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Abstract: Non Alcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease
in Western countries. Recent data indicated that NAFLD is a risk factor by itself contributing
to the development of cardiovascular disease independently of classical known risk factors.
Hyperferritinemia and mild increased iron stores are frequently observed in patients with NAFLD
and several mechanisms have been proposed to explain the role of iron, through oxidative stress
and interaction with insulin metabolism, in the development of vascular damage. Moreover,
iron depletion has been shown to decrease atherogenesis in experimental models and in humans.
This review presents the recent evidence on epidemiology, pathogenesis, and the possible explanation
of the role of iron and ferritin in the development of cardiovascular damage in patients with NAFLD,
and discusses the possible interplay between metabolic disorders associated with NAFLD and iron in
the development of cardiovascular disease.
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1. Introduction

Non Alcoholic Fatty Liver Disease (NAFLD), the most common chronic liver disease in Western
countries, was previously indicated as the hepatic expression of the metabolic syndrome (MetS) having
shared many similar clinical manifestations [1]. More recently it has been proposed that NAFLD
precedes the development of type 2 diabetes and metabolic syndrome [2], significantly increasing
the risk of incident type 2 diabetes [3] even in non-overweight subjects [4]. Recent evidence links
NAFLD to increases of cardiovascular risk, and further studies reveal that the first causes of death
in NAFLD patients are cardiovascular disease (CVD) [5–8] and cancer [5,9–11], and not just liver
diseases. NAFLD is also considered by recent studies to be a risk factor in itself to the development of
CVD independently of classical known risk factors [12]. Increased ferritin and body iron stores are
frequently observed in patients with NAFLD [13,14]. Iron, through oxidative stress and interaction
with insulin metabolism [15], can promote the development of vascular damage. Moreover, iron
depletion has been reported to decrease atherogenesis in experimental models and in humans [16,17].

2. Ferritin, Insulin Resistance, Metabolic Syndrome, and NAFLD

Growing evidence proposes a correlation between serum ferritin, insulin resistance, and
NAFLD [18,19]. Several studies reported a link between high ferritin levels and MetS [20], and
its single components [21], with a linear increase with the increasing number of MetS components [20].
Liver fat accumulation is considered to be one of the first pieces of evidence in the development of
insulin resistance, and a strong association between NAFLD, insulin resistance, and MetS features has
been demonstrated [19,22,23]. The association between ferritin and components of the MetS has been
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suggested to be related to an undiagnosed NAFLD. Zelber-Sagi et al. [24] demonstrated that insulin
was the strongest predictor of increased serum ferritin levels and, vice versa, ferritin has been proposed
as a marker of insulin resistance [25].

The evidence that increased ferritin levels precede the development of diabetes was demonstrated
in prospective studies [26,27], however, it is not well defined if increased ferritin (expression of body
iron accumulation) could induce metabolic alteration. In chronic liver disease hyperferritinemia may be
caused by an augmented release of the protein from injured hepatocytes. Pro-inflammatory cytokines,
in fact, stimulate the synthesis of ferritin, which is an acute phase reactant [28]. In patients with NAFLD
(in whom ferritin and body iron are frequently increased [13,29]) inflammation, metabolic alterations,
and hepatocytes necrosis may coexist with a mild iron overload, all leading to hyperferritinemia [30,31].
In addition, even a small amount of hepatic iron accumulation combined with other cofactors can
increase oxidative stress responsible for liver cell necrosis, activation of hepatic stellate cells, and
fibrosis [19,32], implying that iron could also play a role in the progression from “benign” fatty liver to
non-alcoholic steatohepatitis (NASH). The same mechanisms determining liver damage might act in
the vessel walls.

Epidemiological studies indicated that ferritin not only is a marker of insulin resistance but also is
one of the strongest risk factors for the progression of carotid atherosclerosis [33,34]. Confirming this
observation, the removal of iron by phlebotomy was found to improve insulin resistance, liver function
tests [13,35], and atherosclerosis [36]; however, mainly due to the small sample size of the studies, the
impact of phlebotomy in NAFLD is still debated [37].

