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Abstract
Background: Computing exact multipoint LOD scores for extended pedigrees rapidly becomes
infeasible as the number of markers and untyped individuals increase. When markers are excluded
from the computation, significant power may be lost. Therefore accurate approximate methods
which take into account all markers are desirable.

Methods: We present a novel method for efficient estimation of LOD scores on extended
pedigrees. Our approach is based on the Cluster Variation Method, which deterministically
estimates likelihoods by performing exact computations on tractable subsets of variables (clusters)
of a Bayesian network. First a distribution over inheritances on the marker loci is approximated
with the Cluster Variation Method. Then this distribution is used to estimate the LOD score for
each location of the trait locus.

Results: First we demonstrate that significant power may be lost if markers are ignored in the
multi-point analysis. On a set of pedigrees where exact computation is possible we compare the
estimates of the LOD scores obtained with our method to the exact LOD scores. Secondly, we
compare our method to a state of the art MCMC sampler. When both methods are given equal
computation time, our method is more efficient. Finally, we show that CVM scales to large problem
instances.

Conclusion: We conclude that the Cluster Variation Method is as accurate as MCMC and
generally is more efficient. Our method is a promising alternative to approaches based on MCMC
sampling.

Background
The goal of genetic linkage analysis is to link phenotype to
genotype. Pedigrees are collected where a trait or disease
is believed to have a genetic component. The individuals
in the pedigree are genotyped for a number of markers on
the chromosome. The markers are at known relative
recombination frequencies, so that from the genotypes a
distribution over inheritances can be inferred. Linkage of
the trait to a specific location in the marker map then is
quantified by the extent to which the distribution over

inheritances as inferred from the markers can explain the
observed phenotypes in the pedigree.

Parametric linkage analysis
In this article we compute linkage likelihoods with the
parametric LOD score (log odds ratio) proposed by Mor-
ton [1]. The LOD score is the log ratio of the likelihoods
of the hypothesis that the disease locus is linked to the
marker loci at a specific location and the hypothesis that
it is unlinked to the marker loci. The LOD score requires
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specification of the disease frequency and penetrance val-
ues and therefore falls into the category of parametric
scoring functions.

Exact computations
Several methods for exact computations are in use.

Lander et al. [2] introduced a Hidden Markov Model
(HMM) where the meiosis indicators are the unobserved
variables. This method is linear in the number of loci, but
exponential in 2n – f, where n is the number of non-
founders and f the number of founders. Kruglyak et al. [3]
optimized the method in the program Genehunter.

Elston et al. [4] developed an algorithm that is efficient on
pedigrees that have little inbreeding. This method is linear
in the number of individuals (in case there is no inbreed-
ing) but scales with the number of possible multi-locus
genotypes. The method was made computationally effi-
cient in the package Vitesse [5].

Both of these methods exploit particular independence
properties of the statistical model. Within the framework
of Bayesian networks, this approach has been generalized
in the junction tree algorithm [6,7]. In the computer pro-
gram Superlink [8] this approach is implemented for the
application of linkage analysis and is the first program to
make use of Bayesian networks for computing exact link-
age likelihoods.

Although exact algorithms have been substantially
improved over the years, the fact remains that they require
an exponential number of operations and have limited
applicability.

The Cluster Variation Method
The Cluster Variation Method originated with the work of
Bethe [9] and was extended to non-pair wise marginals by
Kikuchi [10] to compute properties of magnetic materials,
such as Ising models. In later years, the method has been
extended and reformulated [11,12]. Recently the method
has been introduced into the machine learning commu-
nity [13,14]as a method for approximate inference in
Bayesian networks and undirected graphical models.

The Cluster Variation Method approximates an intracta-
ble probability distribution in terms of marginal probabil-
ity distributions on clusters of variables. These clusters of
variables are chosen such that exact computations are fea-
sible on each cluster. We make explicit use of the formu-
lation of linkage analysis in terms of a Bayesian network
to choose which variables will be contained in the clus-
ters. In contrast with MCMC the approximation is deter-
ministic and yields estimates of the pedigree likelihood.

CVM and linkage analysis
As large complex pedigrees with individuals genotyped at
a large number of locations become increasingly availa-
ble, along comes the need for methods of estimating like-
lihoods on pedigrees where exact computations are not
possible.

In this article we describe in detail how the Cluster Varia-
tion Method can be applied to the problem of genetic
linkage analysis on pedigrees without inbreeding. We dis-
cuss extension of our approach to inbred pedigrees.

Results
We compare the estimates of the LOD score obtained with
our method to exact scores as computed with Vitesse [5].
We also compare our method to Markov Chain Monte
Carlo (MCMC) simulations. For this we have used version
2.5 of the Morgan sampler [15]. This MCMC sampler is
optimized for pedigrees for which exact single locus com-
putations are possible. To our knowledge this is the most
advanced sampler for the pedigrees we consider.

We consider CVM converged if the marker marginals
change by no more than 10-3. We use the following set-
tings for the Morgan sampler: the number of prior sam-
ples and burn-in samples are set to respectively 50 % and
10 % of the number of samples used for the actual esti-
mates.

We performed all experiments on a Pentium-IV 2.8 GHz
with 1 GB of physical memory running Linux.

Simulations
We start by motivating the use of approximate methods
with an example. On the pedigree shown in figure 1, we
have simulated a dominant disease with penetrance val-
ues f = (0.02, 0.98, 0.98) and trait allele frequencies t =
(0.98, 0.02), at 0 cM. This pedigree can be handled by
Genehunter [3]. We have simulated 25 pedigrees, where
half of the individuals has genotypic and phenotypic data.
14 bi-allelic markers were simulated with marker allele
frequencies m = (0.4, 0.6) for all 14 markers. The marker
spacings are 1 cM.

