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Abstract: In this study, Bi2WO6 was prepared by the hydrothermal method. The effects of reaction
temperature (150/170/200 ◦C) and reaction time (6/12/24 h) were investigated. The role of strongly
acidic pH (1 >) and the full range between 0.3 and 13.5 were studied first. Every sample was
studied by XRD and SEM; furthermore, the Bi2WO6 samples prepared at different temperatures were
examined in detail by EDX and TEM, as well as FT-IR, Raman and UV-vis spectroscopies. It was
found that changing the temperature and time slightly influenced the crystallinity and morphology
of the products. The most crystallized product formed at 200 ◦C, 24 h. The pure, sheet-like
Bi2WO6, prepared at 200 ◦C, 24 h, and 0.3 pH, gradually transformed into a mixture of Bi2WO6 and
Bi3.84W0.16O6.24 with increasing pH. The nanosheets turned into a morphology of mixed shapes in
the acidic range (fibers, sheets, irregular forms), and became homogenous cube- and octahedral-like
shapes in the alkaline range. Their band gaps were calculated and were found to vary between 2.66
and 2.59 eV as the temperature increased. The specific surface area measurements revealed that
reducing the temperature favors the formation of a larger surface area (35.8/26/21.6 m2/g belonging to
150/170/200 ◦C, respectively).

Keywords: Bi2WO6; hydrothermal synthesis; full pH range; nanostructures; morphology

1. Introduction

Metal tungstates (MWO4, M = Ca, Sr, Mn, Cd, Pb, Fe, Bi, etc.) belong to a family of compounds
rich in potential applications, and thus are the focus of many studies. Among their valuable features,
one can find favorable photocatalytic and magnetic properties [1–7], as well as excellent luminescent
activity [8–12], making them a candidate for luminescence thermometry, optical heaters, and appropriate
media for lasers. Furthermore, they have potential in the field of gas or humidity sensing [13–18], but
can be also used as an electrode material in Li+/Na+ ion batteries, or as supercapacitors thanks to their
great electrochemical properties [19–24].
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Among them, Bi2WO6 is one of the most studied materials because of its remarkable photocatalytic
activity and favorable band gap (approximately 2.70 eV) [25–34]. It can be synthetized in many
ways such as sol-gel [25,35,36], the solvo- and hydrothermal method [33,37–43], spray pyrolysis [44],
precipitation [1,45], or even solid-state reaction [1,46]. The most popular among them is the hydrothermal
process, because of its simple apparatus and easy implementation. It also has the benefit of tailoring the
crystalline structure, morphology, size of the specific surface area, and other characteristics of products
through changing the synthesis parameters. Therefore, knowledge about the role of these parameters
is essential. So far, numerous studies have reported on the effect of temperature, time, amount of raw
materials/ additives and pH in changing the morphology (flakes, sheets, spherical figures, rods, flower
or nest-like architectures, etc.) [24,43–52]. There are some studies focusing on the effect of changing the
pH at 200 ◦C, however, in these works, the very acidic (below pH 1) and very alkaline (above pH 13)
ranges were not studied. In addition, in these works, the full pH range was not investigated, but rather
only a part of it, that is, between pH 1–11, 2–12, 4–8, and 4–11 [26,53–59].

In this report, we present the study of the effect of the full pH range (0.3–13.5) in the hydrothermal
preparation of Bi2WO6. We also examined the effect of reaction temperature (150/170/200 ◦C) and
reaction time (6/12/24 h), in order to find the most appropriate parameters for the highly crystallized
products. We studied the crystalline phases and the obtained morphology of the products by XRD and
SEM, respectively. Moreover, the Bi2WO6 samples prepared at different temperatures were further
examined by EDX, TEM, FT-IR, Raman, and UV-vis, and their band gaps and specific surface areas
were also determined.

2. Experimental

2.1. Hydrothermal Treatment

All of the chemicals were purchased from Sigma Aldrich (Darmstadt, Germany) and used without
any further purifications.