3. Iron and Atherosclerosis

The role of iron in the development and progression of atherosclerosis has been reported in several
papers. Iron deposition, especially in macrophages of arterial walls, is increased in atherosclerotic
lesions [14,38], and has been proposed as a marker of cardiovascular risk [16]. The role that iron plays
in atherosclerosis has been hypothesized to be an increase in vascular oxidative stress and acceleration
of arterial thrombosis [39]; this could be caused by the induction of oxidative stress catalysis, promotion
of insulin resistance [15], decreased plasma antioxidant activity, increased low-density lipoprotein
(LDL) oxidation [40], and enhanced macrophage activation determining oxidized LDL uptake [41].

Iron depletion in experimental models has been shown to decrease atherogenesis [17], while, in
humans, blood donation has been associated with decreased risk for myocardial infarction [26], and
phlebotomy has been suggested to decrease the progression of peripheral vascular disease [42].

A worse cognitive performance in patients with metabolic alterations—as a potential consequence
of vascular damage, or directly as a neurodegenerative alteration—has been described in relation to
iron status in animal models, and more recently in humans as well [43]. In insulin resistant obese
patients a worse cognitive performance was found related with brain iron load in the caudate, lenticular
nucleus, hypothalamus, and hippocampus (by magnetic resonance imaging (RMI)) and with increased
hepatic iron concentration. It is possible to hypothesize that in presence of insulin resistance, the excess
of iron, being highly reactive and promoting the generation of hydroxyl radicals, may cause both
metabolic distress in the liver and alterations in some target brain areas [44].

4. Iron and Carotid Plaques: Arterial Iron Promotes Plaque Instability

Through the use of electron paramagnetic resonance spectroscopy Stadler et al. [45] were able
to quantify iron in ex vivo carotid lesions and in healthy human arteries and, in doing so, found that
iron in the carotid lesions was higher than in healthy subjects. They also found a correlation between
cholesterols and iron accumulation in the lesions.

Lapenna et al. [14] in studying ex vivo carotid endo-arterectomy specimens found a significant
correlation between serum ferritin and low molecular weight iron. Yuan et al. and Li et al. [46,47]
suggested that iron found in atherosclerotic vascular tissue, generated mostly by erythrophagocytosis,
could interact with lipoproteins in macrophages and be responsible for increased oxidative stress and
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their transformation into foam cells in the presence of an atherogenic environment. Thus the increase
of iron in macrophages might contribute to vulnerability of human atheroma. Moreover, Li et al.
reported, in ex vivo human carotid atherosclerotic lesions [48], the positive correlation of transferrin
receptor 1 (TfR1) expression and macrophage infiltration, ectopic lysosomal cathepsin L, and ferritin
expression and they suggested that the expression of TfR1 and ferritin in CD68 positive macrophages
was correlated with the severity of human carotid plaques.

5. Ferritin and Atherosclerosis

Ferritin is considered a marker of atherosclerosis progression [33] and a relationship has been
proposed between its levels and carotid atherosclerosis [34] in epidemiological studies. Moreover,
ferritin was found associated with carotid intima-media thickness (IMT), and with the presence of
carotid plaques in a large cohort of NAFLD patients [49]. In this paper the authors described a
stronger association of ferritin with plaques rather than with increased IMT, hypothesizing that iron,
by favoring endothelial damage and thrombosis [39], can promote the development of atherosclerotic
complications. In NAFLD ferritin can reflect oxidative stress, inflammation, and hepatic necrosis.
This protein has been found strongly associated not only with parameters influencing iron stores,
such as sex, age, alcohol, and genetic factors (i.e., HFE mutations), but also with metabolic alterations
defining the metabolic syndrome. However, a correlation was described between ferritin and vascular
damage that was independent from factors associated with metabolic syndrome [50–52].

These data were recently confirmed in a Chinese population study in which serum ferritin was
found significantly increased in patients with abnormal glucose metabolism and related with IMT
progression [53].

