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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Intelligent spinal robots coupling sensing, recognition, and active adaption.

- A bionic spine with integrated sensing and actuation in one shared device.

- A design concept highly scalable for various robots for active environmental adaption and obstacle avoidance purposes.
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Self-sensing adaptability is a high-level intelligence in living creatures and is
highly desired for their biomimetic soft robots for efficient interaction with
the surroundings. Self-sensing adaptability can be achieved in soft robots
by the integration of sensors and actuators. However, current strategies
simply assemble discrete sensors and actuators into one robotic system
and, thus, dilute their synergistic and complementary connections, causing
low-level adaptability and poor decision-making capability. Here, inspired by
vertebrate animals supported by highly evolved backbones, we propose a
concept of a bionic spine that integrates sensing and actuation into one
shared body based on the reversible piezoelectric effect and a decoupling
mechanism to extract the environmental feedback. We demonstrate that
the soft robots equipped with the bionic spines feature locomotion speed
improvements between 39.5% and 80% for various environmental terrains.
More importantly, it can also enable the robots to accurately recognize
and actively adapt to changing environments with obstacle avoidance capa-
bility by learning-based gait adjustments. We envision that the proposed bi-
onic spine could serve as a building block for locomotive soft robots toward
more intelligent machine-environment interactions in the future.

INTRODUCTION
Soft robots are promising for agile locomotion and high-level intelligence like

living creatures and have been developed in a wide range of applications,
including human-machine and machine-environment interactions.1-6 It is worth
noting that among living creatures, vertebrate animals not only feature highly
developedmuscular and skeletal systems but also an advanced central nervous
system enclosed within the spines, which helps them to react very quickly to
changes in their surroundings. This gives them a competitive edge compared
to most invertebrates, which behave almost entirely by instinct and with little
capability to learn from their mistakes. Such sophisticated musculoskeletal
and nervous systems supported by the spines endow vertebrates the excep-
tional capacity to choose the optimal solutions and execute adaption when fac-
ing different survival environments.

There has recently been a great amount of research effort to develop intelligent
adaption capabilities in biomimetic soft robots. Distinguished from the environ-
mental adaption capabilities7-11 that have been developed in current soft robots,
such as simple phototaxis effect and non-perceptual adaption via shape
morphing,12,13 the environment adaption of vertebrates encompasses the entire
process of perceptual feedback and autonomous adaption,which is a typical rep-
resentation of high-level biological intelligence14-16 by long-term evolution. Such
adaptionmainly relies on two functions of the biological spine: one the perception
capability based on the enclosed central nervous systems and the other the reg-
ulatory adaption capability supported by themusculoskeletal systems. This high-
level intelligence is the key to higher task success rate and efficiency. Therefore,
to achieve such a level of intelligence in soft robots, it is highly desired to
construct an entirely sensor-actuator-integrated spinal soft robotic system.

Current research effort about sensor-actuator-integrated soft robots mainly
focuses on sensing based on e-skins17-20 or visual systems21-26 with applica-
tions in surrounding detection (e.g., pH, ion, oil, blow flow, etc.),27-34 self-body
perception (e.g., physical interaction monitoring, self-motion monitoring,
etc.),35-39 and intelligent recognition (e.g., environmental awareness, objects
classification, etc.).40-44 However, these existing sensor-actuator integration
strategies only provide soft robotic systems with a perception capability but
with unsatisfactory improvement on their motional performance and adapt-
ability for various environments,14,15,45 because their sensor and actuator com-
ponents are discrete and independent devices with inadequate synergistic and
complementary interaction.46-48 Challenges remain in achieving an expected
ll
high-level intelligencewhere soft robots couldbeaware of theenvironmental ter-
rains from attempted locomotion and then make self-adjustments autono-
mously, followed by learning and memorization.
This study proposes an intelligent soft robot with a sensing-actuation-inte-