For a typical synthesis, 0.49 g (0.0015 mol) Na2WO4·2H2O was dissolved in 9 mL 2 M HNO3

(solution A) and 1.50 g (0.0030 mol) Bi(NO3)3·5H2O was dissolved in 30 mL ion-exchanged water
(solution B). Then, solution A was added drop by drop to solution B, which was followed by the
formation of a light yellow precipitate. The pH was adjusted to the specified value by NaOH solution.
After stirring for 30 minutes at 500 rpm (DLAB MS-H-PRO+) (DLAB. Instruments Ltd., Beijing, China),
30 mL of solution was transferred into a 45 mL stainless steel Teflon-lined autoclave (Parr Instruments,
Moline, United States) and put into an electric furnace (Nabertherm L9/11/B410) (Nabertherm Ltd.,
Lilienthal, Germany) at particular temperatures and times. After the heat treatment, the autoclave was
cooled down to room temperature, the solution was filtered, and the yellowish precipitate was washed
several times with water and ethanol. Finally, the sample was dried in a drying oven (Memmert Ltd.,
Schwabach, Germany) at 60 ◦C for 2 h.

The hydrothermal synthesis and their conditions are listed in Table 1.

Table 1. Summary of the carried out hydrothermal reactions.

Sample Temperature (◦C) Time (h) pH Crystalline Phase(s)

1 150 24 0.3 Bi2WO6

2 170 24 0.3 Bi2WO6

3 200 24 0.3 Bi2WO6

4 200 12 0.3 Bi2WO6

5 200 6 0.3 Bi2WO6

6 200 24 0.6 Bi2WO6

7 200 24 1.25 Bi2WO6
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Table 1. Cont.

Sample Temperature (◦C) Time (h) pH Crystalline Phase(s)

8 200 24 2.5 Bi2WO6

9 200 24 5.5 Bi2WO6

10 200 24 7.5 Bi2WO6, Bi3.84W0.16O6.24

11 200 24 9.5 Bi2WO6, Bi3.84W0.16O6.24

12 200 24 11.5 Bi2WO6, Bi3.84W0.16O6.24

13 200 24 13.5 Bi2WO6, Bi3.84W0.16O6.24

2.2. Characterization

The crystalline phases were studied by XRD (X-ray Diffraction) using a PANanalytical X’Pert
Pro MPD X-ray diffractometer (Malvern Pananalytical, Almelo, The Netherlands) with Cu Kα

radiation (λ = 0.15418 nm). For SEM (Scanning Electron Microscopy) and TEM (Transmission Electron
Microscopy) measurements, a LEO1540 XB (LEO Electron Microscopy Inc., Thornwood, United States)
and an FEI Tecnai G2 20 X-TWIN electron microscope (BIONAND, Malaga, Spain) operated at 200 keV,
respectively, were used.

For determination of the specific surface area, the as-prepared samples were evacuated at
150 ◦C for 24 h before the measurement. Then, low temperature N2 adsorption/desorption
isotherms were measured at −196 ◦C on a Nova2000e (Quantachrome) computer-controlled apparatus
(Anton Paar Ltd., Graz, Austria). The specific surface area (SBET) calculations were made using the
Brunauer–Emmett–Teller (BET) model [60].

Crystallite sizes were determined using the Scherrer formula: D = kλ/(β_mcosθ), where D (Å) is
the thickness of the crystallite size, k a constant (0.9), λ the wavelength of the X-ray source (1.5418 Å),
β the broadening of the XRD reflection (full width at half maximum), and θ (rad) the diffraction angle.
The (131) main reflection was chosen for the calculations.

For the elemental composition examinations (EDX), we applied a JEOL JSM 5500-LV instrument
(Jeol Ltd., Musashino, Japan). FT-IR (Fourier-Transformation Infra Red) spectra were recorded by
a Perkin Elmer 2000 FT-IR spectrometer (Perkin Elmer, Waltham, United States) between 4000 and
450 cm−1 applying KBr pellets (1 mg sample/ 300 mg KBr). Raman measurements were carried out by
a Jobin Yvon LabRam spectrometer (Horiba, Miyanohigashi, Japan) equipped with an Olympus BX41
optical microscope using a frequency doubled Nd-YAG laser (532 nm). Diffuse reflectance UV-vis
spectra were taken by a Jasco V-570 UV/VIS/NIR spectrometer (Jasco, Easton, United States).

3. Results and Discussion

3.1. Effect of Time and Temperature

The crystalline phases of 1–5 were investigated by XRD (Figure 1). On the basis of the XRD
patterns, 1–5 have five strong diffraction peaks at 28.4, 33.0, 47.3, 56.1, and 58.7◦, respectively, which
can be attributed to the orthorhombic Bi2WO6 phase (ICDD 01-079-2381, the main reflection (131)
is labeled). Sharp, well distinguished XRD peaks indicate the well-crystallized structure without
other peaks referring to impurities. Although the crystalline phases did not change, the crystallinity
increased as a result of the higher reaction temperature and time, confirmed by the reflections of 3
which are the sharpest and narrowest.