6. HFE Gene Mutations in NAFLD and Atherosclerosis

Several studies analyzed the role of HFE mutations in patients with NAFLD and iron overload.
Valenti et al. [29] demonstrated that carriers of the C282Y mutation have lower insulin release
and develop NAFLD in the presence of less severe metabolic abnormalities. This suggests that
heterozygosis for the HFE mutation (responsible for mild iron overload) may trigger the clinical
NAFLD manifestation [29]. More controversial is the role of HFE mutations in the development of
atherosclerotic damage. In fact, while the atherogenetic role of iron has been reported (as observed
in macrophages of arterial walls in atherosclerotic lesions [40,41] and in the beneficial effect of iron
depletion on vascular damage [17], a lack of association between HFE mutations with vascular damage
has been reported [54]. A faster clearance of iron from arterial lesions could be caused by a decrease of
Hepcidin, which could facilitate iron export from macrophages [49].

7. Hepcidin, Macrophage Iron, and Vascular Damage

Hepcidin, mainly produced in the liver, is defined as the key hormone regulating iron balance [55].
Hepcidin provides a defense mechanism against pathogens during inflammation by inhibiting iron
recycling from macrophages and iron absorption from enterocytes. Also, in patients with metabolic
disease, such as NAFLD, the deregulation of hepcidin expression/activity contributes to increased iron
stores [56]. Subclinical inflammation and obesity can induce Hepcidin [57] and cause iron trapping in
macrophages [58] in the presence of an atherogenic environment. Excessive iron in macrophages could
be responsible for increased oxidative stress and transformation into foam cells. Sullivan et al. [16]
suggested that increased hepcidin may generate iron induced atherogenesis and cardiovascular
damages (Figure 1).
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atherogenic cytokines in human differentiating monocytes of patients with NAFLD, with Metabolic 
Syndrome, and with mild iron overload by treatment cells with iron salts or with hepcidin. 
Macrophages, but also the smooth muscle and the endothelial cells treated with iron salts, increased 
the release of the macrophage chemo attractant protein (MCP-1), an atherogenic chemokine that 
plays an important role in both the initiation and progression of atherosclerosis. Moreover, the iron 
salt treatment increased the IL-6 a proinflammatory cytokine involved in the acute phase response, 
independently of oxidative stress. IL-6 serum levels have been reported to correlate with vascular 
risk and with the inflammation within atherosclerotic plaques [60]. In addition it has been found that 
higher MCP-1 represents a negative prognostic factor in acute coronary syndromes [61]. The effect of 
hepcidin on MCP-1 release was similar to that of iron salts as it blocked cellular iron export. 
Furthermore, in patients with NAFLD and MetS, the iron-dependent induction of MCP-1 and IL-6 
was found associated with the severity of vascular damage as it promoted macrophage activation by 
iron and may be involved in the pathogenesis of vascular damage progression. These results have 
also been observed in monocytes of healthy subjects in which iron treatment determined the 
induction of MCP-1 transcription and release, suggesting that this depicted a physiological response 
to increased intracellular iron availability [49]. 
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addition, iron reduction by frequent blood donations was found to be associated with decreased 
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Experimental Models

Findings from animal models of atherosclerosis and from studies of human atherosclerotic plaques
provide evidence that elevated arterial iron levels may cause atherosclerosis. Both animal studies and
clinical evidence indicate that in the presence of iron deficiency (i.e., anemia) that iron can be mobilized
from arterial plaques to be used in erythropoiesis with consequent iron reduction in the plaques.

Valenti et al. [59] reported the effect of the manipulation of intracellular iron on the release of
atherogenic cytokines in human differentiating monocytes of patients with NAFLD, with Metabolic
Syndrome, and with mild iron overload by treatment cells with iron salts or with hepcidin.
Macrophages, but also the smooth muscle and the endothelial cells treated with iron salts, increased
the release of the macrophage chemo attractant protein (MCP-1), an atherogenic chemokine that
plays an important role in both the initiation and progression of atherosclerosis. Moreover, the iron
salt treatment increased the IL-6 a proinflammatory cytokine involved in the acute phase response,
independently of oxidative stress. IL-6 serum levels have been reported to correlate with vascular
risk and with the inflammation within atherosclerotic plaques [60]. In addition it has been found that
higher MCP-1 represents a negative prognostic factor in acute coronary syndromes [61]. The effect
of hepcidin on MCP-1 release was similar to that of iron salts as it blocked cellular iron export.
Furthermore, in patients with NAFLD and MetS, the iron-dependent induction of MCP-1 and IL-6
was found associated with the severity of vascular damage as it promoted macrophage activation by
iron and may be involved in the pathogenesis of vascular damage progression. These results have also
been observed in monocytes of healthy subjects in which iron treatment determined the induction of
MCP-1 transcription and release, suggesting that this depicted a physiological response to increased
intracellular iron availability [49].

