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Introduction

In cell culture, cellular senescence is defined as an irrevers-
ible state. To reach this state, cells first need to be arrested. At 
first, this arrest is reversible.1 However, over time, active MTOR 
and MEK/MAPK drive geroconversion (conversion to irreversible 
senescence), leading to a large morphology (hypertrophy), hyper-
functional and hyper-secretory phenotypes, hyper-elevated cyclin 
D1, and loss of replicative and regenerative potential (RP).2-7 For 
example, induction of ectopic p21 and p16 in HT1080 cells (HT-
p21 and HT-p16 cells) causes cell cycle arrest, which is reversible 
during 2 days.8-10 If p21 and p16 switched off, then most cells 
can recover and resume proliferation.8-10 It is most important that, 
during p21- and p16-induced arrest, MTOR and MEK are still 
active3,7 and drive cellular growth in size (hypertrophy) and loss of 
regenerative/replicative potential (RP). In the presence of IPTG, 
which induces ectopic p21 and p16, cells can remain senescent for 
a seemingly unlimited period of time. When IPTG is removed, 
senescent cells either cannot resume proliferation or die. This sys-
tem allows one to observe reversibility vs. irreversibility by switch-
ing on and off p21 by simple removal of IPTG. However, this 
model is restricted to one cell line. To study cellular aging in any 
cell line, including normal and primary cells, one needs a remov-
able drug, which acts on non-transfected cells (note: HT-p21 
and HT-p16 have IPTG- inducible exogenous gene). Majority 
of agents that induce arrest, such as doxorubicin, are not easily 

removable, and they are toxic or DNA damaging. Given that p21 
and p16 inhibit CDK 4/6, we chose a small-molecule CDK 4/6 
inhibitor, PD033299111,12 However, it is believed that p21 and p16 
cause senescence not by simply inducing arrest, but by running a 
putative senescence program including interaction with cytoplas-
mic proteins and trans-regulation of numerous genes. In our view 
on senescence, the role of p21 and p16 is mere inhibition of CDK 
4/6, while MTOR causes geroconversion to senescence.

Results

PD0332991 and p21 cause cyclin-D1-positive senescence
First we compared the effects of PD0332991 and IPTG-

induced p21 in HT-p21 cells. Like IPTG, PD0332991 did not 
inhibit phosphorylation of the MTOR target p70 S6K (on either 
Thr389 or Thr421/Ser424 phosphorylation sites) and ERK1/2 
(Fig. 1A). IPTG and PD0332991 equally hyper-induced cyclin 
D1 and E, as seen on days 1 and 3 (Fig. 1A). This confirmed 
that cyclin D1 hyper-induction is a common marker of gero-
conversion, regardless of which CDK inhibitor used (p21, p16 
or the synthetic small molecule PD0332991). Thus, PD0332991 
and IPTG caused identical effects, even though PD0332991 is 
a direct inhibitor of CDK4/6 and IPTG is acting via induction 
of ectopic p21 (Fig.  1A). Second, we compared the effects of 
rapamycin and U0126 on cyclin D1 induction. U0126 was more 
potent in inhibiting cyclin D1 in senescent cells. As expected, 
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unlike rapamycin, U0126 inhibited phosphorylation of the 
mostly “MEK-dependent site” (Thr421/Ser424) on p70S6K 
and predominantly on day 1 (Fig. 1A), while rapamycin com-
pletely inhibited phosphorylation of “MTOR site” (Thr389) and 
partially “MEK site” (Thr421/Ser 424) (Fig.  1A). In contrast, 
only U0126 inhibited ERK phosphorylation, a target of MEK 
(Fig.  1A). We conclude that hyper-induction of cyclin D1 is 
mostly regulated by MEK, and just partially via MTOR. Like 
IPTG, PD0332991 caused senescent morphology in HT-p21 
cells (Fig.  1B). This senescent morphology was partially sup-
pressed by co-treatment with rapamycin (Fig.  1B). Next, we 
investigated replicative potential (RP) of PD0332991-arrested 
cells after the drug was washed out, allowing quiescent cells to 
proliferate and form colonies, whereas senescent cells could not 
resume proliferation13 (Fig. 1C and D). Yet, PD0332991 (at non-
toxic concentrations) did not arrest every single cell and there-
fore senescent/quiescent cells coexisted with proliferating cells, 
which rapidly overgrew in the culture (Fig. 1D, right panel, no 
Noco). To avoid overgrowth of non-arrested cells during treat-
ment with PD0332991, we treated cells for the last 2 days with 
nocodazole to kill off proliferating cells, thus leaving intact only 

