1 � qiÞ

ki qni � kii / ð1 � qDi
noinfÞ

ki qDiðni � kiÞ
noinf

where ni is the number of replicate wells at each dilution, but could be less if any well at dilu-

tion Di are spoiled or contaminated.

However, our interest is not in determining k1 given qnoinf, but rather in determining qnoinf

given that we observed k1 infected wells out of n1 wells in the first column. To this aim, we can

make use of Bayes’ theorem which, in our context, can be expressed as

PðpjdataÞ ¼
PðdatajpÞ PðpÞ

R 1

0
PðdatajpÞPðpÞ dp

or rather

Ppost;1ðqnoinf jk1Þ ¼
Pðk1jqnoinfÞ PpriorðqnoinfÞ

R 1

0
Pðk1jqnoinfÞPpriorðqnoinfÞ dqnoinf

¼
½ð1 � qD1

noinfÞ
k1 qD1ðn1 � k1Þ

noinf �PpriorðqnoinfÞ
R 1

0
Pðk1jqnoinfÞPðqnoinfÞ dqnoinf

Ppost;1ðqnoinf jk1Þ / ½ð1 � qD1

noinfÞ
k1 qD1ðn1 � k1Þ

noinf �PpriorðqnoinfÞ

where Ppost;1ðqnoinf jk1Þ is our updated, posterior belief about qnoinf after having observed k1 suc-

cesses out of n1 trials in the first column (i = 1), and given our prior belief, PpriorðqnoinfÞ, about

qnoinf before making this observation.

Considering all dilutions of the ED assay. As mentioned above, in the 96-well ED assay,

each dilution contains a number of independent infection wells (replicates) inoculated with

the same sample concentration. This process is then repeated over a series of dilutions, each

separated from the previous by a fixed dilution factor. Having observed the fraction of wells

infected at the first dilution considered, D1, we have updated our posterior belief about qnoinf.

We will now use this updated belief as our new prior as we observe our second dilution (D2),
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such that

Ppost;2ðqnoinf j~k2Þ / Pðk2jqnoinfÞ Ppost;1ðqnoinf jk1Þ

Ppost;2ðqnoinf j~k2Þ / ½ð1 � qD2

noinfÞ
k2 qD2ðn2 � k2Þ

noinf � ½ð1 � qD1

noinfÞ
k1 qD1ðn1 � k1Þ

noinf �PpriorðqnoinfÞ

Ppost;2ðqnoinf j~k2Þ / Qð~k2jqnoinfÞPpriorðqnoinfÞ ;

where we introduce~k2 ¼ fk1; k2g and

Qð~k2jqnoinfÞ ¼ ½ð1 � qD2

noinfÞ
k2 qD2ðn2 � k2Þ

noinf � ½ð1 � qD1

noinfÞ
k1 qD1ðn1 � k1Þ

noinf �

as short-hands for convenience. From this, it is easy to extrapolate the posterior distribution

after having observed all J dilutions (D1;D2; . . . ;DJ) of the ED assay, namely

Ppost;Jðqnoinf j~kJÞ / Qð~kJjqnoinfÞPpriorðqnoinfÞ ð4Þ

where

Qð~kJ jqnoinfÞ ¼
YJ

j¼1

ð1 � qDj
noinfÞ

kj

" #

q
PJ

j¼1
Djðnj � kjÞ

noinf : ð5Þ

Note that this expression is largely equivalent to that obtained by Mistry et al. [8] in the con-

text of estimating the TCID50 of a virus sample, and by many others in the broader context of

infection dose quantification [12, 13].