8. Iron Depletion and Atherosclerosis

It has been reported that iron depletion decreases atherogenesis in experimental models [17].
In addition, iron reduction by frequent blood donations was found to be associated with decreased
intima-media thickness [36] and decreased risk of myocardial infarction [26]. Thus, iron reduction
potentially offers a benefit in atherosclerotic vascular disease acting as an anti-inflammatory process.
However, the role of blood donation on cardiovascular diseases is not yet defined. The Nebraska Diet
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Heart Study [62], has established a relationship between blood donation and risk of cardiovascular
events. This study evaluated the cardiovascular events in 655 individuals who had donated at
least one unit of blood in the preceding 10 years and in 3200 who had not. The results indicated
that, compared to non-donors, the blood donors showed a significant reduction of events such as
myocardial infarction, angina, or stroke. They also had fewer cardiovascular procedures and less use
of nitroglycerin. Nevertheless, it is not possible to rule out that blood donors have less cardiovascular
events in connection to them being in apparently good enough health to be eligible to donate blood.
The beneficial effect of blood donations on cardiovascular disease has been debated in a number of
epidemiological studies [13,35–37]. Interestingly, Zacharski et al. [42], in a multicenter prospective
trial conducted in veteran participants with peripheral arterial disease, showed that the beneficial
effect of phlebotomy was present only in younger patients. This suggests that levels of body iron
stores might be operative in the early phase of atherosclerosis, while hypercoagulability and diabetes
mellitus in later-stages of the diseases. Low body iron may protect against atherosclerotic CVD through
different ways: (1) limiting oxidation of LDL cholesterol [63]; (2) decreasing the clinical activity of
myeloperoxidase [64]; (3) increasing high density lipoprotein (HDL) and apolipoprotein A (ApoA) [65];
(4) improving nitric-oxide mediated, endothelium-dependent vasodilation [66], and, finally, improving
insulin sensitivity [67].

In addition, iron depletion has been demonstrated to improve insulin resistance [13] in NAFLD,
while more controversial is the beneficial effect on liver histology in NASH [68,69]. About one third of
patients with NAFLD and MetS have been reported to have dysmetabolic iron overload syndrome [70],
and both venesection therapy (in the absence of weight loss) and dietary treatment have been shown
to improve ferritin, metabolic parameters, and liver enzymes [70,71].

An imbalance of the homoeostatic mechanisms—including the interaction of iron with hepcidin,
ferritin, insulin, and with adipokines and pro-inflammatory molecules—causes parenchymal
siderosis that contributes to organ damage such as pancreatic β-cell dysfunction, liver fibrosis, and
atherosclerotic plaque growth and instability. Vice versa, iron depletion could exert beneficial effects,
not only in NAFLD patients with mild iron overload but also in healthy frequent blood donors [72].

