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Abstract

Background: Knockout strategies, particularly the concept of constrained minimal cut sets (c(MCSs), are an important
part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated
even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given
design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with
the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives.

Results: To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by
comparing its performance against other comparable methods on a medium sized E. coli core metabolic network.
PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster.
Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of £.
coli and compare it with OptKnock and RobustKnock.

Conclusions: PSOMCS finds competitive knockout strategies and designs compared to other current methods and is
in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in

large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially

relevant organisms become available.

Keywords: Systems biology, Metabolic networks, Dual metabolic network, Minimal cut sets, Strain optimization,

Knockouts, Metabolic pathway analysis

Background

Metabolic engineering aims to improve product yields
in cellular systems by applying a variety of tools. Con-
straint based methods which use only the stoichiometry
of metabolic reactions have been particularly successful
in the development of strategies towards fulfilling this
aim [1]. One important application is the prediction of
knockouts to enforce desired metabolic behaviors in an
organism. A method that allows one to predict efficient
intervention strategies using the concept of minimal cut
sets MCSs, was developed by Klamt and Gilles [2]. This
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was generalized to constrained minimal cut sets cMCS,
where in addition to blocking undesired fluxes, survival
of some desired fluxes is possible [3, 4]. The automatic
partitioning method APM uses an objective function to
specify the design objectives and the partitioning of fluxes
into desired/undesired is done automatically to find suc-
cessively larger cMCS till a global optimum is reached
[5]. Previously we showed that a genetic algorithm could
reach the global optimum faster than than APM [6]. How-
ever, all these methods are applicable only to small and
medium-scale metabolic networks.

In a recent work by Ballerstein et al., it was shown that
c¢MCS can be directly calculated from the stoichiometric
matrix [7]. Using this method, it is possible to calculate
intervention strategies even in genome-scale metabolic
networks [8]. Another work extended this concept to
include regulation [9]. A limitation of this method is that
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the desired flux or flux ratio of a metabolite has to be
manually specified to get corresponding cMCS.

There exist other constraint based methods for pre-
dicting intervention strategies. OptKnock solves a bi-level
optimization problem, to predict knockouts leading to
maximal product formation at maximal growth [10]. A
three-level optimization problem is used to maximize
minimal product formation in RobustKnock [11]. Opt-
Gene uses a genetic algorithm to predict knockouts
[12]. Similarly, evolutionary algorithms and simulated
annealing have been used in [13]. Another metaheuris-
tic approach was using a hybrid of bees algorithm with
flux balance analysis FBA [14]. While these methods opti-
mize for design goals, doing so with a minimal number of
knockouts is not necessarily guaranteed.

From an engineering perspective, we would like the
organism to have a guaranteed high yield for the product
of interest. Given that even in the face of genetic pertur-
bations microorganisms redirect metabolic flux towards
maximizing cellular growth [15], this high yield must be
maintained at high growth rates. Additionally, the num-
ber of knockouts should be as small as possible to facilitate
easy implementation in the laboratory.

Here we present a new method, PSOMCS, which uses
particle swarm optimization PSO along with the method
developed in [7-9] to calculate cMCS while overcom-
ing the mentioned limitations of other methods. Our
basic motivation is to combine the computational rigour
of cMCS with the flexibility of the optimization-based
approaches in order to solve (non-linear) intervention
problems efficiently. We aim to find not only the optimal
intervention strategy for a given design but also the best
possible design. In addition, we show that PSOMCS is also
faster than other methods which try to find cMCS leading
to optimal design objectives.

Methods

Calculating cMCS

A metabolic network of m internal metabolites connected
by n reactions in steady state is represented by the set of
linear equations

Nr=0 (1)

where N is a m x n matrix consisting of stoichiometric
coefficients of all participating reactions such that each
column represents one reaction. r is a vector of reac-
tion fluxes. Reactions can be both reversible (Rev) and
irreversible (Irrev), thereby imposing the constraint

ri >0Vielrrev. (2)

(1) and (2) define a flux space. Depending on the desired
outcome, an intervention problem can be set up dividing
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this space into desired and undesired fluxes. The set of
undesired fluxes for ¢ reactions can be defined by

Tr <t (3)

where T € R?™” and t € R**L. Likewise, the set of desired
fluxes for d reactions can be defined by

Dr<d (4)

with D € R and d € R¥*1,

In [8], cMCS are calculated by first solving a series of
mixed integer linear programming MILP problems repre-
senting (1) and (3) and then filtering those solutions which
also satisfy (4). In [9], this is combined into a single system
represented as (cf. equation (5) in [9])

u
NZ, Ley —Ley TL, O w| = 0
NI Ty =Ly TL O o e e
0 0 0 0N wl=10
0 0 0 0D L] = \d
tTw < —c

ucR” vp,ync R, d ¢ Rd,vp, vn, W, Iy > 0,¢ > 0.
(5)