In figure 2 we now compare exact LOD scores computed
with all of the 14 available markers to exact LOD scores
computed with only a subset of the markers. The figure
shows that significant power is lost when markers are
excluded from the multi-point analysis. The solid line rep-
resents exact LOD scores computed with all available
markers. The LOD score peaks at 0 cM, where the disease
was indeed simulated. The dotted line represents the LOD
score based on 5 markers: for each location of the trait
locus, a LOD score is computed by doing a multi-point
calculation with the 2 markers to the left of the trait locus,
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2 markers to the right of the trait locus, and the marker at
which the trait locus is located. If the trait locus is located
on the first marker in the marker map, no markers to the
left of this marker are available so that the first 5 markers
are used to calculate the LOD score for this location of the
trait locus. This approach can be characterized as a sliding
window approach.

In this example the pedigree was small so that exact scores
can be computed with Genehunter for a virtually unlim-
ited number of markers. However, as the size of the pedi-
gree increases, the number of markers that can be

analyzed simultaneaously drops rapidly. In that case sig-
nificant power may be lost. Thus, an accurate approximate
method that can take into account all markers is desirable.

We now compare the estimates of the CVM and MCMC to
the exact scores. The results are obtained on the pedigree
shown in figure 3. There are 48 individuals of which 10
are founders. The number of children per nuclear family
increases from two in the second generation to five in the
third generation. We simulate phenotypes and genotypes
according to this pedigree. We consider a dominant dis-
ease with penetrance values f = (0.02, 0.90, 0.90). The dis-
ease allele frequency has been set to 2 %, so that t = (0.98,
0.02). We assume that for each individual in the pedigree
the affection status is known. For a marker spacing of 5
cM, we simulated 25 pedigrees with 3 markers and at least
15 affected individuals per pedigree. The number of alle-
les is 5 per marker with equal frequencies. 70 % of the
individuals in the last two generations is genotyped for all
markers. The individuals in the first two generations are
not genotyped.

In figure 4 we compare the quality of the approximation
resulting from two cluster choices C1 and C2. These cluster
choices are specified in figure 5. The error is defined as the
absolute difference between the exact LOD score and the
CVM estimate of the LOD score, averaged over all posi-
tions of the trait locus. We see that the error of the larger

Power of analysisFigure 2
Power of analysis. Power decreases when markers are 
excluded from the multi-point analysis. On the pedigree of 
figure 1 a dominant disease is simulated at 0 cM. Solid line 
represents exact LOD scores based on all 14 markers; 
dotted line represents exact LOD scores based on 4 
markers surrounding the trait locus.
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Pedigree 1. Pedigree used for the results of figure 2.
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clusters of C1 is small and an order of magnitude smaller
than the error of the smaller clusters of C2.

This result demonstrates two points. First, it is important
to include the interactions between meiosis variables on
adjacent loci into at least one cluster. Second, the accuracy
of the approximation can be adapted by increasing the
number of variables per cluster. Although it is not the case
that an increased number of variables per cluster guaran-
tees a higher accuracy of the approximation, in our expe-
rience it is generally possible to obtain more accurate
estimates by increasing the number of loci and/or the
number of generations covered by a cluster.

For a difficult problem in the dataset, i.e. one where
MCMC and CVM error are relatively large, we compare
our result to MCMC estimates obtained with Morgan. In
figure 6 the decrease of the CVM and MCMC error as a
function of computation time (i.e. number of samples) is
shown. We see that a significant increase of the computa-
tion time does not significantly decrease the error and var-
iance of the MCMC estimate. The error of the CVM
estimates obtained with cluster choice C1 is indicated by
the dashed line. The CVM computation time is varied by
adjusting the value of the convergence criterion. We con-
clude that our method achieves higher accuracy for a given
amount of computation time.

For the other pedigrees in the data set we compare CVM to
MCMC, where for each problem MCMC is alotted the
computation time required by CVM with cluster choice
C1. The results are shown in figure 7. We see that the
MCMC estimates are less accurate. The average CVM com-
putation time is 700 seconds, although there is a consid-
erable degree of variance in the order of 100 seconds.
Memory requirements vary between 100 and 250 MB,
depending on the informativeness of the markers. We did
not find a correlation between CVM computation time
and the absolute error with respect to the exact distribu-

tion. Also the outliers in the figure are not explained by
large CVM computation times that consequently lead to
an improvement of the MCMC estimate, as the MCMC
computation time is fixed to the CVM computation time.
Since both methods will theoretically converge to the
exact solution in the limit of infinite time resources, this
is the only fair comparison. Additional simulations (not
shown) indicate, in agreement with the results reported in
figure 6, that the MCMC estimates are sufficiently con-
verged. The CVM estimates are reproducible; variance is in
the order of the convergence criterion.

We now demonstrate that the method scales to larger
problem instances. We therefore vary the number of

Comparison of cluster choicesFigure 4
Comparison of cluster choices. Error of cluster choice 
C1 versus error of cluster choice C2 for a marker spacing of 5 
cM. Error of cluster choice C1 is an order of magnitude 
smaller than error of cluster choice C2.
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Pedigree 2. Pedigree used for the results of figures 5-8. This pedigree consists of 48 individuals, of which 10 are founders.
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markers, since Vitesse can handle very large pedigrees with
no loops, but only a small number of markers. We have
simulated a dominant disease on the pedigree of figure 3
and 32 bi-allelic markers with equal allele frequencies. We
have simulated one pedigree where all individuals are
genotyped for all 32 markers. From this instance we create
16 problems by selecting a subset of the markers of the
original problem.

