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1  | INTRODUC TION

Metformin is the most popular first-line drug for treating type 2 
diabetes.1 As an effective hypoglycaemic agent, one of its main 

glucose-lowering mechanism has been proposed to suppress hepatic 
glucose production via the activation of AMPK, a master regulator of 
both glucose and lipid metabolisms, and other pathways.2,3 Besides, 
AMPK-independent mechanisms have also been established, 
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Abstract
Recently, the first-line anti-diabetic drug metformin shows versatile protective ef-
fects against several diseases and is potentially prescribed to healthy individual for 
prophylactic use against ageing or other pathophysiological processes. However, 
for healthy individuals, it remains unclear what effects metformin treatment will in-
duce on their bodies. A systematic profiling of the molecular landscape of metformin 
treatment is expected to provide crucial implications for this issue. Here, we deline-
ated the first transcriptomic landscape induced by metformin in 10 tissues (aorta, 
brown adipose, brain, eye, heart, liver, kidney, skeletal muscle, stomach and testis) of 
healthy mice by using RNA-sequencing technique. A comprehensive computational 
analysis was performed. The overrepresentation of cardiovascular disease-related 
gene sets, positive correlation with hypertension-related transcriptomic signatures 
and the associations of drugs with hypertensive side effect together indicate that 
although metformin does exert various beneficial effects, it would also increase the 
risk of hypertension in healthy mice. This prediction was experimentally validated 
by an independent animal experiments. Together, this study provided important 
resource necessary for investigating metformin's beneficial/deleterious effects on 
various healthy tissues, when it is potentially prescribed to healthy individual for pro-
phylactic use.
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including but not limited to AMP-dependent fructose-1-6-bisphos-
phatase inhibition4 and redox-dependent mitochondrial glycer-
ol-3-phosphate dehydrogenase inhibition.5 Recently, metformin 
has been demonstrated to have versatile protection against many 
complex diseases beyond diabetes. For example, the hypoglycae-
mic and hypolipidemic effects of metformin also contribute to the 
risk reduction of cardiovascular diseases as evidenced by animal 
models.6 Clinical trial supports the protective effects of metformin 
against cardiovascular diseases like myocardial infarction in diabetic 
patients.7,8 Moreover, metformin also inhibits several oncogenic 
pathways, and therefore, it has been suggested for the treatment 
of various cancers.9-12 Indeed, novel usage of metformin against 
diseases like polycystic ovary syndrome,13 neurodegenerative dis-
eases,14 lung fibrosis,15 multiple sclerosis 16 and fragile X syndrome17 
have been continuously proposed, with novel mechanism-of-action 
proposed like exerting its anti-cancer effect through mTOR regu-
lation18 and anti-inflammatory effect through IKKβ suppression,19 
highlighting metformin as one of the top versatile drugs in the field.

Recently, metformin has been reported to have anti-ageing 
effects in animal studies.20-22 A clinical trial which aimed at vali-
dating the anti-ageing effects of metformin had also been newly 
launched.23 However, this novel proposal of metformin usage also 
signifies that the extensive investigations are needed to evaluate 
the impact of long-term usage of metformin on healthy individual. 
Metformin is widely distributed to a variety of tissues after intake24 
and therefore may elicit unexpected deleterious effects in these tis-
sues. For example, the maternal exposure of metformin interferes 
the development of offspring's testis in normal mice.25 Indeed, con-
cerns about the metformin's influence on offspring during polycystic 
ovary syndrome treatment has been aroused in clinical studies.26 
Moreover, metformin's action is context-dependent.27 For exam-
ple, it has been reported that metformin exerts beneficial effects 
on breast cancer only in patients with metabolic syndrome but not 
in those without.28 In addition, the dual-roles of AMPK signalling 
on cancer cells’ metabolism and growth have also been observed. 
Beyond inhibiting tumour cell growth, AMPK activation would also 
promote tumour cell growth by maintaining NADPH level under en-
ergy stress.29 Metformin has considerable influence on the compo-
sition of gut microbiota,30 and its therapeutic effect would be partly 
attributed to its effect on gastrointestinal tract and gut microbiota.31 
However, the underlying mechanisms are complicated and involve 
gut-oriented factors like FXR,32 and its impact on gut microbiota 
is clearly context-dependent, varying among different treatment 
conditions or settings.30,32,33 Collectively, these findings suggested 
that although metformin has beneficial effects in many pathophys-
iological processes such as diabetes and cancers, it may also cause 
unexpected deleterious effects in physiological condition. Due to its 
versatile protective effects on many diseases and anti-ageing poten-
tials, metformin might be prescribed to healthy individual for prophy-
lactic use or for lifespan prolonging purpose.23,34 Long-term clinical 
investigation with respect to metformin's diabetes prevention effect 
on high-risk population like Diabetes Prevention Program Outcomes 
Study has been performed.35 One latest small-scale clinical trial has 

stepped further to evaluate the potentials of metformin, together 
with other treatment, for anti-ageing purpose on old population 
and observed positive effects on reversing aging-related markers.36 
However, another latest investigation has again raised the concern 
about the context-dependent effect of metformin for anti-ageing 
settings, where the metformin's effect is significantly modified due 
to the aerobic exercise training in older adults.37 Indeed, it remains 
largely unknown about the effects, particularly the unexpected del-
eterious effects of long-term metformin treatment on healthy body 
and tissues. Which molecules will be influenced by metformin? How 
will these molecules change? What outcomes would be resulted 
from these changes? The answers to all these important questions 
are still unknown and thus should be emergently addressed.

