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ABSTRACT In the coronavirus (CoV) disease 2019 (COVID-19) pandemic, highly se-
lective serological testing is essential to define exposure to severe acute respiratory
syndrome CoV 2 (SARS-CoV-2). Many tests have been developed, yet with variable
speeds to first results, and are of unknown quality, particularly when considering the
prediction of neutralizing capacity. The LIAISON SARS-CoV-2 S1/S2 IgG assay was de-
signed to measure antibodies against the SARS-CoV-2 native S1/S2 proteins in a
standardized automated chemiluminescence assay. The clinical and analytical perfor-
mances of the test were validated in an observational study using residual samples
(�1,500) with a positive or negative COVID-19 diagnosis. The LIAISON SARS-CoV-2
S1/S2 IgG assay proved to be highly selective and specific and offered semiquantita-
tive measures of serum or plasma levels of anti-S1/S2 IgG with neutralizing activity.
The assay’s diagnostic sensitivities were 91.3% and 95.7% at �5 or �15 days from
diagnosis, respectively, and 100% when assessed against a neutralizing assay. The
assay’s specificity ranged between 97% and 98.5%. The average imprecision of the
assay was a �5% coefficient of variation. Assay performance at 2 different cutoffs
was evaluated to optimize predictive values. The automated LIAISON SARS-CoV-2
S1/S2 IgG assay brings efficient, sensitive, specific, and precise serological testing to
the laboratory, with the capacity to test large amounts of samples per day; first re-
sults are available within 35 min, with a throughput of 170 tests/hour. The semi-
quantitative results provided by the test also associate with the presence of neutral-
izing antibodies and may provide a useful tool for the large-scale screening of
convalescent-phase plasma for safe therapeutic use.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for the CoV disease 2019 (COVID-19) pandemic, has spread at an alarming rate since

the first case, which tracked back to mid-November of 2019 in Wuhan, China (1).
Contraction and subsequent transmission accrue most prevalently from community
exposure, from nonhuman exposure, or among relatives living in proximity to symp-
tomatic or asymptomatic infected individuals. Due to the lack of readily available
diagnostics, inferior means of infection control, or the inability to triage and isolate
both acute and suspected cases as a consequence of space limitations, the COVID-19
pandemic, in placing increasingly excessive demands on the global health care net-
work, has unveiled a number of critical limitations (2).

Citation Bonelli F, Sarasini A, Zierold C, Calleri
M, Bonetti A, Vismara C, Blocki FA, Pallavicini L,
Chinali A, Campisi D, Percivalle E, DiNapoli AP,
Perno CF, Baldanti F. 2020. Clinical and
analytical performance of an automated
serological test that identifies S1/S2-
neutralizing IgG in COVID-19 patients
semiquantitatively. J Clin Microbiol 58:e01224-
20. https://doi.org/10.1128/JCM.01224-20.

Editor Melissa B. Miller, UNC School of
Medicine

Copyright © 2020 Bonelli et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Fabrizio Bonelli,
fabrizio.bonelli@diasorin.it.

Received 21 May 2020
Returned for modification 9 June 2020
Accepted 22 June 2020

Accepted manuscript posted online 24
June 2020
Published

IMMUNOASSAYS

crossm

September 2020 Volume 58 Issue 9 e01224-20 jcm.asm.org 1Journal of Clinical Microbiology

24 August 2020

https://orcid.org/0000-0003-2849-8085
https://doi.org/10.1128/JCM.01224-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:fabrizio.bonelli@diasorin.it
https://crossmark.crossref.org/dialog/?doi=10.1128/JCM.01224-20&domain=pdf&date_stamp=2020-6-24
https://jcm.asm.org


No safe vaccines have been developed for SARS-CoV-2 infections to date, and the
lack of currently available effective antiviral therapies, in spite of years of ongoing
research, are certainly hampering efforts to combat this pandemic. In addition, the
current molecularly based diagnostic tools utilized to diagnose infection, though
serving adequately as the only means available, are not suitable for mass screening, and
though many serological assays have been developed, no scientific data are available
to authenticate their effectiveness. Finally, once the World Health Organization (WHO)
recognized the SARS-CoV-2 outbreak as a public health emergency of international
concern on 30 January 2020, efforts have been hampered internationally, nationally,
and locally by a lack of coordinated guidance to properly inform public policymakers
and a lack of ready access to accurate and rapid testing.