Note that the N and T matrices have been split
into reversible (subscript rev) and irreversible subma-
trices (subscript irr). Similarly, identity submatrices for
reversible and irreversible reactions are represented by
the matrices I, and I;, respectively. cMCS are directly
calculated by finding solutions with minimum number
of non-zero entries in vp, vin. Additionally binary indica-
tor variables zp and zn are introduced such that zp; =
0if vp; = 0 and zp; = 1 if vp; > 0 and similarly for zn, vn.
Only one direction of v (either vp; or vn;) can be active,
hence

zpi +zn; < 1. (6)
We set up the following optimization problem

minimize ) ;. (zp; + zn;)
s.t. (5), (6)
with the additional constraint that the flux through a reac-
tion is turned off if it is part of a cMCS, i.e., r; = 0if zp; =
1| zn; = 1.

With this system it is possible to find cMCS which will
result in designs satisfying constraints on yields/fluxes
specified by (3), (4). However, we would like to have a
method which given some design objectives (e.g., high
product yield even at high growth rates) calculates cMCS
corresponding to optimal values for the design objectives.
Since any design can be represented as a function of T, D, t
and d, the optimization problem can be stated as

max f(T,D, t, d)
s.t.(7). (8)

(7)
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In other words, the problem is to find optimal combina-
tions of {target/desired} yields for all reactions to be opti-
mized. This is not easy for a few reasons. In general, this
is a non-linear optimization problem. Non-linear opti-
mization is known to be inherently complex with general
deterministic solutions being impossible to find. Secondly,
slight adjustments in (3), (4) could result in completely
different cMCS with different cardinalities. Finally, not
all such combinations will result in cMCS. These issues
become acute when the search space is more dense with
many possible combinations, as in large and genome-scale
metabolic networks. We attack this problem using PSO as
it has been successfully used to find solutions to complex
non-linear optimization problems in other fields [16—18].

Particle swarm optimization

PSO is a metaheuristic inspired by the flocking behavior
of birds [19]. In PSO, particles distributed within a multi-
dimensional space collectively move towards an optimum
guided by a fitness function. Particle fitness is determined
by its position in the search space. The motion of a particle
is influenced by its neighbours and the currently known
fittest particle. More information on PSO can be found
in [16-18, 20].

Typically, a particle is made up of three j-dimensional
vectors, where j is the dimensionality of the search space.
These represent the current position x, its previous best
position p which is the position corresponding to the
highest fitness achieved by the particle and the veloc-
ity v, Fig. 1. Particle motion is guided by the following
equations,

vi(t+1) = x{vi@®)+e1 b1 pi(0) —xi(D)] +2 62 i (£)—x: ()] }
)

x;(t+1) =x;(t) +vi(t+ 1)
ie{l.j}

g is the position corresponding to the global best fit-
ness of the entire swarm till the current ¢. ¢; > are called
“acceleration constants” and determine the relative influ-
ence of the particle’s own knowledge and that of the group,
both of which are commonly set to 2 [18, 20]. B are
uniformly generated random numbers within the range
(0,1] for each i, t. x is the constriction coefficient first

(10)

current objective values (X) corresponding

velocities (v)

previous best objective values (p)

Fig. 1 Schematic of the PSO particle. A particle stores three types of
information: the current values, values corresponding to its own
previous best fitness and velocities corresponding to each objective
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introduced in [21] and generally has a value of 0.7298 in
the literature [16, 18]. This dampens the dynamics of the
particles, preventing the velocity from rapidly increasing
beyond the problem bounds. The amount of information
available to a particle depends on its access to information
of other particles. Access to a limited number of other par-
ticles is closer to the behaviour of natural swarms. In our
implementation each particle is connected to four other
particles, which has a comparatively better performance
than other choices [22]. Additionally, we borrow a concept
from [23], where in addition to its fixed neighbours, a par-
ticle also establishes connection with another randomly
selected particle.

The MILP given by (7) needs constraints specified by
(3), (4) to calculate corresponding cMCS. For example,
consider a network which has, among other reactions,
a substrate uptake reaction Rg, a reaction for the prod-
uct secretion Rp and one for biomass Rp;,. An optimal
design could be stated as having Rp/Rs > x; and also
that biomass fluxes of Rp;,/Rs > xy exist. However, we
don’t know the combinations of x1, x resulting in optimal
design. This is where a PSO can be useful. After initializ-
ing x, v, the set of positions and velocities for all particles,
within the range of values for {x;,x2} on some constant
Rg, the PSO iteratively finds increasingly better solutions
for (8) using (9) and (10) and moves towards the global
optimum. The PSOMCS flowchart is shown in Fig. 2.