To answer these questions, molecular landscape profiling, espe-
cially transcriptomic profiling, could be an efficient way. For exam-
ple, calorie restriction is the most validated anti-ageing factor.21 By 
comparing the mouse liver and skeletal muscle transcriptomes after 
metformin treatment, with those after calorie restriction, the similar 
anti-ageing effect of metformin has been suggested and further ex-
perimentally validated.21 However, current available transcriptome 
data about metformin are performed under pathophysiological 
conditions such as obesity and diabetes. Furthermore, these tran-
scriptome data often cover very few tissues. To date, no system-
atic transcriptome profiling of the normal tissues after metformin 
treatment is currently available, which limits the evaluation of the 
potential beneficial and deleterious effects of metformin treat-
ment on healthy tissues. In the current study, normal healthy mice 
had been orally treated with moderate dose of metformin for one 
month, and then the transcription profiles in 10 metformin-treated 
tissues had been determined using high throughout RNA sequenc-
ing. Computational models had been further developed to predict 
both the beneficial and deleterious effects of metformin in 10 tis-
sues based on the transcription profiles, highlighting the risk for 
inducing unexpected diseases in normal mice. The predictions for 
metformin-induced hypertension and cardiac hypertrophy and in 
healthy mice were further validated by independent animal exper-
iments. Overall, the transcriptome data delineated a landscape of 
metformin-induced molecular profiles in healthy condition and the 
findings provided a useful resource for interrogating the potential 
effects of long-term metformin usage in healthy human beings.

2  | MATERIAL AND METHODS

2.1 | Experimental animal details

Eight-week-old male/female C57BL/6 and old male mice (60-
62 weeks) were fed on normal diet under the condition of constant 
temperature of 25°C. The mice were randomly divided into the 
experimental and control groups. Metformin hydrochloride tab-
lets (Glucophage, 0.5  g/tablet, manufactured by Sino-American 
Shanghai Squibb Pharmaceuticals Ltd.) were dissolved in double-
distilled water to the concentration of 30 mg/mL. Generally, when 
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metformin was used to treat animals, the daily dosage varied from 
100 to 600 mg/kg bodyweight.38-40 In the current study, the experi-
mental group of mice were orally administrated by metformin at the 
daily dosage of 300  mg/kg bodyweight for one or three months, 
whereas the control group of mice were orally administrated with 
the same volume of double distilled water. According to the previous 
researches, it has been suggested that the effect of the standard 
dose of metformin used in humans for the treatment of type-2 dia-
betes (~20 mg/kg) is equivalent to that of the ~250 mg/kg dose used 
in mice, despite the absolute dose in mice is considerably higher than 
the dose in humans.41

2.2 | High-throughput transcriptome profiling

After 30 days of treatment, the mice were anesthetized via pento-
barbital injection, killed and the tissues were harvested, flash frozen 
on dry ice. Total RNA was extracted by using Qiagen RNeasy kit, 
prepared with Illumina TruSeq Stranded Total RNA Library Prep kit 
under the manufacturer's guideline. RNA libraries were prepared 
for sequencing using standard Illumina protocols and sequenced by 
Illumina HiSeq 2500 platform (provided by BerryGenomics).

Raw reads were trimmed for adaptor sequence and masked for 
low-complexity or low-quality sequence, including those contain-
ing more than 10% of unknown nucleotides or more than 50% of 
low-quality (ie Q-value no larger than 20%) bases and then were fil-
tered against rRNA database to remove potential rRNA contamina-
tion. Reads that passed the above filtration and quality control were 
mapped to GRCm38 genome (Ensembl release 84) by TopHat2 soft-
ware (https://ccb.jhu.edu/softw​are/tophat, version 2.1.1) with cus-
tom parameters “-g 1 -r 50 --mate-std-dev 80 --no-coverage-search 
--phred64-quals --keep-fasta-order”. Gene abundances were quan-
tified by RSEM software (http://dewey​lab.github.io/RSEM, version 
1.2.19) with the recommended command line parameters in the pub-
lished protocol. The gene expression level was normalized by using 
the fragments per kilobase of transcript per million mapped reads 
(FPKM) method, where the number of fragments mapped to the 
specific gene was normalized by the total number of fragments that 
mapped to reference genes and the number of bases on this gene.