In figure 8 we show that CVM computation time scales
approximately linearly with the number of markers, as do
memory requirements (not shown). The varying informa-
tiveness of the markers explains the fluctuations. Vitesse
cannot handle more than 10 markers, because memory
requirements exceed the available 1 GB. Memory require-
ment of CVM for 32 markers is 150 MB. In this case,
MCMC estimates take several hours to reach convergence.
We conclude that our method scales to large problem
instances.

Discussion
We compared our method to the MCMC implementation
of the Morgan sampler, which is to our knowledge the
most advanced program for this problem. There are pack-
ages that can handle more general pedigrees than Morgan,
such as SIMWALK2 [16,17], but here we have investigated
only pedigrees without inbreeding. Preliminary results
indicate the CVM approximations based on the cluster
choices presented in this article can give good results on
inbred pedigrees. Extension to inbred pedigrees is possi-
ble and a direction for further research.

Theoretically, if the sampler is irreducible, MCMC esti-
mates should ultimately converge to the exact score. How-
ever, in practice this may require extremely long

computation times. The Cluster Variation Method does
not guarantee that for a fixed choice of clusters the approx-
imate marginals will converge to marginals of the exact
distribution, but the same argument that holds for MCMC
also holds for CVM: we can increase the cluster size and
consequently computation time to improve the quality of
the approximation.

In this article we have proposed cluster choices that gener-
ally give good results. Sometimes when many individuals
are untyped the estimates can be inaccurate. Interestingly,
on these problems the Morgan sampler also experienced
severe difficulties.

In the approach we have taken, we can define a heuristic
to detect errors in the approximation. Suppose we have
three markers; then the LOD score for marker 2 can be
computed either from the marginals defined on the
nuclear families on the first and second marker, or from
the marginals defined on the nuclear families on the sec-
ond and third marker. If these LOD scores differ signifi-
cantly, one should be very careful in interpreting the
estimate and the number of variables per cluster must be
increased. We cannot guarantee that if the LOD scores are
consistent, the approximation is accurate. An obvious and
useful extension would be an automatic procedure that
gives the optimal set of clusters. However such a proce-
dure is far from trivial, and the guideline to choose the
clusters as large as available memory permits seems to
work well in practice.

In the current implementation we have applied a number
of preprocessing techniques to improve the efficiency. We
expect that even better efficiency can be obtained by
applying more preprocessing techniques such as genotype

Cluster choicesFigure 5
Cluster choices. Nodes on neighboring markers l and l + 1 (shaded) that form a cluster. Large node represents the genotype 
of an individual, a small node the meiosis indicator an individual. In the CVM approximation, only marginals of clusters on the 
marker loci are computed. A shows cluster choice C1. Genotype nodes of parents and children and meiosis nodes of children 
in the nuclear family of adjacent marker loci form a single cluster. B shows cluster choice C2. Genotype nodes of parents and 
children and meiosis nodes of children in a nuclear family on one marker locus form a cluster. The meiosis nodes of the chil-
dren form a separate cluster.
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elimination [18,19], and techniques specific to Bayesian
networks such as value abstraction [20] and evidence
based compiling [21]. Also, preliminary simulations indi-
cate that smaller clusters can give equally accurate esti-
mates with reduced memory requirements.

Other applications fit naturally into the framework pre-
sented here. Since the Cluster Variation Method is able to
estimate pedigree likelihoods directly, the method pre-
sented here can be used directly to estimate recombina-
tion frequencies and marker ordering errors with a
maximum likelihood approach. Maximum likelihood
haplotyping on general pedigrees also is very promising in
this framework.

Conclusion
In this article we have demonstrated the feasibility of a
new approach to compute linkage likelihoods for linkage
problems that are beyond the reach of exact computa-
tions. Previous methods that are suited to deal with these
intractable problems relied on sampled estimates. We
have shown that a deterministic approach based on the
Cluster Variation Method is able to obtain accurate esti-
mates of LOD scores and generally is more efficient than
MCMC methods.

Methods
A Bayesian network formulation
We briefly describe the Bayesian network that will enable
us to compute likelihoods. Any probability distribution
can be represented with a Bayesian network [22]. There-
fore the use of Bayesian networks is merely a matter of
convenient representation of a probability distribution,
and is irrelevant to the issue of Bayesian versus frequentist
statistics. Bayesian networks in the context of genetics
have first been applied by Jensen et al. [23]. Their
approach was extended by Thomas et al. [24]. The use of
Bayesian networks for exact computations has been pro-
posed by Fishelson et al. [8]. An extensive discussion of
Bayesian networks in the context of genetics is given by
Sheehan et al. [25]. These articles have demonstrated the
power of Bayesian networks for linkage analysis.

The transmission of alleles from parents to children is
clearly a directed process. A Bayesian network represents a
probability distribution in terms of a directed graph, i.e. a
graph where the links between the variables are directed.
A Bayesian network is therefore particularly suited to
model the probability distribution associated with the
problem of multi-point linkage analysis. By specifying
conditional probability tables for each variable, the for-
malism of Bayesian networks guarantees that the corre-
sponding probability distribution is consistent and
normalized [22].

Comparison of CVM and MCMC errorFigure 7
Comparison of CVM and MCMC error. Error of CVM 
estimate obtained with cluster choice C1 versus error of 
MCMC for a marker spacing of 5 cM compared to exact 
results obtained with Vitesse. MCMC is alotted the same 
computation time as CVM. CVM yields more accurate esti-
mates than MCMC.
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Error as function of computation time. MCMC and 
CVM error as a function of computation time. Error is 
defined as the absolute difference between the exact LOD 
score and the estimated LOD score, averaged over all posi-
tions of the trait locus. MCMC error of 10 independent runs 
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While the Bayesian network is the most convenient for
model specification, it is not possible to apply the Cluster
Variation Method directly to a Bayesian network. In order
to perform inference, the Bayesian network is converted to
an undirected graphical model by the procedure of moral-
ization [7]. Moralization removes the directions of the
links and adds links between the parent variables of a var-
iable, i.e. all variables with a link directed towards a given
variable. The undirected graphical model represents
exactly the same probability distribution as the directed
graphical model; the addition of extra links ensures that
the correlations encoded in the conditional probability
tables will be correctly taken into account by the inference
method. The formal procedure of converting the Bayesian
network is standard practice and used by all of the above
mentioned methods that make use of Bayesian networks.