grated unibody spine for environmental recognition and active adaption. A flex-
ible piezoelectric macro-fiber composite sheet is developed as a bionic spine,
acting as the core component built upon an origami pneumatic robot. This bionic
spineworksas the nexus between environmental awareness andactive adaption
based on two reversible physical effects (shown in Figure 1A) that are success-
fully decoupled by a full bridge circuit. For one thing, the piezoelectric effect of the
bionic spine provides reliable sensing for different environmental terrains as
back-action; for another, the auxiliary actuation functions of the bionic spine
enhance the actuation performance of the pneumatic artificial muscles by the
converse piezoelectric effect, allowing the soft robot to travel more efficiently
in various environments. Hence, the proposed soft robotic system enables
both environmental recognition and autonomous adaption capabilities, showing
higher task success rate and efficiency. In the following sections, we elaborate on
the design of the spinal soft robots, characterize their motion enhancement, and
then show the process of environmental recognition bymachine learning. Finally,
we demonstrate that the robot can perform various highly efficient and even
beyond-biological locomotionwith self-sensing adaptability, such asmulti-terrain
transitions, autonomous obstacle avoidance, and self-adaptive amphibious mo-
tions, which stand out from all previous sensor-actuator-integrated soft robots.
RESULTS
Design and methodology
As shown in Figure 1B, the robot structure contains an origami pneumatic

actuator as the soft artificialmuscle, a piezoelectricmacro-fiber composite sheet
as the bionic spine, and two printed resin robot feet. The origami actuator is vac-
uum driven with several advantages, including light weight, easy manufacturing,
and large linear contraction rate (Figure S2 and Text S1). The bionic spine serves
for both actuation and sensing purposes. It can be utilized as a supporting and
auxiliary actuation based on converse piezoelectricity to enhance themotion per-
formance over different environments, while it can also be utilized as a robotic
e-skin simultaneously. The feedback signals of the bionic spine based on direct
piezoelectric effect are available for analyzing both the motion states and the
environmental interactions of the robot.
The self-sensing adaption process between the robot and the environment

can be divided into three stages. Below, we take the amphibious transition of
the robot between the land and the aquatic area as an example. During stage
(1), the motion states of the robot and its interaction with the environment are
constantly monitored by the bionic spine; in stage (2), changes in the monitored
feedback signals are detectedduring terrain change and utilized for terrain recog-
nition based on a pre-trained machine learning model; in stage (3), the actuation
state of the robot will be self-regulated to actively adapt to the newly recognized
terrain, thus switching to an optimal motion solution for this task. To achieve
such anadaption, both enhancedactuation efficiency andaccurate terrain recog-
nition are necessary. Most importantly, a bridge circuit is developed to eliminate
the crosstalk inside the bionic spine between the feedback signal as a sensor and
the excitation signal as an auxiliary actuation, finally realizing the proposed uni-
body sensor-actuator integration design (more in Text S3).
Characterization of the spinal auxiliary actuation
As shown in Figure 2A, we first construct a soft crawling robot using a single

pneumatic artificial muscle to demonstrate the design concept of the bionic
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Figure 1. Depiction of high-level intelligence in both living creatures and soft robots (A) Spines for self-sensing, regulation, and environmental adaption. Vertebrate animals rely on
spines for sensing and supporting and muscles for actuation. Proposed soft robots rely on bionic spines for sensing, support, and auxiliary actuation and origami muscles for
actuation. (B) Demonstration of an autonomous self-sensing adaption process and methodology on the decoupling mechanism of a unibody sensing-actuation-integrated spine.
Scale bar: 5 cm.
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spine. The pneumatic actuation of the soft robot consists of two stages (more in
Figure S6 and Text S1). First, when a negative pressure is applied, the artificial
muscle contracts, and the deflection of the bionic spine increases, causing a
simultaneous increase of the potential energy in both the bionic spine and the
PET plastic skeleton inside the artificial muscle. As a result, the crawling robot
will transit from the initial state to a contracted state. Second, when the negative
pressure is withdrawn and a voltage is applied to the bionic spine to act as an
auxiliary actuation, the crawling robot will revert to the initial state. The amplitude
of the actuation pressure is set at�50 kPa to ensure dynamic stability of this soft
crawling robot at different actuation frequencies. During the second stage, the
potential energy of the PET plastic skeleton and bionic spine is released, leading
to the generation of recovery forces FElastic and FRelease (more detail in Text S1),
which can be expressed as follows:
FElastic = C1 � C2xa (Equation 1)

FRelease = K1
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As a result, the output force FAuxiliary generated by the bionic spine further fa-
cilitates the transition between the twomotion states of the crawling robot, which
can be expressed by the following equation:

FAuxiliary = K2
V

ya+
xa
tanv

(Equation 3)