2.3 | Transcriptome profile comparisons

The transcriptome profiles (FPKM normalized expression values) 
were clustered by hierarchical clustering method and principle com-
ponent analysis (PCA) by using the hclust and pca functions of R 
(https://www.r-proje​ct.org, version 3.4.0) and were illustrated by 
using the pheatmap and ggplot2 packages of R, respectively. For 
comparative analysis with public transcriptome data, we defined the 
signature of transcriptome alteration by one treatment as the array 
of log2(fold change) comparing experimental group vs control group. 
The transcriptomic signatures were comprehensively deduced from 
the curated transcriptome data in GEO database (queried from 

September, 2016 to December, 2017). The samples in one transcrip-
tome data set were manually assigned to experimental or control 
groups based on the annotations on GEO data sets and samples, 
and the related publication if applicable. For two-colour arrays with 
paired case-vs-control design, the fold changes were directly de-
duced from the signal ratio. Two-colour arrays with universal refer-
ence were treated as the same as one-colour array. The fold changes 
from one colour arrays and RNA-seq data were deduced from the 
normalized expression values. All expression values, if not log2-
transformed, were transformed before calculating fold changes. 
Finally, the fold change signatures by metformin in this study and 
the curated signatures were compared by Spearman's correlation 
coefficient (SCC), in which only genes shared by two studies were 
taken in consideration. We removed the redundant signatures (inter-
signature SCC > 0.5 and of the same topic) and corrected the P-value 
by the Bonferroni method for multiple hypothesis correction.

2.4 | Identification and analysis of DEGs

The differentially expressed genes (DEGs) were identified by edgeR 
package of R with default parameters. Because the transcriptome 
profiles were used for hypothesis generation rather than validation, 
a relaxed threshold of P < .05 was applied. For functional enrichment 
analysis, mouse DEGs were firstly mapped to human orthologous 
genes based on the mapping function provided by g:Profiler (http://
biit.cs.ut.ee/gprof​iler). The functional enrichment analysis for GAD 
disease gene sets and KEGG pathways was performed by using the 
DAVID tool (https://david.ncifc​rf.gov, version 6.8) with human of-
ficial gene symbols as the input. We also compared the DEGs with 
curated gene sets in response to chemical and genetic perturbations 
from the MSigDB online platform (http://softw​are.broad​insti​tute.
org/gsea/msigdb). Finally, the overrepresented transcription factors 
were analysed by using the enrichment analysis tool in ChIP-Atlas 
platform (https://chip-atlas.org). The result is visualized by using the 
gplots and riverplot packages in R.

The human orthologous genes of mouse DEGs were further 
mapped onto the human signalling network. The latest version of the 
human signalling network was obtained from the website of Wang 
lab (http://www.cance​r-syste​msbio​logy.org/, update v7). The net-
work topology metrics like PageRank centrality and betweenness 
centrality was calculated by the igraph package in R. Furthermore, 
the drug target genes from the DrugBank database (https://www.
drugb​ank.ca) and the DSigDB database (http://tanlab.ucden​ver.edu/
DSigD​B/DSigD​Bv1.0) were also mapped onto the network. Then, 
the average distance between one DEG set Di = 1, …, m and one drug 
target set Tj = 1, …, n was assigned by using the formula below:

To assess the significance of the network distance, equal number 
of false drug targets were randomly selected from the network for 

dist
(

D,T
)
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m
∑

i=1

min
Tj∈T

[

dist
(

Di,T
)]

/

m
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1000 times and the false discovery rate (FDR) was assessed accord-
ingly. For each tissue and each drug, such analysis was repeated six 
times with the different input combination of DEG sets (up-regu-
lated genes only, down-regulated gene only or both of them) and 
drug target sets (DrugBank or DSigDB). The results supported by at 
least one of the DEG sets and by both of the drug target sets were 
retained. The properties and side effect of the drugs were analysed 
by DrugPattern tool (http://www.cuilab.cn/drugp​atter​n/). We also 
calculated the SCCs between metformin's transcriptomic signatures 
from this study and the drug-induced transcriptomic alteration sig-
natures from the LINCS CMap project (https://clue.io/lincs). Only 
signatures from the same tissue origin were compared, and the P-
values were corrected by Bonferroni method.

2.5 | Measurement of blood pressure

Blood pressure and heart rate of mice were measured by HD-X10 
implantable transmitter after 3-month metformin treatment. Mice 
after 3-month metformin treatment were anesthetized with 1% so-
dium pentobarbital (i.p. injection). The left carotid artery was isolated 
from the surrounding tissue. The flank of the mouse was bluntly iso-
lated with a vascular clamp to form a subcutaneous pocket. Rinse 
the pocket with sterile saline and place the HD-X10 transmitter in it. 
The skin incision was sutured. Blood pressure levels were measured 
after 5 days. When blood pressure levels were measured by tail-cuff 
method, mice after 3-month metformin treatment were fixed in the 
canister in 37°C. Blood pressure and heart rate of mice were meas-
ured when mice were stabilized. Blood pressure and heart rate of 
every mouse were averaged from 10 measurements.