Considering the choice of prior. In Eq (4), we obtained a posterior for qnoinf. Our objec-

tive, however, is to estimate the posterior distribution for Cinf, the specific infection concentra-

tion in our sample, rather than qnoinf. In fact, because both the plaque and ED assays provide

an accuracy that is normally distributed in log10(Cinf) rather than Cinf, it follows that log10(Cinf)

(hereafter ℓCinf) rather than Cinf is the quantity of interest. We note that Qð~kJjqnoinfÞ in Eq (4) is

a probability density function in~kJ ¼ fk1; k2; . . . ; kJg, rather than in qnoinf. As such, a change

of variables from qnoinf to ℓCinf would affect only the prior, because

Qð~kJjqnoinfÞ ¼ Qð~kJjqnoinfð‘CinfÞÞ ¼ Qð~kJ j‘CinfÞ. Thus, the posterior distribution for ℓCinf is

given by

Ppost;Jð‘Cinf j
~kJÞ / Qð~kJjqnoinfð‘CinfÞÞ Ppriorð‘CinfÞ : ð6Þ

To complete this expression, we need to choose a physically and biologically appropriate

prior belief regarding ℓCinf. Prior to conducting the ED assay, we know at least that Cinf 2 [1/

VEarth,1/Vvir], where 1/Vvir is the maximum possible concentration, namely that if the entire

volume of the sample is constituted solely of infectious virions, and 1/VEarth is the minimum

possible concentration, namely that if there was only one infectious virion left on Earth. As we

explain below, these limits are not important; only the fact that they are convincingly physi-

cally bounded both from above and below, i.e., 2 (0,1), is relevant.

If we choose our prior to be uniform in Cinf 2 [1/VEarth,1/Vvir], namely

PpriorðCinfÞ ¼ 1=ð1=Vvir � 1=VEarthÞ � Vvir, and using the fact that

PpriorðCinfÞ dCinf ¼ Ppriorð‘CinfÞ d‘Cinf , we can write

Ppriorð‘CinfÞ ¼ PpriorðCinfÞ
dCinf

d‘Cinf
¼ Vvir

d½10‘Cinf �

d‘Cinf
¼ Vvir lnð10Þ10‘Cinf / 10‘Cinf
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which yields

Ppost;Jð‘Cinf j
~kJÞ / Qð~kJjqnoinfð‘CinfÞÞ 10‘Cinf : ð7Þ

We see here that the range chosen for the uniform prior in Cinf is not important because it

only contributes a constant to our proportionality Eq (6).

Alternatively, because the ED assay estimates ℓCinf rather than Cinf, our prior belief

about the virus concentration is more appropriately expressed in ℓCinf rather than Cinf.

Again, the bounds of the uniform distribution in ℓCinf is unimportant, provided that it is

finite in extent such that ‘Cinf 2 ‘Cinf min ; log10
1=Vvirð Þ

h i
where ‘Cinf min > � 1, such that we

can write

Ppost;Jð‘Cinf j
~kJÞ / Qð~kJjqnoinfð‘CinfÞÞ : ð8Þ

Fig 8 illustrates the two distinct priors assumed to arrive at Eqs (7) and (8) and their impact

on the posterior Ppost;Jð‘Cinf j
~kJÞ for the example ED experiment described in Fig 1. Fig 8A illus-

trates the consequence of choosing a prior uniform in Cinf, i.e., a bias towards higher virus con-

centrations. This is because a uniform prior in Cinf corresponds to a belief that one is as likely

to measure a set of virus concentrations in the range [0.001, 0.002] as in the range [1,000,

000.001, 1, 000, 000.002]. When plotted on a log-scale, there are 100× more intervals of width

0.001 in [104, 105] than in [102, 103]. Thus, this prior corresponds to a belief that the likelihood

of measuring a certain virus concentration increases exponentially as ℓCinf increases linearly.

In contrast, a prior uniform in ℓCinf corresponds to a belief that one is as likely to measure a set

of virus concentrations in the range [0.001, 0.002] as in the range [1, 000, 000, 2, 000, 000], or

rather in the range [1, 2] × 10−3 as in the range [1, 2] × 106. As such, a uniform distribution in

ℓCinf is more physically and biologically sensible and therefore was chosen for our estimation

method.