In the above equations, v represents the central angle of the bent spine in a
shape of a circularly arc, which significantly influences all output forces, C1

and C2 contain the intrinsic properties (sizes and Young’s modulus) of the
origami skeleton, K1 and K2 contain the properties (sizes, Young’s modulus,
and piezoelectric strain constant) of the bionic spine, xa and ya portray the shape
of the curved bionic spine, and V is the applied voltage to the piezoelectric spine.
Detailed derivations and modeling are available in Equations S1–S29.
The overall actuation force available in the second dynamic stage affects

the crawling stride length of the robot. As an essential constituent of the overall
actuation strategy, the auxiliary actuation is based on the converse piezoelectric
effect of the bionic spine, and thus the amplitude of FAuxiliary is directly related to
the magnitude of the excitation voltage. Figure 2B shows the normalized force
amplitude of the soft crawling robot from the contracted state to the initial state
(with a pneumatic actuation frequency of 1 Hz) as a function of the excitation
voltage from 0.4 kV to 1 kV at the excitation frequencies of 1 Hz, 5 Hz, and
www.cell.com/the-innovation
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Figure 2. Actuationmechanism and characterization results of the spine-assisted actuation (A) Illustration of the actuationmechanism. (i) Contraction of the artificial muscle under
vacuum pressure; (ii) recovering under the elastic force, release force, and auxiliary force generated by the artificial muscle and bionic spine. (B) Normalized recovery force under
auxiliary actuation as a function of actuation voltage and actuation frequency, i.e., 1 Hz, 5 Hz, and 20 Hz from top to bottom, with the pneumatic actuation at 1 Hz. (C) Measured stride
length of the crawling robot without terrain contact as a function of auxiliary frequency for three different pneumatic actuation frequencies, i.e., 1 Hz, 2 Hz, and 3 Hz. (D) Measured
stride length of the robot as a function of actuation frequency with and without auxiliary actuation while the auxiliary voltage is 1 kV. (E) Comparison of robot crawling speed with and
without auxiliary actuation on the rubber land. (F) Measured crawling speed of the robot at an actuation frequency of 1 Hz for different terrains. (G) Measured crawling speed of the
robot as a function of actuation frequency on the rubber land.
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20 Hz. The experimental results demonstrate that the presence of the auxiliary
actuation greatly increases the overall output force in the second stage by
approximately above 10%. The effectiveness of the auxiliary actuation increases
linearly with voltage amplitude at a growth rate of approximately 1% per 0.1 kV,
and the output force also performs with a similar trend at different excitation
frequencies.

To achieve a synergistic mechanism between the auxiliary actuation of the bi-
onic spine and the pneumatic actuation of the artificial muscle, we further opti-
mize the actuation parameters. We first explore the association between
different actuation parameters and the stride length of the crawling robot. Fig-
ure 2C shows the measured stride length of the crawling robot without terrain
contacts as a function of the excitation voltage frequency for three different
pneumatic actuation frequencies, 1 Hz, 2 Hz, and 3 Hz, indicating that the
maximum stride length always occurs at the condition when the pneumatic
and the auxiliaryactuations are at the same frequency. In contrast to purelypneu-
matic actuation, the crawling robot with synergistic actuation outperforms by
more than 20% in the stride length for the frequencies from 1 Hz to 9 Hz, as
ll
shown inFigure 2D.Moreover, the increments in stride lengths are especially pro-
nounced (over 50%) when the actuation frequency exceeds 3 Hz, which ismainly
because the auxiliary actuation force FAuxiliary greatly compensates the response
hysteresis and low output force of the pneumatic artificial muscle at high fre-
quencies. Figure 2E shows that the crawling robot with the auxiliary actuation
has a 21% speed improvement from 33 mm/s to 40 mm/s moving on a green
cutting board (a rubber-surfaced terrain). We note that although the auxiliary
actuation could improve the locomotion speed, the actual crawling speed is still
determinedby both its dynamic states and the topographic characteristics of the
contacting terrains.
Crawling speed of the robot on different terrains is a function of the actual

stride length and actuation frequency. In general, both large motion stride length
and high actuation frequency are beneficial for a faster locomotion but cannot be
easily achieved simultaneously because the actuation frequency of the robot is
inversely proportional to its stride length. Meanwhile, the resistance of the envi-
ronmental terrain could reduce the stride length, causing a great variance of
the crawling speed on different terrains. Figure 2F shows themeasured crawling
The Innovation 5(4): 100640, July 1, 2024 3
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 speed with a synergistic actuation frequency of 1 Hz on different terrains, PET