The Cluster Variation Method requires specification of
which variables are contained in each cluster, and this
specification becomes very transparent when the depend-
encies between these variables are modeled with a Baye-
sian network. The Bayesian network consists of a number
of marker loci, with known relative recombination fre-
quencies θ, and a single trait locus linked to the markers
at a given position λT. The purpose of linkage analysis is
to determine the most likely position of the trait locus rel-
ative to the markers. To that end a Bayesian network is

constructed for each possible location λT of the trait locus,
so that the likelihood of the trait phenotypes and marker
genotypes can be computed for that location of the trait
locus. The ratio of this likelihood and the likelihood of
the trait locus unlinked to the markers then gives the LOD
score for location λT.

Single locus model

First we define the Bayesian network for a single locus.
The inheritance model is shown in figure 9A. Each varia-
ble is represented graphically by a node. A conditional
probability table for a variable is defined by the variable
itself and all variables (or, equivalently, nodes) that have
a link which points to that variable. In the figure, the var-
iables are the genotypes and the meiosis indicators. Each
individual, denoted by the subscript i, possesses two genes

 and  that correspond to the paternally and

maternally inherited allele, indicated by the superscript p

and m respectively. The meiosis indicators  and 

indicate whether the paternal or the maternal allele of
respectively the father and the mother is inherited. The

nodes  and  take the values 1,..., |ml|, with |ml|

the number of marker alleles for marker locus l. We will

use the shorthand notation  = ( , ). The father

and mother of individual i are denoted by f (i) and m (i)
respectively, and in the following we will also use

π (i) = (f (i), m (i)) to denote both parents.

Figure 9A is a graphical representation of the following
conditional probability tables in the Bayesian network:

We use boldface to indicate vectors over the missing sub-
scripts and superscripts. For each individual i that is not a
founder we have two conditional probability tables as in
equation 1. If individual i is a founder, we have a prior dis-

tribution on the genotypes instead: P ( |ml), where ml

represents the marker allele frequencies for marker l; on

the trait locus, we have P ( |t), where t represents the

trait allele frequencies.

We note that the genotypes of all non-founders are com-
pletely determined by the genotypes of the founders and
the meiosis indicators v. The meiosis indicators com-
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pletely specify the flow of the alleles. Thus, the genotypes
of non-founders are not strictly necessary for computing
the appropriate likelihood; however, they do simplify the
structure of the Bayesian network such that the Cluster
Variation Method can be applied.

The graphical representation for the marker and trait
observations is shown in figure 9B and 9C respectively. If
an individual i has marker data for marker locus l, then we

have two marker alleles ( , ). However, it is not

known which allele corresponds to the paternal allele and
which one corresponds to the maternal allele. The phase
ambiguity is reflected in the marker observation model.

For example, consider  = (1, 2), then the only non-zero

probabilities are

Here we will only consider binary traits, although multi-
valued or real-valued traits in principle are possible.
Therefore, we need only two possible alleles on the trait
locus, one which is assumed to cause the phenotype and
one which is unrelated to the phenotype. The dependence

of the trait Ti on the genotype  is specified with the

penetrance values f = (f0, f1, f2). The probabilities f0, f1 and

f2 are the probabilities fn = P (Ti = affected|#g = n), where g

is the number of trait alleles and n = 0, 1, 2. The trait
model introduces the conditional probability table

Multi-locus model
The full Bayesian network of the multi-locus model con-
sists of the single locus models for all markers and the trait
locus. The recombinations between loci are modelled by
adding links between the meiosis indicators of adjacent
loci of the same individual, as illustrated in figure 10. In
the absence of data, the meioses of any two individuals
are independent. However, the meioses of a single indi-
vidual are not independent. They depend on each other
through the relation

These conditional probability tables are parameterized by
the recombination frequency θl+1,l between the adjacent
loci1. The first locus does not have a left neighbor, so we
use a flat prior on its meiosis indicators. In the genetic
linkage analysis of a pedigree, it is assumed that the
recombination ratios between the markers are known.
That is, for any two adjacent markers l, l', the recombina-
tion frequency θl,l' is specified. The recombination fre-
quency between the markers and the trait locus is fixed for
a given position λT of the trait locus and can be deter-
mined from the marker map.
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Collecting all conditional probability tables, the defini-
tion of the full probability distribution is given by:

Here the founder and non-founder individuals are
denoted by F and NF, respectively. The index of the trait
locus depends on the position of the trait locus, so that
lT = lT (λT). The recombination frequency θl,l' depends on
λT if either l = lT or l' = lT, so that θl,l' = θl,l' (λT). Otherwise,
θl,l' is independent of λT.

This distribution is normalized to one, by construction.
Computing marginal distributions is generally intractable
because the structure of the corresponding Bayesian net-
work can be too complex due to loops. Loops are caused
by inbreeding in the pedigree and through the coupling of
the meiosis indicators between different loci.

Calculating LOD scores
The LOD score of parametric linkage analysis is defined as
the log ratio of the likelihood that the trait locus is linked
to the marker loci at location λT and the likelihood that
the trait locus is unlinked, denoted by λT = ∞:

The denominator can be rewritten as

P (T, M|f, t, m, θ, λT = ∞) = P (T|f, t) P (M|m, θ),

giving

The denominator has to be computed only once and acts
as a normalization constant. We will use the Cluster Vari-
ation Method to approximate both likelihoods independ-
ently. The likelihood in the numerator has to be estimated
for each position of the trait locus.