PD0332991-arrested cells (Fig. 1C–D), as described previously.13 
This method revealed that replicative potential of PD0332991-
arrested cells was low and comparable with that of IPTG-treated 
cells (Fig. 1D left panel, + Noco). Co-treatment with rapamy-
cin increased RP of both IPTG- and PD0332991-treated cells 
(Fig. 1D), confirming that PD0332991-induced senescence was 
MTOR-dependent. Furthermore, we investigated if the dura-
tion of treatment with PD0332991 affects the extent of gero-
conversion using a lower (0.5 µM) concentration of the drug. In 
agreement with data shown in Figure 1D, most cells were able 
to resume proliferation after 3.5 days of treatment with 0.5 µM 
PD0332991 (Fig. S1A). By day 7, however, most cells (~90%) 
acquired senescent morphology (Fig. S1B), and cells lost their 
RP (Fig. S1A).

Time- and MTOR-dependent senescence caused by 
PD0332991 in MEL 10 cells

We next investigated the effect of PD0332991 in MEL10 cells, 
which are prone to senescence. MEL10 cells are easily arrested 
by nutlin-3a, etoposide, and U0126. These cells are senescence-
prone not only because they are easily arrested, but also because 
they possess a resilient MTOR pathway, and none of the drugs 

Figure 1. Comparison of p21- and PD0332991-induced senescence in HT-p21 cells. (A) Immunoblot analysis. Cells were treated with IPTG and 1 µM 
PD0332991 with or without 500 nM Rapamycin or 10 µM U0126. Cells were lysed on day 1 and 3 and immunoblotting was performed with the indicated 
antibodies.(B) Beta-Gal staining. Cells were treated with IPTG and 1 µM PD0332991 with or without 500 nM Rapamycin. (C) RP: Schema of experiment 
for measuring RP, presented in (D). (D) RP in IPTG- and PD0332991- treated HT-p21 cells. Cells were treated with IPTG or 1 µM PD0332991 with or without 
500 nM rapamycin (R). After 1 day, 200 nM nocodazole was added in half of the wells (+Noco). After 3 days of drug treatment, drugs were washed out 
and cells were allowed to recover for 9 days and colonies were stained with crystal violet.
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used (nutlin, etoposide, or U0126) inhibit it.7,14 This creates a 
condition for geroconversion. At a wide range of concentrations, 
PD0332991 caused dephosphorylation of retinoblastoma protein 
(Rb) at Ser780, which is phosphorylated by CDK4/6, indicating 
that PD0332991 inhibited its target (Fig. 2). A longer exposure 
of the blot revealed residual phosphorylation of Rb at Ser 780 
at concentrations of 0.125–0.5 µM, indicating that some cells 
were not arrested on day 1. Importantly, PD0332991 did not 
cause pS6 dephosphorylation at any concentration used, thus 
creating a situation for geroconversion to occur. In fact, at all 
concentrations, PD0332991 induced cyclin D1, an early marker 
of geroconversion.7 This marker was decreased by co-treatment 
with rapamycin, which blocked S6 phosphorylation. Importantly 
rapamycin did not restore but even decreased Rb phosphoryla-
tion (see overexposed blot), consistent with continuous arrest of 
the cell cycle. In agreement, PD0332991 inhibited proliferation 
at the same concentrations, and rapamycin did not restore pro-
liferation, but in turn, it was cytostatic by itself (Fig. 3A and C). 
We also determined RP of the arrested cells after 3.5 and 7 days 
of treatment with PD0332991 (Fig.  3B and D). Loss of RP 
was prominent at 1–2 µM PD0332991 after 3.5 days treatment 
(Fig. 3B), and it was prevented by co-treatment with rapamycin. 
By day 7, cells treated with 0.5 µM PD0332991 completely lost 
RP, which was prevented by rapamycin (Fig. 3D). Thus, gero-
conversion was dependent on the duration of treatment. After 3.5 
days, cells started to acquire senescent morphology, which was 
not prominent, consistent with some retention of RP (Fig.  4). 
By day 7, all cells were senescent (Fig. 4), consistent with loss of 
RP (Fig. 3D). Rapamycin prevented both senescent morphology 
(Fig. 4) and loss of RP (Fig. 3D) in MEL10 cells treated with 
PD0332991.