plastic, acrylic, rubber, grass, and stone from left to right while with increasing
resistance in order (roughness from 10 mm to 3,000 mm), indicating a signifi-
cantly varied crawling speed. It is important to understand that the effect of
the contact resistance on locomotion speed is not always negative. For instance,
a properly large contact resistance can actually prevent slipping, which greatly
improves the crawling speed of the robot under high-frequency actuation. Hence,
we consider that for each specific terrain, there is always a corresponding set of
optimal actuation parameters for a better efficiency and a higher speed, such as
the actuation frequency mentioned in this section. As shown in Figure 2G, the
robot demonstrates the highest crawling speed with an optimal actuation fre-
quency of 4 Hz on the rubber land, which is about 39.5% faster than the speed
under 1 Hz. With similar experimental steps, we also obtained the optimal actu-
ation frequency of the crawling robot on other terrains, including grass land,
stone land, gravel land, PET land, plush land, and acrylic land (Figure S7), and
these optimal actuation frequencies bring significant speed improvement
ranging from39.5% to 80% for the aforementioned terrains (Table S1).Webelieve
that the robot possesses the potential to always maintain efficient motion over
different terrains if knowing the type of the terrains beforehand, which could
be achieved by combining sensing and autonomous adjustment.
Environment sensing and recognition by the spine
Regarding highly desired perception, the bionic spine endows this soft crawl-

ing robot with a self-sensing capability for both proprioception and exteroception
using the decoupled piezoelectric feedback signal by the bridge circuit. We first
demonstrate the proprioception capability of the robot by monitoring the feed-
back signal from the bionic spine during motion cycles under different actuation
frequencies. As shown in Figure 3A, the measured signal can intuitively provide
feedback on the change in crawling frequency and stride length. The motion
states of the crawling robot can be then reconstructed based on the proposed
model relating the responsive signal and the spinal bending angles (Figure S8
andText S2), thus providing the crawling robotwith the awareness of the position
and movement of its own body.

In the above discussion, we have tested the relationship between the actual
stride length of the crawling robot and the terrain resistance (more in Figure S7).
As shown in Figure 3B, for some relatively smooth terrains, the difference in resis-
tance can be observed by small features of the spinal feedback signal. For other
terrainswith uneven surface structures, the topographic differences expressed in
the spinal feedback signal are much more pronounced (more in Figure S10).
Thus, the exteroception capability of the crawling robot for different terrains
can be realized by analyzing features in the feedback signal, including plush,
grass, stone, gravel, acrylic, and rubber lands, as shown in Figure 3C.

To distinguish the proprioception and the exteroception information in the
same piezoelectric signal, machine learning techniques are utilized in processing
the feedback signal for further robot self-learning and adaption. The whole
modeling and prediction process is shown in Figure 3D (more detail in materials
andmethods). Figure 3E shows that seven terrains with different roughness and
morphology can be recognized with a high accuracy of 98.5% by the crawling
robot based on the bionic spine and machine learning techniques. To validate
the reliability of the trained learning model, the crawling robot is set to crawl
continuously acrossmultiple terrains while different kinds of multi-terrain combi-
nations are used (Figure S11). The crawling robot shows a high identification ac-
curacy of 97.1% for multi-terrain tasks (Figure 3F).
Multi-terrain active adaption of the soft spinal robot
With the well-trainedmachine learning network, the intelligence of the soft spi-

nal robot is further illustrated by demonstrating its self-sensing adaptability to
different terrains. Adaption means that the robot can always perform with
optimal motion efficiency over different terrains, which is significant for crawling
robots in the wild. More important, it greatly improves the success rate of the
crawling robot to cope with multi-terrain tasks, where it may fail to move over
changing terrains without autonomous adaption. Below, we show the superiority
of the self-adaptive crawling robot by comparing its performance with a unimo-
dal one under multi-terrain tasks.

The first task contains three terrains, which are rubber, stone, and PET plastic
lands representing elastic, rough, and slippery conditions in sequence. We record
the whole process of the crawling robot performing the tasks while monitoring
4 The Innovation 5(4): 100640, July 1, 2024
the readouts of its bionic spine (Figure S12B). As shown in Figure 4A, the unim-
odal crawling robot passes the rubber land smoothly from 0 s to 4 s (with a fixed
actuation frequency of 4 Hz, which is the optimalmotion frequency for the crawl-
ing robot on the rubber terrain), but it failed to deal with the transition from the
rubber land to the stone land. This failure is mainly due to the low output force
and small stride length of the unimodal crawling robot at the frequency of
4 Hz, which prevents the robot from crossing the obstacle of the stone land. In
contrast, the crawling robot with self-sensing adaptability can accomplish this
task easily (Figure 4B and Video S1), and the whole process can be divided
into three stages in time sequence. (1) From 0 s to 4 s, the robot passes the rub-
ber landwith an actuation frequency of 4Hz; (2) from5 s to 11 s, the robot arrives
at the intersection of two terrains, and then the robot detects the terrain change
and adjusts the actuation frequency from 4 Hz to 1 Hz itself to generate larger
output force and stride length according to the result of pre-trained learning
model; (3) from 12 s to 22 s, the robot passes the stone land and the PET
land smoothly with a self-adjusted frequency of 1 Hz.
The second task contains grass land, plush land, and gravel land in sequential