The Cluster Variation Method
In this section we describe how the Cluster Variation
Method can be used to obtain approximations of mar-
ginal distributions of the exact distribution. In order to

apply the Cluster Variation Method more conveniently,
we will make a slight change in notation.

The probability distribution of a Bayesian network is of
the general form

Where π (i) are the nodes with a link directed towards
node i, xi is the value assumed by node i and x is a vector
of values assumed by all nodes in the Bayesian network. If
there are no nodes that have a link pointing to node i, we
have

P (xi|xπ(i)) = P (xi).

We consider evidence to be the observation that a node is
clamped to a state, e.g. an individual is affected or has
marker genotype (1, 2). Suppose we have evidence that

node n is clamped to state , denoted by e = {xn = },

then

For genetic linkage analysis the evidence is on marker gen-
otypes M and trait phenotypes T, and we wish to compute
the likelihood of these observations given model parame-
ters.

We now define

and e = {e1, ..., en}. Here δ (·) is the delta function, which
serves to clamp a node to its observed value. Using these
definitions, we can rewrite the likelihood of the evidence
e as

so that the probability distribution over nodes without
evidence xi\e conditional on nodes with evidence xe is
given by
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We now have reformulated the probability distribution of
the Bayesian network in terms of so called potential fun-
tions ψ which do not reflect any longer how the links
between the nodes were originally directed. Also, the
potential functions ψi (xi, xπ(i)) contain both node i and
the parents of node i. As a result, in the undirected graph
associated with these potential functions all parents of
node i are connected to each other. This formal procedure
is called moralization [7] and is essential to the applica-
tion of all inference methods to Bayesian networks. Equa-
tion 5 specifies the same distribution as equation 3, but
will be more convenient to apply the Cluster Variation
Method to.

Obtaining the exact distribution from a variational principle
The exact distribution P can be derived from a variational
principle:

subject to the constraint that P is normalized to one,
where

and KL is the Kullback-Leibler divergence. The solution is

readily given by P = . However, the sum in equation

6 is over an exponential number of states, and is generally
intractable.

At this point one can make various choices in making an
approximation to the optimization problem defined in
equation 6. The CVM approximation fits into this frame-
work as follows. The approach is to replace P with the
product

This expression deserves some explanation and motiva-

tion. The labels α ∈ B run over the set of basic clusters B. A

cluster α consists of a set of nodes xα = { , , ..., }

which can in principle be chosen freely. However, the idea
is to choose them such that the corresponding marginal

distributions Qα (xα) are tractable for exact computation.

Essential to the CVM approximation is that the clusters α
are defined on overlapping subsets of nodes: a single
node, or even a subset of nodes, can occur in several of the

basic clusters α ∈ B. Although the product2 of the cluster
marginals may not be a good approximation of the full
distribution, the approximation is designed such that the
cluster marginals Qα (xα) are accurate approximations of

the exact marginals P (xα).

From the set of the basic clusters B follows the definition
of the set of clusters M. The set M contains all clusters that
can be constructed by taking intersections of basic clusters
α ∈ B, intersections of intersections of basic clusters α ∈
B, and so forth. Defining U as B ∪ M, the coefficients αβ
are defined by

where αγ = 1, ∀γ ∈ B. These coefficients are known as the
Moebius numbers or over counting numbers.

How can the form of the distribution of equation 7 and
the coefficients of equation 8 be justified? If the Bayesian
network has no loops3 then the exact distributions is of
the form 7 with αi = {i, π (i)}, B = {αi}. If the Bayesian net-
work does have loops, this is not true. However, due to the
evidence, many variables become effectively independent
and a choice of the basic clusters B exists such that the
approximate marginal distributions Qα (xα) are very close
to the exact marginals P (xα).

Figure 11 shows an example Bayesian network and a
choice of clusters indicated by dotted lines, specifying a
particular CVM approximation. We have the variables cor-
responding to the paternal (p) and maternal (m) gene of
the founder individuals 1 and 2 and the child 3, for both
locus 1 and 2; the index i of the individual is subscripted,

the index l of locus is superscripted:  and . Then

we have the paternal and maternal meiosis indicators of

individual 3, also for both loci:  and  respectively.

In this example, we have chosen the following clusters α
∈ B that will determine the approximation:
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Clusters α1 and α2 contain all variables of locus 1 and 2
respectively; clusters α3 and α4 contain the paternal and
maternal meiosis indicators respectively that link the two
loci. These clusters have the following intersections β ∈ M:

In this example there are no intersections of intersections
of the basic clusters α ∈ B. This choice of the clusters leads
to the following expression for equation 7:

Approximate free energies
We now discuss the optimization problem of equation 6,
which is to be redefined in terms of the cluster marginals.
Inserting the CVM approximation corresponding to equa-
tion 7 into expression 6, we obtain

where the minimization is subject to normalization con-
straints
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and consistency constraints

Again, aγ are the Moebius numbers. The consistency con-
straints ensure that if two clusters have a non-empty inter-
section, the marginal distributions on the nodes in the
overlap are consistent.

In equation 9 we have introduced the free energy Fγ (Qγ) of
cluster γ ∈ U:

where

Ψγ contains all conditional probability tables that are
defined on subsets of nodes in cluster γ. The optimization
problem in equation 9 is now in terms of the distributions
Qγ (xγ), which are tractable by choice. The intractable opti-
mization problem of equation 6 has been turned into a
tractable optimization problem, by substituting the exact
distribution P the product Q defined in equation 7. In the
next section we will discuss how the optimization prob-
lem of equation 9 can be solved efficiently.