There is a knowledge gap in understanding the efficiency of community transmis-
sion of SARS-CoV-2, including the contribution of mild or asymptomatic cases (1). As of
5 May 2020, global cases have surpassed 3 million, with 254,592 registered deaths (3).
Global mortality consequent to SARS-CoV-2 infection is running at 7.0%, with national
rates for France, Italy, Spain, the United Kingdom, Germany, and the United States
running at 14.9%, 13.7%, 11.7%, 15.0%, 4.2%, and 5.8%, respectively (4).

In view of these daunting numbers, effective, sensitive, and specific means for the
identification and laboratory confirmation of SARS-CoV-2 infection are urgently needed.
In response to these needs, DiaSorin has developed a highly sensitive, specific, auto-
mated, and contained chemiluminescence serological assay for the detection of SARS-
CoV-2 spike protein-specific antibodies with neutralizing potential from serum or
plasma to be used in diagnostic, epidemiological, and vaccine evaluation studies.
Specifically, it is envisioned that the test may be used (i) to screen infected health care
workers and the general population for recovery and/or past exposure; (ii) in epidemi-
ological studies characterizing the demographics of viral spread and the efficacy of
containment measures directed toward SARS-CoV-2 at the local, national, and interna-
tional levels; (iii) to screen convalescent-phase sera for both therapeutic and prophy-
lactic use, and (iv) to evaluate vaccine effectiveness in clinical studies.

MATERIALS AND METHODS
Assay format. The LIAISON SARS-CoV-2 S1/S2 IgG chemiluminescence assay is a recently developed

assay from DiaSorin designed to detect IgG antibodies in the serum or plasma of subjects and patients
exposed to SARS-CoV-2. The assay consists of paramagnetic microparticles (PMPs) coated with S1 and S2
fragments of the viral surface spike protein (5). Recombinant fusion antigens were expressed in human
cells (HEK-293) to ensure proper folding, oligomer formation, and glycosylation, providing capture
moieties more similar to those of the viral spike proteins, as processed by natural cellular cleavage (6–8);
this distinguishes the DiaSorin chemiluminescence immunoassay (CLIA) from commonly used enzyme-
linked immunoassays (ELISAs) where the antigens are presented on plastic plate surfaces and are
susceptible to significant denaturation consequent to passive adsorption to these hydrophobic surfaces
(9, 10). Distally biotinylated-S1 and biotinylated-S2 proteins were tethered to the surfaces of paramag-
netic particles coated with streptavidin to ensure optimal presentation of both S1 and S2 for access and
recognition by specific immunoglobulin within pathologic serum samples.

The automated assay format consists of a first incubation step (10 min) of S1/S2-coated PMPs with
a patient sample (20 �l of either plasma or serum) in assay buffer to allow the binding of IgG in the
sample specific to the antigens, followed by a wash step to remove unbound materials. Next, ABEI
[N-(4-aminobutyl)-N-ethyl-isoluminol]-labeled polyclonal goat anti-human IgG are added to the PMPs
and further incubated for 8 min. After a final wash cycle, starter reagents are added, and emitted relative
light units (RLU) proportional to the sample’s anti-S1/S2 IgG levels are converted to arbitrary units
(AU)/milliliter based on a standardized master curve. The automated assay is standardized based on a
pool of patient samples with high S1/S2 IgG titers. First results are available within 35 min, and the
throughput is 170 tests/hour.

Analytical assay performance. A 5-day precision study according to CLSI EP5-A3 guidelines was
performed using a panel of 6 plasma samples, prepared by either spiking or diluting as necessary to
obtain negative, slightly positive, and moderately positive samples. The panel samples were tested with
the LIAISON SARS-CoV-2 S1/S2 IgG assay in 6 replicates per run and 3 runs per day for 5 operating days
on one LIAISON XL analyzer (n � 90).

A cross-reactivity study was performed to evaluate other SARS viruses (human CoV-229E [HCoV-
229E], HCoV-HKU1, HCoV-OC43, and untyped HCoV), and samples from patients with conditions caused
by other viruses, other organisms, or atypical immune system activity (nuclear autoantibodies, herpes-
virus B, herpesvirus C, influenza A virus, influenza B virus, respiratory syncytial virus, Borrelia burgdorferi,
Mycoplasma pneumoniae, Epstein-Barr virus, cytomegalovirus, herpes simplex viruses 1 and 2, human
anti-mouse antibodies, parvovirus B19, rheumatoid factor, rubella virus, and varicella zoster virus).
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Samples for the evaluation were collected before October 2019, prior to the COVID-19 pandemic. In
addition, samples with potentially interfering factors, such as triglycerides, hemoglobin, bilirubin, cho-
lesterol, acetaminophen, ibuprofen, and biotin, were assessed with the LIAISON SARS-CoV-2 S1/S2 IgG
assay according to CLSI guidelines.