order. As shown in Figure 4C, the unimodal crawling robot takes 28 s to pass all
three terrainswith a fixed actuation frequency of 1Hz. In reality, this performance
could be a lot worse because we set the frequency at 1 Hz as we already knew it
provides the highest efficiency on both grass and gravel lands. We then show
that the crawling robot with self-sensing adaptability can finish the same task
more efficiently (Figure 4D and Video S2). The whole process can also be divided
into three steps in time sequence. (1) From 0 s to 5 s, the robot passes the grass
land with an actuation frequency of 1 Hz; (2) from 6 s to 13 s, the robot arrives at
the plush land, and then the robot changes its motion mode from 1 Hz to 6 Hz
itself for optimal efficiency based on the bionic spine feedback (Figure S12D);
(3) from 14 s to 23 s, the robot arrives at the gravel land and again changes
its motion mode from 6 Hz back to 1 Hz itself to adapt to the gravel terrain. In
this task, the robot equipped with self-adaption crawls over the plush land faster
than the unimodal robot by 30%. Thus, the experimental results intuitively show
that the proposed self-adaptive crawling robot can actively adapt to the terrain
changes and maintain high motion efficiency by autonomous regulation.
Different fromother soft robots or living creatures, the self-sensing adaptability

of this robot is not dependent on visual feedback, and thus, it has a higher appli-
cation potential than some living creatures. This spinal sensing strategymakes it
possible for the robot to operate all day long in nature regardless of environ-
mental brightness (Figure 4E). To further illustrate this beyond-biological intelli-
gence, we demonstrate the self-adaptivemotion of the crawling robot in dazzling
lighting conditions and purely dark conditions. Figure 4F shows the crawling
robot moving across a multi-terrain pathway under a dazzling lighting condition
(Video S3). Themonitored spinal feedback signal during this process is shown in
Figure S13B, which intuitively reflects the motion states of the crawling robot
and the terrain type at different moments. In this experiment, the crawling robot
accomplishes self-adaptive motion over different terrains to select an optimal
efficiency, with no assistance from vision feedback. Figure 4G also shows that
the robot can perform self-adaptive motion for another multi-terrain pathway
in purely dark conditions (Figure S13D and Video S4).
An amphibious omnidirectional robot
For broader application scenarios, we construct an amphibious soft robot by

combining two spinal actuators as building blocks in parallel like a catamaran
(Figure 5A). The two actuators could be driven separately to enable more com-
plex overall motions. Based on a special robotic foot design and a sequential
actuation of the left and right legs, the robot can realize nearly omnidirectional
motions (more in Text S4). As shown in Figure 5B, when we drive the two robotic
legs tomove at the same actuation frequency, themotion of the robot is straight
movement but a forward direction with a low actuation frequency lower than
8 Hz and a reverse direction with a relatively high actuation frequency higher
than 8 Hz. Moreover, the steering of the robot can also be achieved by a different
stride length between its two legs. For instance,when the stride length of the right
leg is larger than the left one, the robot will turn to the left.
Then, we further demonstrate how this dexterous amphibious robot efficiently

accomplishesmore complex tasksby self-sensing adaptionwithout any external
support. The first scenario is self-adaptive obstacle avoidance. Figure 5C shows
the complete avoidance process between the robot and the obstacle (Video S5
and more in Text S5), which can be divided into three stages in time sequence.
www.cell.com/the-innovation
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Figure 3. Environmental awareness and recognition by the spinal robot (A) Measured feedback signal by the spine when the robot moves with an increased actuation frequency
from 1 Hz to 20 Hz. (B) Measured feedback signal of the spine when the robot crawls on different terrains as a function of actuation frequency. (C) Images of the crawling robot on
different terrains, including some relatively smooth terrains, i.e., rubber land, PET land, acrylic land, and plush land, and some uneven terrains, i.e., grass land, gravel land, and stone
land. (D) Flow diagram of the machine learning process. (E) Classification confusion matrix of the robotic recognition on single-terrain tasks, with an overall accuracy of 98%. (F)
Classification confusion matrix of the robotic recognition on multi-terrain tasks, with an overall accuracy of 97.1%.