Returning to the example of figure 11, we can now write
down the corresponding free energy which is to be mini-
mized with respect to the cluster marginals Qα (xα) and Qβ
(xβ):

Here the Moebius numbers are in boldface. The minimi-
zation is subject to normalization and consistency con-
straints. For example, the consistency constraint between
clusters α1 and β1:

In the example, we have put all meiosis nodes into differ-
ent clusters. In practice this gives inaccurate approxima-
tions; it turns out to be neccessary to join all paternal and

maternal meiosis indicators in one cluster, because of the
strong correlations between these variables. The reason is
that if the phase in one of the genotypes of the parents is
reversed, for a given state of the meiosis indicators differ-
ent alleles are transmitted to the children.

Minimizing the CVM free energy
Minimizing the CVM free energy is difficult, since the
functional FCVM (Q) is high-dimensional and generally
non-convex. Yedidia et al. [13] derived an inference algo-
rithm based on the Cluster Variation Method, called Gen-
eralized Belief Propagation (GBP). This fixed point
iteration algorithm is not guaranteed to converge, because
of the non-convexity of the CVM free energy. Convergent
algorithms were proposed by Rangarajan et al. [26] and
Teh et al. [27] and more recently by Heskes et al. [28].
These so-called double loop algorithms minimize FCVM
(Qγ) by iteratively improving a convex upper bound on the
non-convex functional FCVM (Qγ) that can be minimized
by fixed point iteration. The double loop algorithm
always converges to a (local) minimum of the free energy.

We use the double loop approach described in [28].
Although single loop algorithms [13] in some cases may
converge, often they require damping of the fixed point
equations and it can be difficult to find a good trade-off
between efficiency and robustness of the algorithm. Dou-
ble loop algorithms can be slower when single loop algo-
rithms converge, but the setting of the parameters of the
double loop algorithm is less critical and convergence is
guaranteed in theory.

We will give an outline of the algorithm; for full details we
refer to [28]. The starting point is the issue of the non-con-
vexity of FCVM (Q). The free energy of each cluster, Fγ (Qγ
(xγ)), is convex in terms of the approximate marginals Qγ
(xγ). This can be seen by writing it out:

Here we have introduced the energy E (Qγ) and entropy S
(Qγ). These names stem from statistical physics, where the
Cluster Variation Method is used to compute properties of
certain metals that can be described as systems of interact-
ing magnetic spins. The energy term is linear in the mar-
ginal distribution Qγ. By differentiation it can be seen that
the minus entropy has a positive second derivative, and
therefore – S (Qγ) is convex.

We now take a look at the CVM free energy again and
identify the convex and concave terms:
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Here M+ is the set of clusters β ∈ M : aβ > 0 and M- ∈ M :
aβ < 0. Since all free energies are convex, clusters β ∈ M-

with negative Moebius numbers have concave contribu-
tions to the total free energy FCVM (Q), which therefore
becomes non-convex.

The double loop algorithm is based on the following idea.
Since the fixed point iterations as employed in GBP con-
verge if the free energy is convex, a convergent algorithm
can be constructed by iteratively minimizing and improv-
ing convex upper bounds to the CVM free energy. Let's
denote the convex upper bound by Fconv (Q, Q'). Define

 as the collection of marginal distributions (i.e. cluster
marginals) that are normalized and satisfy all constistency
constraints between overlapping marginal distributions.
Following [28], if the upper bound is at least twice differ-
entiable and satisfies the following properties:

1. Fconv (Q, Q') ≥ FCVM (Q) ∀ Q, Q' ∈ 

2. Fconv (Q, Q) = FCVM (Q) ∀ Q ∈ 

3. Fconv (Q, Q') is convex in Q ∈ , ∀ Q' ∈ ,

then the algorithm

with Qn the approximate marginals at iteration n, is guar-
anteed to converge to a local minimum of the CVM free
energy FCVM(Q) under the appropriate constraints. The
free energy decreases with each iteration, since

where the first inequality follows from condition 1 (upper
bound) and the second from the definition of the algo-
rithm. Condition 2 (touching) in combination with dif-
ferentiability ensures that the algorithm is only stationary
in points where the gradient of FCVM is zero. By construc-

tion, Qn ∈  for all n.

A convex upper bound can be obtained easily by bound-
ing the concave contributions to the free energy. Since the
energy term in the free energy of each cluster is already
convex, only the concave entropy terms of clusters with
negative Moebius number need to be bounded. A convex
upper bound on a concave entropy term can be achieved
by linearizing it:

which directly follows from KL (Qβ, ) ≥ 0. Putting this

into expression 10, we obtain for the convex upper
bound:

We now see that the both the energy Eβ (Qβ) and the

bounded entropy Sβ (Qβ, ) are linear in the cluster

marginal Qβ (xβ). We can therefore simplify expression 11

by redefining the energies of the basic clusters α ∈ B:

The convex upper bound becomes

This upper bound can be minimized using the single loop
algorithm described in [13].

Thus, the double loop algorithm consists of an outer loop
and an inner loop:

Outer loop : compute convex upper bound 12 with
Q' = Qn;
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Inner loop : minimize Fconv(Q, Q'), using single loop
fixed point interations, yielding Qn+1.

The procedure is illustrated in figure 12.

We have described the double loop algorithm with the
case where all subclusters with negative Moebius numbers
are bounded. However it is possible to bound convex
entropy contributions of sub-clusters with positive Moe-
bius numbers as well. This tends to sharpen the bound
because then the bounding of the convex entropy terms
counters the effect of bounding concave entropy terms. An
advantage of this bound is that the inner loop iteration
scheme becomes much simpler. This is the bound that we
have used for the simulations in this article. Even tighter
bounds can be obtained by not bounding all concave
entropy terms such that Fconv is convex on the constraint
subset. We refer to [28] for more details on the specific
conditions.