9. Dietary Iron, Microbiota, and CVD

Elements such as dietary macronutrients, particularly the types of fats and carbohydrates, are
known factors in the etiology of type 2 diabetes, a metabolic disease closely related with NAFLD,
while more controversial is the effect of dietary iron. Iron is a transitional metal, strong pro-oxidant,
and catalyzer of several cellular reactions that result in the production of reactive oxygen species,
thereby consequently increasing the level of oxidative stress. Graham et al. [73] reported an increase
in liver cholesterol biosynthesis in mice caused by high dietary iron, showing how iron could
influence cholesterol levels and cause the development of fatty liver disease. In addition, the high
dietary cholesterol promotes the development of fatty liver in guinea pigs which in turn leads to the
dysregulation of iron metabolism because of damaged liver [74]. Iron dextran increased oxidative
stress, which was associated with the altered expression of genes related to lipid metabolism and
therefore contributing to hyperlipidemia [75]. The observations, obtained in animal models, that
iron can modulate lipid metabolism and therefore be associated with liver and vascular damage
are very promising but not yet consolidated in humans. Also, the effect of dietary iron is not well
established [76] in humans, although the intake of heme iron before and during pregnancy has been
reported to correlate with the onset of diabetes, a well-known risk factor for CVD [77]. Interestingly,
iron deficiency also has been reported to be associated with increased CVD risk. Iron deficiency
is associated with thrombocytosis due to the lack of inhibition of thrombopoiesis with consequent
increases of thrombotic complications as reported in iron-deficient children and adults [78]. In addition
iron deficiency (causing anemia) increases the risk of heart failure by causing tissue ischemia with
consequent increased oxidative stress, which could damage myocardial cells [79].
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An updated review of cross-sectional, longitudinal, and intervention studies [79] evaluating the
relation between iron and cardiovascular risk indicated that concentrations of iron within normal
ranges does not have dangerous effects. In contrast, elevated amounts of non-protein-bound iron
(free Fe), which has been reported to increase circulating homocysteine [80–82], seems to play a role
in atherosclerosis. Free Fe catalyzes the formation of oxygen free radicals and oxidized low-density
lipoprotein, which are well-established risk factors for vascular damage, thereby supporting the
hypothesis that circulating homocysteine could be in part a surrogate marker for free Fe [83]. However,
different iron types might act differently on the cardiovascular risk. Higher dietary intake of heme
iron was found to be associated with increased cardiovascular risk; this association was not observed
with non-heme and total iron intake [84]. De Oliveira Otto et al. [85] in a population study analyzing
diet micronutrients indicated that dietary intake of non-heme iron was inversely associated with
homocysteine, whereas high red meat intake (a predominant source of heme iron) was found to be
associated with C-reactive protein. In addition, it is possible that the intake of nutrients containing
non-heme iron (which is found in vegetables, cereals, and fruits) is more common in individuals with
a healthy lifestyle (e.g., non-smokers and physically active individuals), while heme iron (abundant in
red meat), which was found to be associated with insulin resistance, increased oxidative stress and
CVD (Figure 2). In addition, red meat is also rich in choline and carnitine, both processed by enteric
microbiota, and found to be related with atherosclerosis [86,87]. Dose-response analyses revealed a 7%
increase in the risk of cardiovascular disease for each 1 mg/day increase in dietary heme iron [84].
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A clinically important association between bacterial infection and CVD has been reported [88].
One of the possible mechanisms in the pathogenesis of atherosclerosis could be represented by the
host immunological response of extravascular tissues and/or vascular walls to bacterial agents. It is
known that gut microbiota may interfere with the host metabolism by promoting multiple functions,
from development of the intestinal immune system to hepatic and energy metabolism. More recently
it has been reported that specific forms of gut microbiota are present in the blood of patients with
diabetes and atherosclerotic plaques, thus gut microbiota could represent an environmental risk
factor for CVD [89]. Gut microbiota could have a direct proatherogenic influence in atherosclerosis
plaque colonization through the bloodstream after events that affect the gut barrier. Both aberrant
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microbiota profiles and the flux of metabolites derived from gut microbial metabolism of choline,
phosphatidylcholine, and L-carnitine have been found to be associated with metabolic disease, and
contribute directly to cardiovascular diseases. However, although recent data on the role of microbiota
in the development of NAFLD and progression to NASH are promising, particularly in animal models,
conclusive results in humans on the effect of microbiota are still missing. Oral iron intake or food
rich in heme iron could alter gut microbial composition and function providing one explanation for
increased vascular disease risk [90].

10. Conclusions

In patients with NAFLD, hyperferritin and mild increases in body iron store are frequently
detected and associated with vascular damage. Different mechanisms have been proposed to explain
the atherogenic role of iron leading to increases in vascular oxidative stress and the acceleration of
arterial thrombosis. Inflammation, metabolic alterations, and hepatocytes necrosis may coexist with
a mild iron overload, all leading to hyperferritinemia, which is considered to be an independent
predictor of cardiovascular damage. Iron depletion, achieved by phlebotomy, has been reported to
improve insulin resistance and to reduce cardiovascular risk and damage. Finally, dietary strategies,
which modulate the gut microbiota and different metabolic activities, could represent efficacious tools
for reducing cardiovascular risk.
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