In Figure 2, the SEM images show the featuring morphology of 1–5. It is clear that the sheet-like
morphology is characteristic of all samples, independent of the applied reaction temperature and time.
At 150 and 170 ◦C, the sheets are 10–20 nm thick and have various sizes, and fiber-like forms also
appear (1–2, Figure 2). However, a homogenous sheet-like morphology formed at 200 ◦C consisting of
10–20 nm thick and 200–400 nm wide angular forms (3, Figure 2). Decreasing the time from 24 h to 12
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and 6 h, the obtained morphology changed, because not only angular sheets, but also curved discs and
fibers appear (4–5, Figure 2).Materials 2017, 10, x FOR PEER REVIEW  4 of 13 
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3.2. Effect of pH

When changing the pH, both the crystalline phases and the morphology go through
significant transformations.

On the basis of the XRD patterns of 6–12, in the acidic range from 0.6 to 5.5 pH, all samples
were identified as pure orthorhombic Bi2WO6 (ICDD 01-079-2383, the main reflection (131) is labeled,
Figure 3). In the alkaline pH range, from a pH value of 7.5 to 13.5, the crystalline phases of the samples
turned to a mixture of Bi2WO6 and Bi3.84W0.16O6.24 (ICDD 43-0447, 10–13, the main peak (111) is labeled,
Figure 3). It can clearly be seen that the XRD peaks of the Bi3.84W0.16O6.24 phase become gradually
stronger along with the increasing pH, and finally develop into the most significant reflections.
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The distinct, sharp XRD peaks of the samples prepared in the alkaline range (10–13) indicate
well-crystallized materials, in contrast with 6–9, which were synthetized using acidic pH (Figure 3).

Significant changes were also observed in the obtained morphology of 6–13 (Figure 4). In the
case of 6, 100–200 nm long fibers and other irregular shapes formed, while the morphology of 7 and
8 is composed of various sheet-like forms, together with irregular, curved figures of different sizes.
In 9, however, the Bi2WO6 phase appeared in the form of only sheets with 10–20 nm thickness. This
morphology is similar to 3, where the Bi2WO6 phase was also obtained with a nanosheet morphology.
Here, in the case of 9, however, the appearance of sheets is not so uniform, and the sheets have mostly
curved edges, not strictly angular.

Further increasing the pH, it was found that the sheet-like morphology gradually transformed
into small cubic and octahedral shapes. In the case of 10, where the Bi3.84W0.16O6.24 phase also
appears beside Bi2WO6, the morphology becomes a mixture of thin, only 10–50 nm and larger, even
100–300 nm thick sheets (10, Figure 4). As the ratio of crystalline Bi3.84W0.16O6.24 phase increases
in 11–13, the crystalline appearance turns into a cube and octahedral-like morphology (Figure 4).
In 11, these forms are uniform in size, between 100–200 nm, but in 12 and 13, where the ratio of the
Bi3.84W0.16O6.24 phase is much stronger than Bi2WO6, larger figures, with 200–300 nm edges, can be
observed as well.

It is known that at low pH values, the hydrolysis of Bi3+ is restrained because of the great amount
of H+ ions, and thus the nucleation rate of Bi2WO6 is favored against crystal growth. This indicates the
formation of many nanometer-sized Bi2WO6 nuclei whose sheet-like formation is derived from the
intrinsic anisotropic layered structure. In the alkaline range, however, the facile hydrolysis of Bi3+ ions



Materials 2019, 12, 1728 6 of 13

favors the crystal growth through precipitation with the also soluble WO4
2- anion, resulting not only in

a new phase (Bi3.84W0.16O6.24), but in cubes and octahedral shapes as well (Figure 4) [32,41,47,49,61–63].
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3.3. Further Characterization of Samples Synthesized at Various Temperatures

Further investigations were carried out using the pure Bi2WO6 samples (1–3), which were prepared
at 150, 170, and 200 ◦C, 24 h.

3.3.1. TEM, Specific Surface Area, Crystallite Size, and EDX

To further investigate the morphology of 1–3, TEM images were taken (Figure 5). In every image,
highly crystallized Bi2WO6 can be seen, which is self-assembled by many strongly agglomerated
nanosheets in good accordance with the SEM images.