Applying the Cluster Variation Method to linkage analysis
In this section we describe how we apply the Cluster Var-
iation Method to estimate LOD scores. We outline the
algorithm for the case that the pedigrees is not inbred,

which is the case for which we have performed simula-
tions.

From the definition of the Bayesian network in equation
3 it follows that the exact likelihood of the phenotypes T
conditional on the marker genotypes M can always be
rewritten as:

The first factor on the right hand side concerns the likeli-
hood of the trait data given an inheritance vector vT on the
trait locus. The second factor is a distribution over trait
locus inheritance vectors, conditional on marker loci
inheritance vectors, vM. The last term is the distribution
over marker loci inheritance vectors conditional on the
marker data M, the marker allele frequencies and the
recombination frequencies θ specified by the marker map.
Essentially this decomposition is possible because the
marker and trait loci are connected only through the mei-
osis indicators; the model can be viewed as a Hidden
Markov Model where the meiosis indicators v are the hid-
den variables.

Outline The decomposition of the probability distribu-
tion P (T|M, f, t, m, θ, λT) of equation 13 is central to our
approach. We now give an outline of the algorithm and
then discuss each step of the algorithm in more detail.

1. The first step of the algorithm is to make the following
approximation with the Cluster Variation Method:

where Qγ (xγ) are the approximate marginal distributions
over clusters γ ∈ U = B ∪ M, and αγ the corresponding
Moebius numbers. The marginals Qγ are obtained with
the double loop algorithm described in the previous sec-
tion. This step is performed only once; the trait locus has
no part in this approximation.

2. In the second step, the likelihood of trait data is com-
puted for each location of the trait locus, using the
approximate distribution over inheritances on the marker
loci:

for each position of the trait locus λT :

P

P

P

T

T

T

T | , , , , ,

, , ,

, ,

, , ,

M f t m

T G v f t

v v
v v G G

θ

θ

λ

λ

( ) =
( ) ×

( )

∑ |

|

T

T M

T M T M

PP v G M mM M, | , , ( )θ( ) 13

P QM M
U

v G M m x, | , ( ), ,θ γ
γ

( ) ≈ ( )
∈
∏ γ

γa 14

Illustration of the double loop algorithmFigure 12
Illustration of the double loop algorithm. At iteration n 
+ 1, in the outer loop the convex upper bound Fconv (Q ,Qn+1) 
to FCVM(Q) is computed, touching FCVM (Q) at Qn. The unique 
minimum of the convex upper bound is reached using a single 
loop fixed point iteration scheme in the inner loop and is 
attained at Qn+1. At this point an outer loop and an inner 
loop of the double loop algorithm have been completed, and 
a new upper bound to FCVM (Q) at Q1 is computed in iteration 
n + 2.
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where we have substituted equation 14 into equation 13.
The CVM approximation expressed by the product in
equation 14 has the consequence that if the pedigree is
not inbred, the calculations involved in step 15 can be
performed efficiently.

3. Finally, the LOD scores for each location λT are given by
equation 4:

Step 1 Simulations indicate that approximating the full
distribution P (T, M|f, t, m, θ, λT) with the Cluster Varia-
tion Method can give bad results when the inheritance
implied by the trait data T is very different from the inher-
itance implied by the marker data M for a given location
of the trait locus. Therefore we choose to approximate the
distribution over marker loci inheritance vectors
P (vM, GM|M, m, θ) independently of the trait data T.

In terms of the conditional probability tables of the Baye-
sian network, we have

Here the subscript l runs only over marker loci. This is the
multi-locus Bayesian network described previously, but
without the trait locus. We make the CVM approximation

Now consider for the remainder of this section the case
where the set of basic clusters B consists of the clusters

where ci are the children in nuclear family i in the pedi-
gree, πi are the parents in nuclear family i, G and v are the
corresponding genotype and meiosis nodes and (l, l + 1)
represent two adjacent marker loci in the marker map. The
subscript i runs over all nuclear families in the pedigree,
and the subscript l = (1,..., LM - 1), with LM the number of
marker loci. This is exactly cluster choice C1 of figure 5A.

Given the conditional probability tables that define the
Bayesian network in equation 16, the approximate mar-
ginals can be obtained by minimizing the CVM free
energy FCVM (Q) of equation 9 corresponding to the clus-
ters defined in expression 17. The minimization is done
using the double loop algorithm.

Step 2 In this step the likelihood of trait data is computed
using the approximate distribution over inheritance vec-
tors vM on the marker loci. This computation entails the
summation

Because of factorization assumed by the CVM approxima-
tion with the clusters defined in expression 17, this com-
putation can be done efficiently. Suppose we would like
to calculate the likelihood of the trait data T for the case
where the trait locus is located between the fourth and
fifth marker:

...M3 → M4 → T ← M5 ← M6... .  (19)

Given the marginals , we can derive a distribu-

tion over inheritance vectors vT on the trait locus. This is

possible because the meiosis events on the trait locus are
not directly observed, but only indirectly through the

observed trait data T. We define  through the relation

Here Qα is the approximate marginal computed with CVM

only on the adjacent marker loci (l, l + 1) and

 is the conditional probability table that

defines the coupling between the meiosis indicators in the

P

P

P

T

T

T

T M f t m

T G v f t

v v

v v G G

| , , , , ,

, , ,
, , ,

θ

θ

λ

λ

( ) ≈
( ) ×

( )