SARS-CoV-2 microneutralization assay (NT assay). A neutralizing assay described elsewhere was
used to determine the neutralization titer against SARS-CoV-2 (26). Briefly, 50 �l of diluted serum (4-fold
serial dilutions from 1:10 to 1:640) were added to an equal volume of viral suspension (tissue culture
infectious dose of 50 from a SARS-CoV-2 strain isolated from a symptomatic patient), incubated, and then
combined with Vero-E6 cells. After incubation, the cells were stained with Gram’s crystal violet solution.
Wells were scored to evaluate the degree of cytopathic effect compared to that of viral controls. The
neutralizing titer was the maximum dilution evidencing a reduction of 90% of the cytopathic effect. In
this study, a titer of �1:40 was considered positive. This test was used to confirm positive serological
samples used in the clinical studies and to determine the neutralization effectiveness of the samples for
the identification of convalescent donors living in the first Italian Red Zone (Percivalle et al., submitted
for publication).

Clinical samples. This observational study used deidentified fresh or frozen residual samples
collected between 2011 and April 2020 at the Policlinico San Matteo in Pavia, Italy, and at the Niguarda
Hospital in Milan, Italy. Sample groups included (i) paired samples (admission and discharge) from
non-intensive care unit (ICU), hospitalized patients with moderate symptoms affected by COVID-19
(confirmed by real-time PCR [RT-PCR]; n � 31); (ii) sets of samples (admission and follow-up samples)
from patients affected by COVID-19 and hospitalized in the ICU with severe symptoms (confirmed by
RT-PCR; n � 16); (iii) samples from patients affected by COVID-19 and hospitalized in the ICU with severe
symptoms (confirmed by RT-PCR; n � 21); (iv) samples from outpatients affected by COVID-19 testing
positive by RT-PCR (n � 37); (v) samples from subjects collected before the outbreak of COVID-19 (lab
routine, 2011; n � 1,140); (vi) samples from subjects not infected by SARS-CoV-2 but affected by other
coronaviruses, i.e., HCoV-229E, HCoV-HKU1, HCoV-OC43, or an untyped HCoV strain (n � 10); (vii) samples
from subjects testing negative by RT-PCR (n � 50); (viii) samples negative by the SARS-CoV-2 NT assay,
described in Materials and Methods, collected from subjects during the outbreak (n � 180); and (ix) NT
assay-positive samples collected from subjects during the outbreak (n � 124).

A summary of the patient groups is shown in Table 1. Pertinent additional information included
sample collection time, days from diagnosis (hospital or ICU admission), and severity of symptoms (mild,
moderate, severe). The protocol for this study (deidentified remainders) was determined to be exempt
under existing ethics committee regulations.

Diagnosis. Diagnosis was based on results from routine RT-PCR used in the clinical evaluation (11),
as well as NT assay results. Samples not infected by SARS-CoV-2 but affected by other coronaviruses were
classified by sequencing.

Statistical analyses. The statistical program R 3.5 and MedCalc 19.2 were utilized for all analyses
presented. A preliminary exploration using Box-Cox methodology suggested that statistical analyses be
done on the logarithmic scale due to skewed distribution of the measurements.

Data supporting figures and tables in this paper will be made fully available upon request.

RESULTS
Sample characteristics. Clinical assessment of the LIAISON SARS-CoV-2 S1/S2 IgG

assay was performed using various sample groups (Fig. 1). All the patient groups
categorized as positive for COVID-19 were significantly different from the negative
groups, with a P of �0.0001 as determined by a pairwise t test comparison with
Bonferroni multiplicity adjustment. Median S1/S2 IgG levels were 96.3 AU/ml (95%
confidence intervals [95% CI], 85.8 to 108.0 AU/ml; n � 64), 28.6 AU/ml (95% CI, 10.6 to
45.1 AU/ml; n � 67), and 15.5 AU/ml (95% CI, 5.7 to 32.2 AU/ml; n � 80) for intensive
care unit (ICU) patients, non-ICU hospitalized patients, and RT-PCR-positive outpatients,