3  | RESULTS

3.1 | Transcriptomic landscapes of 10 healthy 
tissues induced by one-month moderate metformin 
treatment

To investigate the potential impact of metformin on various healthy 
tissues, normal mice with chow diet were treated with moderate 
dosage of metformin (300 mg/kg) for one month. Ten tissues (aorta, 
brown adipose, brain, eye, heart, liver, kidney, skeletal muscle, 
stomach and testis) were harvested, and the transcriptomes were 
profiled by high-throughput RNA-seq (Figure  1A). Each treatment 
(metformin or saline control) plus tissue combination were forti-
fied by three biological replicates, which results in 60 transcriptome 
profiles depicting the landscape of transcriptome alteration by met-
formin treatment. Because the transcriptome profiles were used for 
hypothesis generation rather than validation, a relaxed threshold of 
P < .05 was applied. In all, there are 3079 genes showing differential 
expression in at least one of the 10 tissues (that is to say, there are 
3079 genes in total which show differential expression in at least 
one of the 10 tissues). The overall similarity between transcriptome 

profiles of these genes is summarized in the heat map presented in 
Figure 1B. The transcriptome profiles are clustered primarily accord-
ing to their tissue origin, indicating the transcriptome alteration by 
metformin are tissue-dependent. This observation can be confirmed 
by principle component analysis (PCA), where the samples are 
largely aggregated according to their tissue origin (Figure S1). The 
extent and overall direction of the transcriptome alteration induced 
by one-month metformin treatment varies among tissues, in which 
liver, eye and skeletal muscle exhibit the highest numbers (867, 652 
and 418, respectively) of down-regulated genes, while aorta, stom-
ach, brown adipose and brain show the highest number (651, 323, 
312 and 280, respectively) of up-regulated genes (Figure 2A).

3.2 | Functional and disease associations of 
differentially expressed genes

In line with the transcriptomic profile clustering results, only few 
DEGs (261 genes) are shared by more than three tissues (Figure 2B), 
indicating the tissue specificity of the transcriptomic responses to 
metformin treatment. To probe the functional and disease associa-
tions of these shared DEGs, they were firstly compared with the 
curated gene sets about chemical and genetic perturbations from 
the MSigDB database. The top significant overlapped genes sets are 
listed in Figure 2C. Liver is one of the primary target organs of met-
formin and harbours a considerable fraction of the DEGs in our study. 
Accordingly, the liver selective genes and genes down-regulated in 
early liver development are overrepresented in the shared DEGs. 
Besides, genes down-regulated in the diethylnitrosamine treatment-
induced or E2F1 overexpression-induced hepatocellular carcinoma 
models and HNF1A knockout model of type 1 diabetes are also over-
represented, supporting the liver protective roles of metformin.42-44 
Moreover, genes that are de-regulated in nasopharyngeal carcinoma 
are overrepresented, in line with the recently discovered anti-na-
sopharyngeal carcinoma action of metformin.45 Finally, gene sets 
related to spermatogenesis are also presented in the top list. The 
metformin's impact on male reproduction has gained increasing no-
tice recently,46 and our data suggest that the risk of male fertility 
reduction after metformin treatment deserves serious assessments, 
both clinically and on animal models.

We further clustered the tissues based on their correlation of 
DEGs (Figure  2D). The aorta, brain and brown adipose, in which 
genes are largely up-regulated by metformin treatment, are grouped 
as one module (Mod_up). Similarly, the tissues where genes are 
largely down-regulated, including eye, liver and skeletal muscle, are 
grouped as another module (Mod_down). Finally, the rest tissues 
(stomach, heart, kidney and testis) showing the DEG pattern in-be-
tween form a loosely connected module (Mod_inbetween). To be 
more precise, the shared DEGs and the DEGs exclusively presented 
in either of three modules are analysed by the DAVID tool respec-
tively, and the top significant associations are depicted in Figure 2E 
and Figure S2, respectively. We also analysed the overrepresented 
transcription factor behind each DEG module, and the results are 

http://www.cuilab.cn/drugpattern/
https://clue.io/lincs


8142  |     MENG et al.

shown in Figure S3A-C. A detailed discussion of the results is avail-
able in Appendix S1, where the significant associations with car-
diovascular diseases like hypertension are highlighted and will be 
experimentally validated in the last section.

3.3 | Comparative analysis of the transcriptomic 
signatures predicts potential protective and 
deleterious effects of metformin on 10 healthy tissues

To investigate whether the metformin-induced transcriptome 
changes could imply beneficial or deleterious effects, for each tissue, 
the metformin-induced gene expression alteration signature (met-
formin signature for short) is calculated as the fold changes of gene 
expression comparing metformin-treated samples vs control sam-
ples. The metformin signatures are then compared with our curated 
gene signatures of various physiological or pathophysiological condi-
tions from the GEO database. The curated signatures have covered 
some typical transcriptomic changes related to disease model, drug 

treatment and lifestyle intervention. The signatures significantly 
correlated with the metformin signatures are listed in Table S1. In the 
next section, we will focus on the correlated signatures in liver and 
heart. The predicted potential protective and deleterious effects of 
metformin on the other eight tissues are described in Appendix S1, 
Figures S4 and S5.