Time- and MTOR- dependent senescence caused by 
PD0332991 in normal RPE cells

Next we extended our observations to normal RPE cells. At 
a wide range of concentrations PD0332991 inhibited Rb phos-
phorylation at CDK4/6 site Ser780 (Fig. 5A). In agreement, at 

the same concentrations, PD0332991 inhibited cell proliferation 
(Fig. 5B), but it did not inhibit the MTOR pathway (Fig. 5A). 
Cyclin D1 was induced as a marker of geroconversion. In agree-
ment, RPE cells showed decreased replicative potential (RP, 
Fig. 5C). Rapamycin preserved RP in PD0332991-treated RPE 
cells (Fig.  5D). Finally, we confirmed that U0126 prevented 
cyclin D1 induction during geroconversion, but it did not inhibit 
proliferation and Rb phosphorylation (Fig. 5A).

Discussion

Here we showed that the synthetic inhibitor of CDK4/6, 
p21, and p16 caused almost identical senescence phenotypes in 
HT-p21 cells. While inhibitors of CDKs cause cell cycle arrest, 
MTOR and MEK determine geroconversion and are responsi-
ble for the acquisition of hallmarks of senescence. p21 and p16 
affect some targets besides CDKs, which were considered to be 
related to the senescence program. Although PD0332991 may 
have other off-target effects, only CDKs are the common targets 
for p21, p16, and PD0332991. p21, p16, and PD0332991 do not 
inhibit MTOR, which, in turn, drives senescent phenotype, and 
rapamycin decelerates geroconversion caused by all 3 molecules. 

Figure  2. Immunoblot analysis of PD0332991-induced senescence 
in MEL10 cells. Cells were treated with indicated concentrations of 
PD0332991 with or without 10 nM rapamycin. After 1 day, cells were lysed 
and immunoblotting was performed with the indicated antibodies.

Figure 3. The effect of PD0332991 on proliferation and replicative 
potential (RP) in MEL10 cells. Cells were treated with the indicated con-
centrations of PD0332991 with or without 10 nM rapamycin. (A and B) 
After 3.5 days, proliferation (A) was measured by cell counting, as fold 
increase compared with initial (seeding) cell numbers. In parallel sets 
(B), drugs were washed out, and cells were allowed to proliferate, and 
RP was measured after 7 days of culture, as described in “Materials and 
Methods”. (C and D) After 7 days treatment, proliferation (A) was mea-
sured by cell counting, as fold increase compared with initial (seeding) 
cell numbers. In parallel sets (B), drugs were washed out, and cells were 
allowed to proliferate, and RP was measured after 7 days of culture, as 
described in “Materials and Methods”.
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This confirms the notion that a mere arrest in the presence 
of active MTOR may lead to geroconversion to senescence. 
Gerogenic conversion (geroconversion) without cell cycle arrest 
is associated with cancer15,16 and not coincidentally PI3K/MTOR 
and MEK/MAPK pathways are almost always activated in can-
cer.17-25 p16 is considered a marker of senescence,26-29 although it 
is rather a marker of cell cycle arrest, which may (or may not) 
be associated with senescence. A combination of cell cycle arrest 
(p16 or p21) with elevated cyclin D1 and active MTOR (phos-
pho S6-positivity) may be a precise marker of gerogenic conver-
sion (Fig. 6). Such gerogenic cells drive organismal aging,30 and 
rapamycin, which suppresses geroconversion,2-7,31-42 also delays 
age-related diseases and extends lifespan in mice.43-63 Whether 
inhibitors acting downstream of MTOR could suppress gerocon-
version is under initial investigation.64

Material and Methods

Cell lines and reagents
HT-p21 cells, derived from HT1080 human fibrosarcoma 

cells (ATCC) were previously described.8-10 In HT-p21 cells, 
p21 expression can be turned on or off using isopropyl-thio-
galactosidase (IPTG).8,9 HT-p21 cells were cultured as described 
previously.5,6 Melanoma MEL10 (formally, SK-MEL-147) were 
described previously.7,14 Normal retinal pigment epithelial RPE 
cell lines were obtained from (ATCC) were maintained in MEM 
plus 10% FBS. PD0332991 was purchased from Selleckchem. 
Rapamycin was obtained from LC Laboratories. IPTG 
(Invitrogen) was used in cell culture at final concentration 50 
µg/ml. U0126 was purchased from Sigma-Aldrich.