TABLE 1 Summary of clinical sample types assessed in this observational study

Group
No. of clinical
samples (n � 1,609)

Hospital
stay ICU stay

SARS-CoV-2
RT-PCR positive

NTa

testing Serial samples

Paired COVID-19 31 Yes No Yes No Yes, admission (1st) and
discharge (2nd)

ICU serial 16 Yes Yes Yes No Yes
ICU 21 Yes Yes Yes No No
Outpatient positive 37 No No Yes No No
Pre-COVID-19 negative 1,140 No No Not tested No No
Infected with other CoVs 10 No No Not tested No No
COVID-19 negative 50 No No No No No
NT negative 180 No No Unknown Negative No
NT positive 124 Unknown Unknown Unknown Positive No
aNT, neutralization.
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respectively. Median levels of negative samples were 2.3 AU/ml (95% CI, 2.2 to 2.4 AU/
ml; n � 1,140), 2.4 AU/ml (95% CI, 2.1 to 2.9 AU/ml; n � 50), and 2.2 AU/ml (95% CI, 1.8
to 4.6 AU/ml; n � 10) for pre-COVID-19, RT-PCR-negative, and other coronavirus (non-
SARS-Cov-2) subjects, respectively. In addition, the ICU patient group had significantly
higher levels of S1/S2 IgG than the non-ICU, hospitalized patient group (P � 0.0001).
Table 2 further dissects the temporal component of this distribution, where early
samples with low levels of S1/S2 IgG present a low positive predictive agreement (PPA)
with RT-PCR results at a time �5 days from diagnosis (33.3%) that increases to 95.7%
at �15 days from diagnosis.

Clinical performance. A receiver operating characteristic analysis was fitted to
determine the best cut point supporting positive diagnoses from a group of 1,568
samples (188 positive samples) with an area under the curve (AUC) of 0.980 (95% CI,
0.960 to 0.990; P � 0.0001). The maximum Youden index occurred at a cut point of 9.4
(95% CI, �7.1 AU/ml to �12.1 AU/ml), with a sensitivity of 95% and a specificity of 97%.

The clinical performance of the LIAISON SARS-CoV-2 S1/S2 IgG assay is shown in
Table 3. The sensitivity was determined by investigating 211 samples collected longi-
tudinally over the course of time from 84 patients at admission and thereafter collected
variably up to 36 days. Infection with SARS-CoV-2 was confirmed by a positive RT-PCR

FIG 1 Distribution of SARS-CoV-2 S1/S2 IgG levels in various patient groups. All the patient groups
categorized as positive (RT-PCR positive, hospitalized, and in the ICU) are significantly different from the
negative groups (RT-PCR negative, pre-COVID-19, and infected with other HCoVs) at a P of �0.0001 (***),
as determined by a pairwise t test comparison with Bonferroni multiplicity adjustment. The ICU patient
group is significantly different from the hospitalized patient group (###, P � 0.0001).

TABLE 2 Longitudinal assessment of positive predictive agreement with an RT-PCR diagnosis for COVID-19 patientsa

No. of days from
diagnosis

No. of subjects

Cumulative no.
of S1/S2 IgG�

subjects/total PPA (95%CI)