Materials 2019, 12, 1728 7 of 13
Materials 2017, 10, x FOR PEER REVIEW  7 of 13 

 

 

Figure 5. TEM images of the Bi2WO6 synthetized at different temperatures. 

A comparison of the surface area of the samples obtained at different temperatures revealed that 
the largest area, 35.8 m2/g, belonged to 1, that is, to the sample prepared at 150 °C. 2 and 3, prepared 
at 170 and 200 °C, respectively, had a smaller surface (26 and 21.9 m2/g) because of the larger 
crystallite size developing at higher temperatures. This effect is well-known in the literature and has 
been already reported many times, as well as in the case of other materials. The higher temperature 
strongly influences the crystal growth, providing sufficient energy for smaller grains to grow and 
form bigger crystallites, while the specific surface area reduces [27,48,64–66]. This phenomenon 
corresponds with the calculated crystallite size of the samples, which are 16, 19.7, and 35for the 
sample prepared at 150, 170, and 200 °C, respectively. 

The EDX results (Table 2) show that only Bi, W, and O can be found in the samples with atomic 
percentages close to the expected values (EDX has ± 5%–10% relative error, which can be even higher 
in the case of elements with a lower atomic number). 

Table 2. Crystallite size, specific surface area, and EDX results of 1–3. 

 1, 150 °C 2, 170 °C 3, 200 °C 

SBET (m2/g) 35.8 26 21.9 

Crystallite size (nm) 16.0 19.7 35.0 

EDX (atom%) 

Bi 25.3 26.8 28.3 

W 14.9 13.2 17.1 

O 59.8 61.0 60.3 
A typical EDX spectrum can be seen in Figure 6. On the spectrum, only the signs of the main 

components appear (O, W, and Bi), indicating that no other elements referring to other phases or 
impurities are present.  

 

Figure 6. A typical EDX spectrum of the Bi2WO6 samples prepared at 150, 170, and 200 °C, 24 h. 

3.3.2. FT-IR, Raman, and UV-vis Spectroscopy Results 

In the FT-IR spectra of 1–3, between 500 and 1000 cm-1, the characteristic peaks of W–O modes 
can be observed (Figure 7). The band at 820 cm-1 belongs to the stretching vibration of Bi–O, and the 

Figure 5. TEM images of the Bi2WO6 synthetized at different temperatures.

A comparison of the surface area of the samples obtained at different temperatures revealed that
the largest area, 35.8 m2/g, belonged to 1, that is, to the sample prepared at 150 ◦C. 2 and 3, prepared at
170 and 200 ◦C, respectively, had a smaller surface (26 and 21.9 m2/g) because of the larger crystallite
size developing at higher temperatures. This effect is well-known in the literature and has been
already reported many times, as well as in the case of other materials. The higher temperature strongly
influences the crystal growth, providing sufficient energy for smaller grains to grow and form bigger
crystallites, while the specific surface area reduces [27,48,64–66]. This phenomenon corresponds with
the calculated crystallite size of the samples, which are 16, 19.7, and 35for the sample prepared at 150,
170, and 200 ◦C, respectively.

The EDX results (Table 2) show that only Bi, W, and O can be found in the samples with atomic
percentages close to the expected values (EDX has ± 5%–10% relative error, which can be even higher
in the case of elements with a lower atomic number).

Table 2. Crystallite size, specific surface area, and EDX results of 1–3.

1, 150 ◦C 2, 170 ◦C 3, 200 ◦C

SBET (m2/g) 35.8 26 21.9

Crystallite size (nm) 16.0 19.7 35.0

EDX (atom%)

Bi 25.3 26.8 28.3

W 14.9 13.2 17.1

O 59.8 61.0 60.3

A typical EDX spectrum can be seen in Figure 6. On the spectrum, only the signs of the main
components appear (O, W, and Bi), indicating that no other elements referring to other phases or
impurities are present.
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3.3.2. FT-IR, Raman, and UV-vis Spectroscopy Results

In the FT-IR spectra of 1–3, between 500 and 1000 cm−1, the characteristic peaks of W–O modes
can be observed (Figure 7). The band at 820 cm−1 belongs to the stretching vibration of Bi–O, and
the others below 750 cm−1 are assigned to the stretching and bridging stretching mode of W–O and
W–O–W, respectively [25,28,50,54,67].
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Figure 7. FT-IR spectra of the Bi2WO6 samples prepared at different temperatures.