3.4 | Potential protective and deleterious effects of 
metformin on healthy liver and heart

Since the liver is one primary known target tissue of metformin, we 
first performed the comparison in liver (Figure 3A). Generally, the 
metformin signature is negatively correlated with multiple disease 
models like bromodichloroacetic acid treatment induced hepato-
blastoma (SCC = −0.151, FDR = 1.32E-78), prenatal undernutrition 
induced metabolic syndrome X (SCC = −0.127, FDR = 9.57E-57) and 
Schistosoma japonicum infection (SCC = −0.127, FDR = 1.41E-40) and 
liver toxic or carcinogenic drug treatments like phenylhydrazine, 

F I G U R E  1   The overview of the transcriptome profiles after metformin treatment across ten healthy tissues. A, Workflow of this 
study. Normal mice were randomly split into two groups, the experimental (one-month treatment of metformin) and control groups. 
The transcriptome across 10 tissues was profiled, and subsequent integrative computational analyses (clustering, signature comparison, 
functional association and network-based analysis with drug target association) were performed to generate hypothesis about the potential 
beneficial and adverse effect of metformin treatment on normal mice. Finally, the hypothesis about cardiovascular side effects was 
validated in vivo with prolonged period (3 mo) of metformin treatment. B, Heat map illustrating the clustering of transcriptome profiles of 
differentially expressed genes, with or without metformin treatment, across 10 tissues
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propylene glycol mono-t-butyl ether, tetracycline and acetami-
nophen (SCC < −0.1, FDR < 1.0E-40), which are in line with the liter-
ature-reported hepatoprotective roles of metformin.42-44 However, 
there is no prominent overall tendency for negative correlation be-
tween metformin signature and deleterious signatures (Figure 3A). 

Indeed, positive correlations with liver toxic or carcinogenic drug 
treatments like Aroclor 1260 (SCC  =  0.134, FDR  =  8.98E-47) and 
TCDD (SCC = 0.116, FDR = 9.04E-35) are also observed. This ob-
servation is noteworthy, as previous comparison using high-fat diet 
(HFD) treated mice model has indicated highly consistent beneficial 

F I G U R E  2   The functional associations of differentially expressed genes (DEGs). A, Counts of DEGs across ten tissues. Tissues are 
sorted according to their total DEG number. B, Distribution of DEGs shared by multiple tissues. C, Top 15 gene sets (MSigDB hallmark and 
chemical/genetic perturbation gene sets) showing significant overlap with the frequently shared DEGs between tissues. D, The clustering of 
tissues based on the cosine similarity (shown in each box) between their DEGs. E, The GAD disease gene and KEGG pathway enrichment of 
the frequently shared DEGs. The redundant GAD disease gene sets are not shown. The width of the strap between GAD and KEGG terms 
correlates with the number of shared genes between them. Only straps indicating significant overlaps (Fisher's exact test, P < .05) are shown
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correlations of the metformin intervention signature.47 Therefore, 
the impact of metformin on mice liver seems context-dependent, 
and the influence of long-term usage of metformin on healthy liv-
ers would be assessed to rule out its potential liver toxicity. Besides, 
β-naphthoflavone is a known immune inhibitor that exerts anti-in-
flammatory effect by suppressing TNF-α pathway,48 and metformin 
signature positively correlates with β-naphthoflavone treatment 
signature (SCC = 0.158, FDR = 4.49E-65), but negatively correlates 
with TNF-α treatment signature (SCC = −0.201, FDR = 2.45E-106), 
supporting its anti-inflammatory roles in liver.49 Finally, we note 
the complicated relationship between metformin signature and 
ageing signature. On the one hand, metformin signature exhibits 
obvious similarity with dietary restriction anti-ageing intervention 
(SCC  =  0.258, FDR  =  2.72E-231), mimicking the previous investi-
gation.21 On the other hand, it also positively correlates with the 
ageing signature (old mice vs young mice, SCC = 0.093, FDR = 2.02E-
29). This is not likely coincidental as positive correlations with ageing 
signature can also be observed when using ageing signatures from 
the other studies (Table S1). Indeed, although metformin has been 
proposed as an anti-ageing drug,23 its effect on healthy lifespan is 
complicated by the onset and dosage of treatment.50 It is possible 
that the context of metformin treatment in this study is not appro-
priate for anti-ageing assay, for example one study using the same 
dosage of metformin failed to expand healthy lifespan of mice.51 We 
also analysed the overrepresented transcription factor behind DEGs 
in liver, and the results suggest that transcription factors like TAF1 
(FDR = 1.99E-41), BRD2 (FDR = 1.80E-39) and NELFA (FDR = 1.44E-
36) are likely involved in the gene expression regulation in response 
to the metformin treatment (Figure S3D).

Metformin has been implicated as a protective reagent against 
cardiovascular diseases in diabetic context.8,52 Indeed, metformin 
signature also negatively correlates with the doxorubicin induced car-
diotoxicity (SCC = −0.073, FDR = 4.83E-15) and Ptger4-/- model of di-
lated cardiomyopathy (SCC = −0.054, FDR = 4.19E-8). Nevertheless, 
as indicated by the circular plot, the fraction of deleterious signa-
tures among the positive correlated signatures are intuitively higher 
than the background (Figure 3B). For instance, noticeable positive 
correlations with the cardiac hypertrophy signatures, induced ei-
ther by voluntary wheel training (SCC  =  0.064, FDR  =  3.70E-14), 
by familial genetic background (SCC = 0.053, FDR = 5.59E-07), or 
by transverse aortic constriction (SCC  =  0.039, FDR  =  5.89E-5), 
appear in the top list of correlated signatures. Interestingly, met-
formin signature also positively correlates with the ovarectomiza-
tion challenge signature (SCC = 0.103, FDR = 4.50E-36). Oestrogen 
signalling has been implicated as one of the key protective pathways 
against cardiac hypertrophy.53 One plausible hypothesis is that met-
formin would perturbate oestrogen signalling or its downstream ef-
fectors and therefore induce cardiac hypertrophy in normal mice. 
We also analysed the overrepresented transcription factor behind 
DEGs in heart, and the results suggest that transcription factors 
like NELFE (FDR = 3.97E-43), NELFA (FDR = 2.50E-42) and SMAD3 
(FDR = 5.93E-40) are likely involved in the gene expression regula-
tion in response to the metformin treatment (Figure S3E).