First serial
measurement

Second serial
measurement

Third serial
measurement

Total S1/S2 IgG� Total S1/S2 IgG� Total S1/S2 IgG�

�5 84 28 28/84 33.3 (23.4–44.5)
6–14 7 7 71 62 1 1 70/79 88.6 (79.5–94.7)
�15 13 13 12 12 22 20 45/47 95.7 (85.5–99.5)
Total no. of subjects 104 83 23
aSerial samples from 104 COVID-19 patients positive by RT-PCR admitted to the hospital or ICU were tested with the LIAISON SARS-CoV-2 S1/S2 IgG assay. A value of
9 AU/ml was used as the cutoff for positivity. All samples in the same time brackets across measurements are from different patients, except for 3 samples from the
third serial measurement at �15 days.
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test at the early phase of infection at the time of diagnosis. Logarithmic values of
SARS-Cov-2 S1/S2 IgG are plotted over time with a fitted curve (Fig. 2), projecting
estimations of 5 days for an average sample to reach 15 AU/ml, with 92.9% of the
samples exceeding a threshold of 15 AU/ml by 5 or more days postdiagnosis. Table 3
compares the sensitivities and specificities consequent to the higher cutoff of 15 AU/ml
currently suggested by the manufacturer’s instructions for use to a lower cutoff of
9 AU/ml. Diagnostic sensitivity with the lower cutoff is calculated at 33.3% for the early
samples (�5 days after diagnosis) and 91.3% for samples collected �5 days postdiag-
nosis. Diagnostic sensitivity with the higher cutoff drops to 22.6% for the early samples
(�5 days after diagnosis) and 88.2% for samples collected �5 days postdiagnosis.
Conversely, specificity (from the testing of 1,140 stored residual laboratory samples
routinely collected before the COVID-19 outbreak) increased slightly from 97.1% to
98.5% at the lower and higher cutoffs, respectively. Specificities evaluated using all
negative samples were 97.0% and 98.1%.

Comparison to samples with neutralizing titers. How the results of a neutraliza-
tion (NT) assay compared to those of the LIAISON SARS-CoV-2 S1/S2 IgG assay was

TABLE 3 Clinical performance of the LIAISON SARS-CoV-2 S1/S2 IgG assay using 9 and
15 AU/ml as cutoffs based on RT-PCR diagnoses

Cutoff
(AU/ml)

Sensitivity or
specificity

Time period or
test result

LIAISON SARS-CoV-2 S1/S2 IgG assay

% of positive
samples 95% CI

No. of
samples

9 Sensitivity �5 days 33.3 23.4–44.5 84
�5 days 91.3 85.0–95.6 127

Specificity Pre-COVID-19 97.1 96.0–98.0 1,140
All negative results 97.0 95.9–97.8 1,380

15 Sensitivity �5 days 22.6 14.2–33.0 84
�5 days 88.2 81.3–93.2 127

Specificity Pre-COVID-19 98.5 97.6–99.1 1,140
All negative results 98.1 97.2–98.8 1,380

FIG 2 SARS-CoV-2 S1/S2 IgG measurements for 211 samples collected over the course of time from 84
patients at admission and variably thereafter up to 36 days. The upward trend was modeled using an
exponential regression [ln(IgG) � A � B · exp(C · days)]. The parameter A (4.58) represents the upper limit
to which the LIAISON SARS-CoV-2 S1/S2 IgG trends over time and corresponds to 98 AU/ml. A � B (1.63)
is the value at time zero corresponding to 5.1 AU/ml on the original scale. The parameter C (�0.112) is
the rate at which the curve moves up to the asymptote and corresponds to 1.1 AU/ml per day. The
dotted horizontal line is 15 AU/ml, the positive cutoff the assay. The curve cuts this at 5 days, giving an
estimate of the delay from diagnosis above which the patient is, on average, positive.

Automated Test for COVID-19-Neutralizing IgG Detection Journal of Clinical Microbiology

September 2020 Volume 58 Issue 9 e01224-20 jcm.asm.org 5

https://jcm.asm.org


evaluated by testing 304 samples collected during the outbreak from subjects whose
NT assay results were available; 180 were NT assay negative, and 124 were NT assay
positive (titer � 1:40). Positive agreement was 94.4% (95% CI, 88.8% to 97.2%), and
negative agreement was 97.8% (95% CI, 94.1% to 99.1%). The relationship between the
LIAISON SARS-CoV-2 S1/S2 IgG assay and NT assay-negative or NT assay-positive
samples portrays a nearly complete separation between the 2 groups, with medians of
2.4 AU/ml (95% CI, 2.2 to 2.6 AU/ml) and 61.8 AU/ml (95% CI, 50.3 to 70.7 AU/ml),
respectively (Fig. 3). In Fig. 4, the LIAISON SARS-CoV-2 S1/S2 IgG assay’s measurements
were separated into 3 semiquantitative groups (�40 AU/ml, 40 to 80 AU/ml, and
�80 AU/ml) and related to NT assay titers of �1:160, which is the threshold recom-
mended by the FDA guidelines for use in convalescent-phase blood transfusion.
Thirty-nine percent (17/43), 56% (24/43), and 87% (33/38) of the samples, respectively,
had NT assay titers of �1:160 (12). Furthermore, since the FDA guidelines also admit NT
assay titers of �1:80 as acceptable, additional leeway is granted toward use of the
LIAISON SARS-CoV-2 S1/S2 IgG assay to prescreen or assess blood donor samples for
potential convalescent-phase plasma/serum therapy; 92% (35/38) and 79% (34/43) of
the �80-AU/ml and 40- to 80-AU/ml groups, respectively, had NT assay titers of �1:80.