Fig 8. Impact of the choice of prior on the posterior distribution for ℓCinf. A: Non-normalized priors for log10(specific

infections, SIN/mL) = ℓCinf that are uniform in either Cinf or ℓCinf are shown. A prior uniform in Cinf is biased towards larger

values of ℓCinf. B: Updated posterior belief about ℓCinf for each of the two prior beliefs shown in A, as per Eqs (7) and (8), after

having observed the ED assay example provided in Fig 1. While the prior uniform in Cinf yields a posterior with a mode of

ℓCinf = 6.21, that for a prior uniform in ℓCinf yields a mode of ℓCinf = 6.18.

https://doi.org/10.1371/journal.pcbi.1009480.g008
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Calculation of midSIN’s outputs

One of the graphical outputs of midSIN is the non-normalized posterior distribution of ℓCinf

given the number of wells that were infected at each dilution,~kJ , like that shown in Fig 1(left

panel), computed as

Upostð ‘Cinf j
~kJ Þ ¼

YJ

j¼1

nj!

kj! ðnj � kjÞ!
� pkjj � ð1 � pjÞ

nj � kj
ð9Þ

where

pj ¼ 1 � exp½ � 10‘Cinf � Vinoc �Dj � : ð10Þ

While Upost is not the normalized posterior distribution for ℓCinf, its maximum value at its

mode (‘Cinf ;mode) is the normalized probability of observing this particular ED plate outcome

(~kJ) out of all other possible plate outcomes, assuming the true, specific infection concentra-

tion in the sample is ‘Cinf ;mode .

Another visual output of midSIN is a graphical representation of the theoretical number of

wells that would be infected given the most likely ℓCinf, like that shown in Fig 1(right panel). It

is computed following

Nwells infectedðxÞ ¼ Nwells total½1 � expð� 10‘Cinf ;mode Vinoc 10� xÞ� ; ð11Þ

where x is the log10 of the dilution such that D ¼ 10� x is the dilution. It corresponds to the

continuous equivalent of this quantity which is discrete in the ED assay, namely Di ¼ 10� xi

which is the ith dilution of the sample. As such, Di ¼ ðminimum dilutionÞ �
ðdilution factor between columnsÞi� 1

where i 2 [1, J]. For example, if the dilution of the least

diluted column is 0.1 = 10−1 and the dilution factor between dilutions in the ED assay is such

that it halves the concentration between each dilution, i.e., 1=2 ¼ 2� 1 ¼ 10� log10ð2Þ � 10� 0:301,

then Di ¼ 10� 1 � 10� 0:301�ði� 1Þ such that D1 ¼ 10� 1, D2 ¼ 10� 1:301, D3 ¼ 10� 1:602, and so on,

such that x1 = 1, x2 = 1.301, x3 = 1.602, and so on.

In the graphical representation of the ED assay, the edges of the grey bands flanking the the-

oretical blue curve correspond to Eq (11) wherein ‘Cinf ;mode has been replaced by the 68% and

95% CI values for ℓCinf. These CI bands do not correspond to the 68% and 95% CI of the

expected number of infected wells at each dilution given ‘Cinf ;mode .

The sample dilution corresponding to 1 TCID50 estimated based on the biased RM and SK

approximations (right panels) are converted to SIN (left panels) based on 1 TCID50 = eγ=0.5772

SIN = 1.781 SIN [5, 6]. In contrast, the log10(SIN/mL) computed by midSIN can be converted

to a true (unbiased) estimate of log10(TCID50) using 1 TCID50 = 1/ln(2) SIN = 1.44 SIN [4].

Infection concentration measures of influenza A virus samples

Cell culture. Madin-Darby canine kidney cells (MDCKs) were cultured in growth media

(complete MEM media with 5% heat-inactivated FBS), in tissue culture treated T75 flasks, at

37˚C with 5% CO2 and 95% relative humidity. Cells were split 1/10 every 3–4 days or upon

reaching approximately 95% confluency. One passage of cells was expanded for use by both

researchers in one experiment to quantify the 50% tissue culture infectious dose (TCID50) and

plaque forming units (PFU) of one viral strain.