3.5 | Network analysis of differentially expressed 
genes indicates potential effects of metformin on 
blood pressure

We further investigate the functional associations of the DEGs induced 
by metformin in the human signalling network context. The DEGs in-
duced by metformin treatment across 10 tissues were mapped onto 
the human signalling network. Analysis of canonical network topology 
metrics indicates that the DEGs have higher PageRank centrality and 
betweenness centrality (Figure S6A-B), indicating that the DEGs tend to 
settle in the nexuses of signalling pathways. Nevertheless, such analy-
sis does not specify the functional associations of DEGs. Therefore, we 
further mapped the curated drug targets from DrugBank and DSigDB 
databases to the human signalling network and compared the distance 
between DEGs and known drug targets with the random expectation 
(see Methods for details). If the DEGs are closer to the bona fide target 
genes of one drug, in comparison with the randomized false targets, a 
potential functional linkage between this drug and metformin is sug-
gested. Such analysis is performed three times for each set of drug tar-
gets, using the up-regulated genes, down-regulated genes and both of 
them as the input, respectively. Figure 4 reports the top consensus re-
sults. Because discrepancy in the drug target annotations, the detailed 
results may not be identical for the two databases. This top consensus 
list of genes would imply some interesting hypothesis. First, it is en-
riched (Fisher exact test, P = 1.47E-5) for the drugs that have known 
drug-drug interactions with metformin, including clozapine, olanzap-
ine, quetiapine, risperidone, ziprasidone, glyburide and tolbutamide 
(Figure S6C). Considering the limitation of the curated drug-drug inter-
actions, we also employed the predicted drug-drug interactions from 
DeepDDI project.54 Among the top drug list, metformin is predicted to 
have drug-drug interactions with a considerable fraction of these top 
drugs (18 out of 42, Fisher's exact test, P = 1.92E-10; Table S2). Second, 
the brown adipose stands out as the tissue in which the highest num-
ber of potential functional linkage between drugs are observed. We 
used DrugPattern tool to analyse the shared properties of these drugs. 
Among these drugs, anti-diabetic drugs are overrepresented (Figure 4; 
FDR  =  6.23E-7). Third, links with psycholeptic drugs are enriched in 
both brown adipose and brain (FDR = 1.02E-7 and 1.78E-10, respec-
tively). Indeed, clinical investigations have indicated the effectiveness 
of metformin against the side effects of psycholeptic drugs.55 Our data 
would provide clues for interpreting the mechanism of actions behind 
such effect.

We further focused on the potential deleterious effects of met-
formin treatment on healthy mice. Indeed, links with drugs that have 
nausea side effect, one of the most prominent known side effects of 
metformin, are enriched in stomach (FDR = 1.22E-3). Moreover, the 
drugs showing hypertension side effect are enriched in brown adi-
pose (FDR = 1.22E-3) and more importantly in heart (FDR = 1.11E-
3). The functional link with four drugs (desmopressin, ketoprofen, 
aliskiren and conivaptan) that have such side effects are highlighted 
(Figure S6D). To be more precise, we further compare the previously 
mentioned metformin's transcriptomic signatures (Table S1) with the 
drug-induced transcriptomic signatures from LINCS CMap data set. 
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Metformin signatures turn out to be significantly correlated with 
most of the top drugs’ signatures in at least one tissue (Figure  4). 
Intuitively, a positive correlation would imply similar therapeutic 
and/or side effect between drugs. Indeed, metformin signature 
is prone to show positive correlations with the signatures of the 
above-mentioned four metformin-linked drugs with hypertensive 
side effect (Figure 4), implying that metformin treatment on healthy 
mice may arouse side effect similar to these drugs. Another inter-
esting example is clozapine. Potential functional links with this drug 
are observed in brain and brown adipose, while significant positive 
correlations of transcriptomic signatures can be found in kidney and 
skeletal muscle (Figure 4). A clinical study indicates that clozapine 
has noteworthy effect for elevating blood pressure.56 Interestingly, 
according to the DeepDDI’s prediction, metformin and clozap-
ine, when used together, may increase the risk of adverse effects 
(Table S2). Given the high risk for a variety of fatal diseases of hyper-
tension and the increasing medication rate of metformin, it is emer-
gently needed to further experimentally investigate the long-term 
usage of metformin of healthy mice's blood pressure.