Immunoblot analysis
Immunoblot analysis was performed as described previ-

ously.5 The following primary antibodies were used: mouse 
anti-phospho p70S6K (Thr389), rabbit anti-phospho Thr389 
p70S6K and anti-phospho Thr421/Ser424 p70S6K, rabbit anti-
phospho ERK ½ (Thr202/Tyr204), and anti-phospho Ser780 
RB were purchased from Cell Signaling Biotechnology; mouse 

Figure 4. Senescent morphology of PD0332991-treated MEL10 cells. 
MEL10 cells were treated with 0.5 µM PD0332991 with or without 10 
nM rapamycin. After 3.5 and 7 days, cells were stained for beta-Gal. 
Bar: 100 µm.

Figure 5. The effect of PD0332991 on RPE cells. (A). Immunoblot analy-
sis: Cells were treated with the indicated concentrations of PD0332991 
with or without 10 µM U0126. Cells were lysed after 24 h. (B and C) 
Proliferation (B) and RP: replicative potential (C). After 7 days treatment 
proliferation (B) was measured by cell counting. In parallel set (C), drugs 
were washed out and cells were allowed to proliferate. RP was mea-
sured by counting after 6 days of culture. (D) The effect of rapamycin on 
RP of PD0332991-treated RPE cells. Cells were treated with 0.2 or 2 µM 
PD0332991 with or without 5 nM rapamycin (R). After 5 days treatment 
drugs were washed out and RP was determined.
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anti-cyclins D1 and E and anti-RB were obtained from Santa 
Cruz Biotechnology; mouse anti-p21 and rabbit anti-actin were 
purchased from BD Biosciences and Sigma-Aldrich, respectively. 
Secondary anti-rabbit and anti-mouse HRP-conjugated antibod-
ies were purchased from Cell Signaling Biotechnology.

SA-β-Gal staining
Beta-Gal staining was performed using Senescence-

galactosidase staining kit (Cell Signaling Technology) according 
to manufacturer’s protocol.

RP (regenerative/replicative potential) assay
Cells were plated at low density, treated with senescence-

inducing agents (IPTG or PD0332991) as indicated in figure 
legends. Cell numbers were determined at the end of treatment 
(initial cell numbers) and drugs were removed by washing. Cells 
were incubated in fresh drug-free medium for several days, as 
indicated in figure legends, and then final cell numbers were 
determined. RP was calculated as a ratio between final and ini-
tial cell numbers: a fold-increase in cell numbers after the drugs 
were washed out.

Colony formation assay
HT-p21 cells were plated at low density, treated with IPTG 

or PD0332991 with or without rapamycin. In some experi-
ments, after 1 day of treatment nocodazole was added as indi-
cated in schema in Figure 1C. Then, drugs were washed out, 
and cells were incubated in fresh drug-free medium for 6–7 
days. Plates were fixed and stained with 1.0% crystal violet 
(Sigma-Aldrich).
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Figure 6. Hyper-mitogenic signaling and markers of senescence. When 
the cell cycle is arrested, active MAPK and MTOR pathways drive gero-
conversion from arrest to senescence. Although p16 expression is com-
monly considered as a marker of senescence,26-29,65 p16 merely causes 
cell cycle arrest. It is hyper-mitogenic signaling via MAPK and MTOR 
that over-stimulates arrested cells, causing senescence. (Note: p16 can 
be also associated with aggressive cancer66 and may have anti-aging 
activities67). However, p16 is induced by hyper-mitogenic signaling (Ras, 
Raf, MAPK, and PI-3K/mTOR),68-76 rendering p16 a proxy marker of hyper-
mitogenic signaling and senescence (senescence = hyper-mitogenic 
signaling plus cell cycle arrest). The most reliable marker of senescence 
could be a combination of p16, cyclin D1 (Mek-dependent), and phos-
pho-S6 (MTOR-dependent).
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