Viral stocks. Stocks of influenza A/Puerto Rico/8/34 (H1N1) (PR8) and influenza A/Cali-

fornia/4/09 (Cali/09) were stored at -80˚C and thawed on ice immediately before use. The
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TCID50 and PFU of stock viruses was known to both researchers prior to this study. Serial

dilutions were made in MDCK infection media (complete MEM media with 4.25% BSA) and

dilutions were made by each researcher independently for titering. ‘Researcher A’ and

‘Researcher B’ independently performed the TCID50 and PFU assays of one viral strain for one

experiment on the same day using the same viral stock, reagents, and passage of cells. Each

experiment was performed on a separate day (Fig 3).

Plaque assay. MDCKs were seeded in six-well plates (5.5 × 105 cells/mL, 2 mL/well) and

grown to 90% confluency overnight (37˚C, 5% CO2, 95% relative humidity). Each six-well

plate contained 10-fold serial dilutions plated in singlet as well as a negative control and five

6-well plates were carried out per experiment. Cells were washed twice with PBS containing

Ca2+Mg2+ (PBS w/ Ca2+Mg2+) (Gibco), before the addition of 500 μL of viral dilutions per

well. After 1 h at room temperature on a rocker, the inoculum was aspirated, cells were washed

with PBS w/ Ca2+Mg2+, and gently covered with 2 mL of agarose overlay (complete media,

4.25% BSA, 0.9% agarose, 1 μg/mL TPCK-Trypsin). After drying the overlay at room tempera-

ture, plates were inverted and incubated (37˚C, 5% CO2, 95% relative humidity) for 3 d (PR8)

or 4 d (Cali/09). Plaques were visualized by staining cells with 0.1% crystal violet solution in

37% formaldehyde for 30 min and counted by ‘Researcher A’ or ‘Researcher B’ on their respec-

tive experiments (Fig 3).

TCID50 assay. MDCKs were seeded in 96-well flat bottom plates (5 × 104 cells/100 μL,

100 μL/well) and grown to 80% confluency overnight (37˚C, 5% CO2, 95% relative humidity).

For each experiment, 4 replicate wells, at each of 7 different dilutions separated by a 10-fold

dilution, were infected, and the dilution series was performed 5 times. Cells were washed with

PBS w/ Ca2+Mg2+ before the addition of 100 μL of viral dilutions per well. After 1 h at room

temperature on a rocker, the inoculum was aspirated and replaced with 100 μL of infection

media containing 1 μg/mL TPCK-Trypsin. Cells were incubated (37˚C, 5% CO2, 95% relative

humidity) for 3 d (PR8) or 4 d (Cali/09). Supernatants from each of the MDCK-containing

wells were transferred to a matching well in a 96-well U-bottom plate in the same configura-

tion, and mixed with chicken red blood cells (30 min, room temperature). This enabled us to

score each of the original MDCK-containing wells as either positive or negative for infection,

based on whether their supernatant caused hemagglutination. This was performed and read by

‘Researcher A’ or ‘Researcher B’ on their respective experiments.

Statistical analysis. The data points reported in Fig 3C and 3D were computed by taking

each of the 5 replicates measured with either the PFU, RM, or SK and the 5 replicates measured

via SIN (5 replicates × 5 replicates = 25 pairs) for each of the 2 experiments by each of the 2

researchers, yielding 100 pairs. For each pair, the log10 of ratio of either PFU, RM or SK over

SIN was computed. The mean and standard deviation of the resulting 100 log10(ratio) were

computed and are reported in Fig 3C and 3D. The statistical significance (p-value) of the dif-

ferences between (PFU,RM,SK) and (SIN) was computed using the Mann-Whitney U test

(scipy.stats.mannwhitneyu).
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