Analytical performance. The LIAISON SARS-CoV-2 S1/S2 assay was evaluated for
intra-assay imprecision using 6 samples with moderate, low, or negative S1/S2 IgG
levels over 5 days with multiple replicates and runs (n � 90). The average intra-assay
imprecision was a 2.8% coefficient of variation (2.8%CV) (range, 2.0 to 3.4%CV), and
total-assay imprecision averaged 3.2%CV (range, 2.7 to 3.9%CV).

Cross-reactivity with other coronaviruses was tested against 10 patient samples
positive by their respective RT-PCR tests to other coronaviruses (HCoV-229E, HCoV-

FIG 3 Distribution of the LIAISON SARS-CoV-2 S1/S2 IgG assay measurements compared to values for
neutralization-positive (titers � 1:40) and -negative (titers � 1:40) samples by the NT assay. Assay per-
formance is presented specifically for neutralization using 9 and 15 AU/ml as cutoffs.
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HKU1, HCoV-OC43, and HCoV-untyped) that maintained negative NT assay results for
SARS-Cov-2. Their LIAISON values ranged from 1.81 to 7.09 AU/ml, with an average of
3.45 AU/ml, and fell far below both cut points of 9 and 15 AU/ml, indicating the absence
of cross-reactivity with the other coronaviruses tested. Additionally, cross-reactivity was
assessed in samples from patients with conditions caused by other viruses presenting
with symptoms similar to those of SARS-CoV-2 infection, other infectious disease
organisms, or atypical immune system activity (details can be found in Materials and
Methods). Three out of 160 assessed specimens (1.9%) were positive with the LIAISON
SARS-CoV-2 S1/S2 IgG assay (herpesvirus B, influenza A, and rheumatoid factor samples
each had one positive call). Potentially interfering substances, such as triglycerides
(3,000 mg/dl), cholesterol (400 mg/dl), hemoglobin (1,000 mg/dl), conjugated and un-
conjugated bilirubin (40 mg/dl), acetaminophen (500 mg/ml), and ibuprofen (500 mg/
ml) showed no interference at the indicated concentrations. The LIAISON SARS-CoV-2
S1/S2 IgG assay demonstrated a negative bias of up to 16% in S1/S2 IgG-positive
specimens with biotin concentrations above 3,500 ng/ml, a concentration 15-fold
higher than that induced following ingestion of a 20-mg/day biotin supplement (13).

DISCUSSION

SARS-Cov-2 is a single-strand, positive-sense RNA virus that is most closely related
to SARS-CoV and other B lineage members of the � genogroup of coronaviruses (5, 14).
Other readily recognized members of the coronavirus family include the extremely
virulent Middle East respiratory syndrome (MERS) CoV and the less virulent OC43, HKU1,
229E, and NL63, HCoVs more commonly associated with the common cold in adults.
Coronavirus RNA encodes four major categories of structural proteins, including mem-
brane, envelope, nucleocapsid, and spike, which are referred to as M, E, N, and S,
respectively. While N protein elicits cell-mediated immunity attributable to two pre-
dominant CD8 T cell epitopes (15), of the remaining three structural proteins, S protein
is widely recognized as that most specific with regard to generating protective,
neutralizing antibodies (16, 17).

The specificities reported from in vitro diagnostic immunoassays (18–20) are im-
pacted greatly by the fidelity of preservation of both linear and conformational
epitopes of the given analyte being measured for presentation to specific immuno-
globulins within a patient’s serum sample (here, SARS-Cov-2 S1/S2). Specificity is
frequently significantly compromised by the casual manner in which most ELISAs are
fabricated. This is a consequence of the generally accepted means of passive adsorp-