3.6 | Experimental validation of the prediction 
that long-term metformin treatment would induce 
hypertension in healthy mice

The above bioinformatics analyses of transcriptome alteration 
in mouse healthy tissues treated with metformin for 1  month 

revealed that long-term administration of metformin tended to 
cause a number of diseases including hypertension. To validate 
the prediction that long-time use of metformin causes hyperten-
sion, mice were orally treated with metformin for 3 months, and 
then the relaxation and constriction, and blood pressure levels 
were measured. In young male normal C57BL/6 mice, 3-month 
administration of metformin decreased bodyweight and fast-
ing blood glucose levels (Figure  S7A-B). However, metformin 
treatment had no significant effect on overall glucose tolerance 
(Figure S7C-D). In young male mice, 3-month metformin treatment 
significantly increased systolic, diastolic and mean blood pressure 
as measured by HD-X10 implantable transmitter (Figure  5A-C). 
Metformin treatment had little effect on the heart rate of young 
male mice (Figure 5D). To further validate these observations, the 
effects of metformin treatment on the relaxation and constric-
tion of mouse arteries were measured. Consistently, the results 
indicated that after 3-month metformin treatment, the constric-
tion of mouse thoracic arteries in response to phenylephrine was 
significantly increased when compared with control mouse ar-
teries (Figure  5E). In contrast, the relaxation of mouse thoracic 
arteries in response to sodium nitroprusside dehydrate (SNP) 
and acetylcholine (Ach) was significantly impaired (Figure 5F-G). 
These findings supported the blood pressure level increases after 
metformin treatment on young male mice. In support, the tail-
cuff method also revealed that 3-month metformin treatment 
significantly increased blood pressure levels in young male mice 
(Figure 5H). Consistently, 3-month metformin treatment similarly 

F I G U R E  3   The significant correlations between metformin's transcriptomic signature and curated reference transcriptomic signatures 
in liver and heart. A, Correlations of transcriptomic signature (gene expression fold changes) between metformin-treated normal mice and 
other treatments or disease models in liver, the top 20 significant correlations are shown. B, The significant correlations in heart
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increased blood pressure levels in young female mice (Figure 5I). 
These findings suggested that long-term metformin administra-
tion did not impair renal functions in young mice.

To further verify the metformin-induced hypertension in nor-
mal mice, we investigated the effects of metformin treatment on 
old male mice as well. As a result, 3-month administration of met-
formin had little effects on bodyweight and white adipose weight/
bodyweight ratio (Figure  S8A-B). Moreover, metformin treatment 
also had limited effect on fasting blood glucose level and overall 
glucose tolerance (Figure  S8C-D). In old male mice, 3-month met-
formin treatment significantly increased systolic, diastolic and mean 
blood pressure as measured by HD-X10 implantable transmitter 
(Figure 6A-C). Metformin treatment had little effect the heart rate 
of old young mice (Figure 6D). Given that healthy people may take a 
less dosage of metformin treatment, it is also important to investi-
gate whether less dose of metformin treatment also can induce hy-
pertension. Indeed, we showed that 100 mg/kg dose of metformin 
treatment also induces hypertension in healthy young and old mice 

(Figure  S9). Overall, these findings further support that long-term 
use of metformin can cause hypertension in normal mice.

4  | DISCUSSION

In the past decades, metformin had been reported to exert ben-
eficial effects on various diseases beyond diabetes. More recently, 
metformin has also been shown to have anti-ageing effects and pro-
long lifespan.20-22 Metformin is potentially prescribed to healthy in-
dividual for delaying ageing and prolonging lifespan based on recent 
studies,57,58 and some healthy individuals start to take metformin as 
prophylactical use or anti-aging. However, the effects of metformin 
treatment on healthy tissues remain largely unknown. Therefore, 
it is of great significance and necessarily to evaluate the impact of 
long-term administration of metformin on various tissues under 
physiological condition. In the current study, we depicted the im-
pact of long-term treatment with metformin on the transcriptomic 

F I G U R E  4   Potential links between drugs and DEGs in context of human signalling network. If the distance from one drug's known 
physical target genes to the DEGs from one specific tissue is significantly closer than random expectation, a potential functional link 
between the drug and the DEGs are assumed. The top five functionally linked drugs from the analysis in each tissue, together with 
those shared by multiple tissues, are shown in the bubble plot at the second panel to the right. The Spearman's correlation between the 
metformin's transcriptomic signature (differential expression induced by metformin) and those of other drug perturbations in the same tissue 
(differential expression induced by other drugs in cell lines representing the same tissue) from LINCS CMap data set are shown as the bubble 
plot at the first panel to the right. The drug classification and adverse effects are indicated by the heat maps at the left panels



     |  8147MENG et al.

landscape covering 10 tissues of normal mice using high-throughput 
sequencing. Bioinformatics analyses including gene set association 
analysis, comparative transcriptomic signature analysis and network 
analysis of drug targets predicted that long-term administration of 
metformin exerts both beneficial and deleterious effects on various 
tissues. For example, metformin likely exerts beneficial effects on 
liver by counteracting the gene expression alterations induced by 
carcinogenic drugs or infectious agents. In brain, metformin could 
partly reverse the transcriptomic signatures of multiple diseases 
including Parkinson disease, Alzheimer's disease and autism. This 
beneficial potential is also supported by the predicted functional 
links between metformin and several psycholeptic drugs. Metformin 
seems to exhibit the most prominent beneficial effect on adipose, 
by mimicking the transcriptomic changes during white-to-brown adi-
pose transition and caloric restriction. In fact, metformin also shows 

several potential functional links with anti-diabetic drugs in adipose 
tissue.