∑ |

| , ,

T

T M

T M T M

QQ
a
γ γ

γ

γ x( )∏ , ( )15

LOD λT

T

f t m

T M f t m

T f t

, , ,

, , , ,

,

θ

θ λ

( ) =

( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

log
,

.10
P

P

P P

P P

M M i
l

i
l

li

i
l

i
l

l l i
l

v G M m M G

v v G

,

|

F,NF

, | , |

, ,

θ

θ

( ) = ( )
× ( )

∏∏
∈

−
−

1
1 ||

| . ( )

( )v G

G m

i
l

i
l

li

l

li

P

,
NF

F

π( )
× ( )

∏∏

∏∏
∈

∈
i
l 16

P QM M
U

v G M m x, ,, ,θ γ
γ

( ) ≈ ( )
∈
∏ γ

γa

αi,l
l l l l l

i i i i i i
= { }+G v G v Gc c c, , ,G ,c

+1 +1
π π, , ( )l 1 17

P

P

P Q

T

T

T
a

T M f t m

T G v f t

v v

v v G G

, , , , ,

, , ,
, , ,

θ

θ γ
γ

λ

λ

( ) ≈

( )

( )

∑ T

T M

T M T M

, , xxγ
γ

( )∏ . ( )18

Q
Ul lγ ∈ 4 , 5

Qα
~

Q

Q P

l l l l

l l l l
i
l

i
l

i

α

α
α

v G v G

v G v G v v

, , ,

, , , | , .
~

+ +

+ + +

∈

( ) ≡

( ) ( )

1 1

1 1 1 θ∏∏

P i
l

i
lv v| ,+( )1 θ
Page 15 of 17
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:S1
Bayesian network. As both of these terms are known,

together they define . We can now define a distribu-

tion over trait locus inheritance vectors as follows:

Summing over all states of the trait locus meiosis indica-

tors { } yields again Qα:

As a result we have an effective distribution over trait locus
inheritance vectors defined by the following product. For
the example where the trait locus is located between
marker 4 and marker 5, it is given by:

Note that the marginal distributions of the intersections
are the unprimed Qβ, since we have equality 20 and the
fact that the trait meiosis nodes are not contained in any
intersection of the basic clusters α ∈ B. If the pedigree is
not inbred, this product defines a proper probability dis-
tribution.

The summation in equation 18 now becomes

where we have defined l (λT) as the pair of markers flank-
ing the trait locus to the left and right. We now observe
that if the pedigree is not inbred, the summation involved
in equation 21 can be performed efficiently with the junc-
tion tree algorithm. If the pedigree is too inbred, then this
last step can be done using an additional CVM approxi-
mation.

Step 3 The last step is straightforward once the likelihood
of the trait has been computed for every location of the
trait locus in the second step.

A heuristic for detecting inaccurate approximations
The approach we have outlined here allows for a heuristic
that indicates whether the approximation of the trait data
likelihood conditional on the approximate marginals
over marker loci is not accurate. We compute the likeli-
hood of the trait data for a given location of the trait locus
from the marginals on the marker loci flanking the trait
locus. However, if the trait locus is located at the exact
position of a marker, there are two possibilities for the
marker loci l (λT). Suppose the trait locus is at marker l3,
then one could take either the marginals defined on
marker loci (l2, l3) or the marginals defined on marker loci
(l3, l4). The likelihood of the trait data must be the same
for either choice. However this only holds if the approxi-
mation is valid. Therefore, in the case that the trait locus
is located at a marker, we compute the LOD score for both
options to detect a possible inconsistency, indicating an
inaccurate approximation. Conversely, we cannot guaran-
tee that if there is no inconcistency, the approximation is
accurate.

Preprocessing
Currently we apply three preprocessing steps.

1. The phase of the genotypes of the founders can be
clamped on one marker locus as this does not change the
likelihood.

2. In this step, genotypic configurations (assignments of
alleles to the genotypes of the individuals) that are not
consistent with the observed marker alleles M, are
removed from the cluster potentials ψα, α ∈ B. First we run
the double loop algorithm on each marker locus seper-
ately. Then some states xα in the cluster marginals Qα (xα)
will be assigned zero probability, because the correspond-
ing genotypic configuration is not consistent with the
marker genotypes observed for that locus.

As an example consider a bi-allelic marker. If both parents
have genotype (1, 1), then the children cannot have the
genotype (1, 2). Consequently, any state in a cluster mar-
ginal which corresponds to a child having genotype (1, 2)
will have zero probability and does not contribute to the
likelihood. These states can therefore be removed from
the potentials.

3. Nodes that are not in any intersection of the basic clus-
ters B can be integrated out from the potentials ψα before
running the double loop algorithm. If individuals are not
genotyped this can give substantial reductions in the
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number of states per cluster marginal that have to be
stored in memory.
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Notes
1It is also possible to choose the parameterization

, which corresponds to reversing the

direction of the links. This choice is equivalent.

2We explicitly do not say that Q is also a probability dis-
tribution, because normalization of this product is not
guaranteed. This is the price that is paid for having a trac-
table optimization problem of the form of equation 9.
The reason that normalization of the product cannot be
guaranteed is that the clusters α ∈ B are defined on subsets
of variables that are not disjoint. Thus computing the nor-
malization constant of the product of marginals is as com-
plex as computing the exact likelihood P(e). It is possible
to define a factorization in terms of disjoint subsets of var-
iables. This factorization can be guaranteed to be normal-
ized, since normalization of the marginal distributions on
disjoint subsets of variables ensures normalization of the
product of the marginal distributions. Such an approxi-
mation does not fit into the framework of the Cluster Var-
iation Method. Exactly because the subsets of variables are
disjoint and correlations between variables in disjoint
subsets are neglected, the approximation tends to be less
powerful.

3By following the links (ignoring direction) there is only
one path from one node to another.
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