FIG 4 Relationship to and distribution of the LIAISON SARS-CoV-2 S1/S2 IgG assay levels versus NT
dilutions. LIAISON SARS-CoV-2 S1/S2 IgG measurements were separated into 3 groups (�40 AU/ml, 40 to
80 AU/ml, and �80 AU/ml) and related to NT assay groups by titers: �1:160 (dark gray) or �1:80 (light
gray). In the �80-AU/ml group, 33 of 38 samples have an NT assay titer of �1:160, while 35 of 38 samples
have an NT assay titer of �1:80. Both titers are considered acceptable by FDA guidelines (12). The
respective semiquantitative groups contain 43, 43, and 38 samples.
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tion of the target analyte protein to the plastic or nylon surfaces of microtiter plates.
This procedure induces significant structural deformation and denaturation, with the
consequent loss of native conformation, as well as occlusion of access to both confor-
mational and linear epitopes beneath the protein stuck to the plastic titer plate’s
surface. As explained in Materials and Methods, our system allows for optimal main-
tenance of spike protein conformation. Consequently, the LIAISON SARS-CoV-2 S1/S2
IgG assay rendered no false-positive results from NT assay-negative, RT-PCR-positive
samples from related coronavirus members, and its performance is sensitive, specific,
and precise as evaluated with �1,500 samples.

The use of convalescent-phase serum to treat subjects with acute SARS-Cov-2
infection has growing appeal for meeting the immediate challenges being imposed
upon increasingly stressed health care systems, in light of the premature status of
vaccines and the limited availability of effective antiviral therapeutic regimens (21–25).
The LIAISON SARS-CoV-2 S1/S2 IgG assay was designed to detect IgG with neutralizing
potential and is shown here to have very good sensitivity and specificity in identifying
samples with positive neutralization titers. Furthermore, if used in a semiquantitative
manner, higher LIAISON units are indicative of higher NT assay titers and provide a tool
to prescreen large numbers of samples. While neutralization tests provide the recog-
nized benchmark, they are not practical for large-scale implementation due to require-
ments for high biosecurity containment and the need for highly trained personnel to
execute labor-intensive protocols. Here, independent from both of these constraints,
clear separation of NT assay-negative samples from NT assay-positive samples was
achieved. In fact, with 40- to 80-AU/ml levels measured by the LIAISON SARS-CoV-2
S1/S2 IgG assay, the probabilities of having neutralization titers of �1:80 and �1:160
were 79% and 56%, while with �80 AU/ml, the probability of having neutralization
titers of �1:80 and �1:160 increased to 92% and 87%, respectively. This may be useful
for the efficient screening of convalescent-phase plasma for safe therapeutic use.

The LIAISON SARS-CoV-2 S1/S2 IgG assay’s sensitivity increases significantly as the
immune response matures, as one would expect for an IgG-based serology assay’s
assessment of host responses to viral infection (Tables 2 and 3 and Fig. 2). Here, we
report sensitivities of 33.3% at �5 days but of �91% at �5 days postadmission for
samples from 104 Italian patients whose RT-PCR tests were positive at the time of
diagnosis. The importance of choosing a cutoff that provides high sensitivity (9 AU/ml)
versus one that provides low sensitivity but high specificity (15 AU/ml) is influenced by
disease prevalence, reflected in positive and negative predictive values (PPV and NPV).
When the intent is to use the assay for screening, a higher threshold may be desirable,
whereas in high-prevalence environments, such as hospitals caring for high numbers of
COVID-19 subjects, when the test is used to aid in diagnosis, the lower threshold of
9 AU/ml may be preferred. Serology tests are now being utilized to gain an initial
assessment of infection prevalence, with reported numbers of �3% and �20% from
California and New York, respectively (27). In California, a negative test with the LIAISON
assay would have an accompanying NPV of �99.5%, and in New York City, it would
have an NPV of �97.5%, regardless of the cutoff, indicating that staying at home and
avoiding exposure is the best option. However, a positive test presents a quite different
story; California’s PPV of 80%, derived from the higher cutoff despite the test being less
sensitive overall, would provide a positive test result, affording more confidence in the
subject’s true positivity, while the lower cutoff would present some ambiguity with
regard to any subject’s real level of protection (PPV of 62%). In New York, however,
regardless of the cutoff, the PPV of 89 to 95% affords a much greater degree of
confidence that an individual has protective levels of antibody. When testing in a
hospital setting, the lower cutoff may be preferable to ensure a higher NPV, even
though the overall specificity may be decreased.

In conclusion, the automated LIAISON SARS-CoV-2 S1/S2 IgG assay brings efficient,
sensitive, specific, and precise serological testing to the laboratory. Further, the assay is
amenable for semiquantitative, efficient prescreening of samples for neutralizing anti-
body content for use in convalescent-phase plasma therapy.
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