Raman spectra show well distinct peaks revealing the Bi2WO6 structure (Figure 8). The double
peak at 800 cm−1 belongs to the antisymmetric and symmetric Ag modes of terminal O–W–O vibration.
The band at 710 cm−1 can be ascribed to the antisymmetric bridging mode originated in the tungstate
chain. The weak band appearing at 433 cm−1 is assigned to the antisymmetric mode of WO6 octahedral,
while at 310 cm−1, the translational mode of the simultaneous move of Bi3+ and WO6

6− can be found.
The band at 300 cm−1 corresponds to the mode of the WO2 terminal groups (Figure 1) [29,42,50,68,69].
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The diffuse reflectance UV-vis spectra of 1–3 reveal a definite absorption edge at 480–490 nm in
the case of all samples (Figure 9). 1–3 have visible light absorption ability as well, in good agreement
with their light yellow color.
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Their band gaps were also calculated using the equation αhυ = A
(
hυ− Eg

)n
, where α, hυ, A,

and Eg refer to molar absorption coefficient, photon energy, general constant, and band gap energy,
respectively. N depends on the direct or indirect allowed or forbidden type of the electron transition of
the material, and is 2 in the case of Bi2WO6, which is an indirect semiconductor. Plotting αhυ against
hυ (Tauc-plot), then drawing a tangent line onto the linear range and extrapolating, the band gap
energy can be determined. To approximate A, the Kubelka–Munk function was used. The calculated
band gaps are 2.66 and 2.68 eV in the case of 1 and 2, respectively, but for 3, it is only 2.59 eV (Figure 9).
These values are otherwise in good agreement with the values reported in the literature (2.59 and
2.81 eV) [28,31,33,34,70], and make the prepared Bi2WO6 samples promising candidates in the field of
photocatalysis. They show a slight temperature-dependent tendency, as the smallest band gap belongs
to 3, which was prepared at the highest temperature, and thus has the most ordered structure, while 1
and 2 are more similar to each other regarding the degree of crystallinity and atomic order, and thus
have a similar band gap value.

4. Conclusion

In this report, we successfully investigated the effect of reaction temperature (150/170/200 ◦C),
reaction time (6/12/24 h), and pH (0.3/0.6/1.25/2.5/5.5/7.5/9.5/11.5/13.5) on the obtained morphology
and crystalline phases in the hydrothermal preparation of Bi2WO6. Our aim was to study the full
pH range using very acidic (below pH 1) as well as very alkaline (above pH 13) ranges, because the
effect of these has not been examined yet. Pure, crystalline Bi2WO6 formed independently of the
used temperature and time at pH 0.3, but the crystallinity varied. It was enhanced as the time and
temperature increased. The morphology was, however, a mixture of 10–20 nm thick sheets and fibers
at 150 and 170 ◦C, 24 h, while it was consisted of uniform, angular nanosheets when the temperature
was 200 ◦C and 24 h was used. When the time was decreased to 12 and 6 h, the obtained morphology
contained sheets and other forms (discs, fibers) as well. Varying the pH resulted in significant changes
both in the crystalline phases and in the morphology. In the acidic range (from 0.6 to 5.5), all samples
were pure Bi2WO6. At 0.6 pH, the morphology emerged in irregular forms, while at 1.25 and 2.5 pH,
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it was a mixture of sheets and other irregular figures. When the pH was set to 5.5, however, Bi2WO6

was obtained in the form of nanosheets. Further increasing the pH, at values of 7.5/9.5/11.5 and
13.5, the samples contained Bi2WO6 and Bi3.84W0.16O6.24 phases, and the structure and morphology
gradually transformed into cube- and octahedral-like forms of the new phase. The pure Bi2WO6

samples prepared at 150/170/200 ◦C were studied in detail. EDX, TEM, as well as FT-IR, Raman, and
UV-vis spectroscopies revealed their elemental composition, sheet-like structure, and optical properties,
respectively. Their band gaps were calculated and it was found that they varied between 2.66 and
2.59 eV as the temperature increased. A comparison of the specific surface areas and crystallite sizes
showed that the larger the area, the lower the temperature (35.8/26/21.6 m2/g belonging to samples
prepared at 150/170/200 ◦C, respectively).
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