REPORT
(1) The robot moves forward to approach the obstacle and collides with it (from
0 s to 6 s, with an actuation frequency of 1 Hz); (2) the robot detects the obstacle
in its path and makes a decision to walk around it, followed by self-adjusted mo-
tion state to reverse andmove away from the obstacle (from 6 s to 13 s, with an
actuation frequency of 8 Hz); and (3) the robot adjusts its pathway and steers to
ll
avoid the obstacle (from 13 s to 31 s, with an actuation frequency of 2 Hz). Fig-
ure 5C also shows the actuation signals for both of the robotic legs during the
whole process. As we mentioned above, this self-adaptive obstacle avoidance
is independent from external devices and vision, so it fully demonstrates the
active intelligence of the robotic design and is still available in dark environments.
The Innovation 5(4): 100640, July 1, 2024 5
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Figure 4. Self-sensing adaption by the spinal robot in multi-terrain tasks (A and C) The unimodal crawling robot moves over two multi-terrains scenarios, as the first scenario
(A) contains rubber land, stone land, and PET land, and the second scenario (C) contains grass land, plush land, and gravel land. (B) The spinal crawling robot with self-sensing
adaption for the first scenario, overcoming the terrain boundary that the unimodal one failed. (D) The spinal crawling robot for the second scenario, showing it to be 18% faster than the
unimodal one. (E) Self-sensing adaption of the spinal robot remains available in dusky and dark environments. (F) Images of the spinal crawling robot performing a self-adaptive multi-
terrain-crossing task in dazzling light condition. (G) Images of the spinal crawling robot performing another self-adaptive crossing task in purely dark condition.
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The second scenario is self-adaptive amphibiousmotion, which contains mul-
tiple environments at different altitudes, including gravel land, grass land, soil
descent, and aquatic area (Video S6). As shown in Figure 5D, we divide the whole
self-adaptive motion of the amphibious robot into three stages in time se-
quences. (1) The robot moves forward and performs self-adaptive multi-terrain
transitions between plush land, gravel land, and the grass land (from 0 s to 15
s); (2) the robot undergoes a soil descent and gradually moves closer to the
aquatic area (from 16 s to 25 s, with an actuation frequency of 2 Hz); and (3)
the robot adapts to the aquatic area to swim efficiently (from 26 s to 33 s,
with a self-adjusted frequency of 4Hz). The self-sensing adaptability has resulted
6 The Innovation 5(4): 100640, July 1, 2024
in a 22% improvement in overall timewhenmoving across this land-aquatic path
compared to the unimodal robot (Figures S19 and S20).

CONCLUSION
In summary, we have shown that a unibody sensor-actuator-integrated

spine provides a potential for high-level intelligence for soft robots. As
the core component in our proposal, a piezoelectric macro-fiber composite
sheet acts as a bionic spine for both perception and auxiliary actuation,
facilitating a synergistic and complementary action between the sensor
and actuator. More importantly, we demonstrate that this highly intelligent
www.cell.com/the-innovation
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Figure 5. An amphibious and omnidirectional spinal soft robot (A) Design and reversible locomotive mechanism of the robot consisting of twin actuators in parallel. (B) Omnidi-
rectional motions of the robot. (C) Images of the robot performing a self-adaptive obstacle avoidance with self-sensing adaption and dexterous motion. (D) Images of the robot
performing multi-terrain crossing and amphibious transition with self-sensing adaption.
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soft robot can accomplish beyond-biological applications with vision-free
self-sensing adaption, including efficient multi-terrain transition, obstacle
avoidance, and amphibious locomotion.

Although there is clearly excellent environmental compatibility and deci-
sion-making capacity, the performance of this proposed soft robot still lags
behind advanced vertebrate animals, in terms of agility, responsiveness,
etc. This is mainly due to the limitations of soft materials and robotic
perception systems, causing a worse overall responsive speed compared
to vertebrates. Therefore, a dexterous and robust soft actuator with highly
ll
sensitive perception is desired to construct a more advanced version
based upon this work for broader deployments. Our approach is the first
to promote the synergy between sensor and actuator components to
implement autonomous adaption, and this could spark future innovations
for high-level intelligent soft robots.
MATERIALS AND METHODS
See supplemental information for details.
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