Though our analysis has suggested various potential beneficial 
roles of metformin, on the other hand, however, metformin also has 
the potentials to result in several diseases including hypertension 
in normal mice. One noticeable result highlights the hypertension 
risk, which has been implied by the overrepresentation of cardiovas-
cular disease-related gene sets, positive correlation with hyperten-
sion-related transcriptomic signatures and the associations of drugs 
with hypertensive side effect together. Independent experimental 
validation further confirmed the bioinformatics prediction that 
long-term metformin treatment increased blood pressure in nor-
mal mice. Although in diabetic patients, metformin administration 
could improve left ventricular diastolic function59 and reduce blood 
pressure levels,60 which might be due to the improvements of insulin 

F I G U R E  5   Metformin treatment increased vascular constriction and blood pressure levels in young mice. (A-C) Metformin treatment 
increased: systolic blood pressure (A), diastolic blood pressure (B) and mean artery pressure (C) in young male mice. (D) Metformin treatment 
had little effect on heart rate of young male mice. 8- to 10-week-old male mice were daily treated with metformin (300 mg/kg bodyweight) 
or water for 3 mo. Blood pressure levels were measured by HD-X10 implantable transmitter (Data Sciences International, DSI). Con, control 
mice treated with water; Met, mice treated with metformin. N = 12-15, *P < .05 vs control mice treated with water. (E) Thoracic arteries 
of metformin-treated young male mice had stronger constriction in response to phenylephrine than those of control mice. (F-G) Thoracic 
arteries of metformin-treated young male mice had weaker: endothelial-dependent (F) and endothelial-independent relaxation (G) with 
those of control mice. Phe, phenylephrine; SNP, sodium nitroprusside dehydrate; Ach, acetylcholine. N = 5, *P < .05 vs control mouse 
arteries. (H-I) Metformin treatment increased blood pressure levels in young: male (H) and female (I) mice as measured by tail-cuff method. 
N = 8-10, *P < .05 vs control mice treated with water. 8- to 10-week-old male or female mice were daily treated with metformin (300 mg/
kg bodyweight) or water for 3 mo. The blood pressure levels were measured by tail-cuff method. DBP, diastolic blood pressure; MAP, mean 
artery pressure; SBP, systolic blood pressure. N = 8-10. The results are presented as the mean ± SEM. Statistical significance of differences 
between groups was analysed by t test. *P < .05 vs control mouse arteries
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resistance, hyperglycaemia, hyperlipidemia and endothelial dysfunc-
tion. However, metformin's anti-hypertension effect among non-di-
abetic populations is still under debate.61,62 At present, there is no 
direct evidence on blood pressure changes in the normal population 
after taking metformin. Metformin is the drug of choice for type 2 
diabetes. The dosage of metformin we used here is 300 mg/kg. The 
dose of ~300 mg/kg is a popular mouse dosage, which is relatively 
comparable with the human dose of 20  mg/kg. Given that hyper-
tension is a major risk factor for a variety of fatal diseases includ-
ing cardiovascular disease and stroke, the risk of long-term usage 
of metformin to elevate blood pressure should be especially noted 
when prophylactically used.

Nevertheless, there are several technical limitations in current 
transcriptome analysis. First, in order to find the potential beneficial 
and deleterious effects of metformin in more healthy tissues, we only 
assigned three biological replicates for each sample group. As the re-
sult, a few sample group still exhibited notable intra-group variance 
(Figure  1B). Though here we cannot remove the potential outlier 
because there are not enough replicates per group, more replicates 
are required for further detailed investigation of metformin's effect 
and mechanisms on one particular healthy tissue. Second, even 10 
tissues were explored, there are still some notable tissues that de-
serve investigations. For example, the emerging effect of metformin 
on gut and gut microbiome would be explored in the future. Finally, 
the cell types influenced by metformin are not clear as shown in 
the bulk RNA-seq transcriptome. There are several successful ap-
plications of bulk RNA-seq transcriptome deconvolution method to 
identify the altered cell types (eg to identify immune cell infiltration 
in tumours).63 We have also tried to deconvolute our transcriptome 
profile by using xCell method.64 However, we could only find few 

cell types exhibiting significantly altered deconvolution scores and 
there is no agreement between different tissues (Table S3). Indeed, 
few interesting hypothesis could be noted, for example we noted the 
increased muscle cell and decreased adipocyte cell in skeletal muscle 
tissue after metformin treatment, which is in line with known effect 
of metformin.50 Nevertheless, the cell type-specific transcriptome 
alteration should be directly addressed by single-cell RNA-seq anal-
yses in the future.

In summary, the current study provided the first transcriptomic 
landscape of gene expression in 10 tissues of normal mice with or 
without metformin treatment. These results revealed that met-
formin deeply impacted gene expression profile to exert both bene-
ficial and deleterious effects in various healthy tissues, which helps a 
lot to evaluate the potential impact of metformin on their functions. 
Our findings revealed that long-term treatment of metformin will 
cause hypertension under normal condition. Clearly, cautions should 
be taken when metformin is potentially prescribed to healthy indi-
vidual for the purposes of reducing bodyweight control, anti-ageing 
and prolonging lifespan.
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