The fitness function will depend on the nature of the
desired optimum. Considering that our objective is to
have a design with high yields and minimal knockouts, the
following fitness function was used,

_ |cMCS| X
0= (=52 T e

i

(11)

Results

To clarify the working of PSOMCS, we first apply our
method to a small toy network, optimizing for only a
single reaction. Next, to confirm the accuracy of our pre-
dictions, we compare our method against another method
based on a genetic algorithm (GAMCS) which we had
previously developed [6]. The model used is the medium-
scale E. coli core model presented in [24]. Finally we find
optimal intervention strategies for maximizing the mini-
mal product yield in a genome-scale metabolic network.
FBA was used to calculate the range of yields [min:max]
for each objective and particles were initialised within this
range. Only one solution is calculated for a MILP. The
parameters used are shown in Table 1. Implementation of
PSOMCS was done using Perl http://www.perl.org/. For
the performance critical parts of the program, i.e., solving
the MILP and also the LP, the IBM ILOG CPLEX Opti-
mization Studio - a commercial optimization package -
was used through the Math:CPLEX Perl module. Also,


http://www.perl.org/
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Start

A

FBA to determine
min/max of Objectives

y

Randomly initialize
particles with values
[x(min) : x(max)]

Particle id = 1

A

Create dual system
and calculate cMCS

Evaluate fitness F(x)

Yes
p=x
No
Yes
g=x
No

All particles
processed?

Iteration
number reached?

Increment
particle id

Print cMCS

y

Stop

Update particle velocity
and position using
equations (9) & (10)

Fig. 2 Flowchart of PSOMCS. p and g are the current particle best and global best respectively. The algorithm stops when the number of iterations
reaches a pre-specified maximum or if the maximum fitness remains unchanged for a pre-specified number of iterations
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Table 1 PSOMCS parameters

Model No: particles No: iterations
toy network 4 2

E. coli core 10 40

iAF1260 10 40

Details of parameters used for the different models

our algorithm is designed to make use of modern CPU
architectures and can be run in parallel on multiple cores.

Consider the network given in Fig. 3. We wish to
find minimal knockouts which will ensure the highest
possible yield for reaction R4. In the first iteration, cMCS
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corresponding to low yields are found. In the second
iteration, all particles move towards higher yields. One
particle, on the solution of its dual system gives the cMCS
of ‘R2 R9 Removal of R2 and R9 from the network blocks
all flux through R5 and R6, thus redirecting the network
flux through R4. This corresponds to the highest minimal
yield of 1 for R4.

We apply PSOMCS to generate designs in an E. coli core
network which will ensure high yield of ethanol even in
the face of high growth. This network was previously used
to design a high yield ethanol producing strain in [24].
This model has 71 reactions and 68 metabolites. We had
previously used this model to predict optimal intervention

FBA to determine min/max: Target:
RI + R2 + R3 = 1 —» unit uptake

R4: min = 0.25 : max = 1.00 Desired:

R4/(R1+R24R3) < =

Internal

Fitness function:

Fla) = (l—g) 5§

R4/(R1+R24R3) > «

Iteration 1

Id T D v cMCS F(x)

1 0.19572 undef 0.29870 - 0

2 0.27584 undef 0.33256 R7 0.25076

3 0.27540 undef 0.44428 R7 0.25036

4 0.33756 undef 0.23672 R9 0.30687
Iteration 2

1d F3 D v cMCS F(z)

1 0.69188 undef -0.16052 R2 R9 0.56608

2 0.42140 0.27584 -0.27577 R9 0.38309

3 0.28611 0.27540 0.01071 R7 0.2601

4 0.97936 0.33756 -0.10257 R2 R9 0.80129

Fig. 3 PSOMCS small example. Running the PSOMCS on a toy network. This network has three input reactions, which can be assumed to be
substrates and three secretion reactions, which can be assumed to be three different products. We want to maximise the yield of R4, that is
maximize (R4/(R1 + R2 + R3)). Note that the particles operate in a single dimensional search space and x represents the yield for R4. After performing
FBA to determine the maximum and minimum yields for R4 given unit substrate uptake, four particles are initialised within this range. Initial
velocities are also assigned. cMCSs are calculated after creating and solving the dual system. Fitness is a function of x and the cardinality of the
cMCS. g corresponds to x with the highest fitness which is particle 4 after both the first and second iterations. After the first iteration, every particle
except the first has a value for p. Note that for particle 4 a yield higher than 0.98 is guaranteed. In reality, the minimal yield with the corresponding
cMCS'is 1, which is also the case for particle 1. This is the value the algorithm will return if allowed to run for a few more iterations
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strategies using a genetic algorithm (GAMCS), which we
had shown to be faster than other current approaches
[6], particularly compared to APM, which is guaranteed
to find the optimal solution [5]. Here we compare our
approach with GAMCS in terms of speed and accuracy
of results. The machine used had the following specifica-
tions — 2 CPUs, 12 cores, Intel Xeon X5650 2.67 GHz,
running an Ubuntu 14.4 LTS operating system. The time
taken for a typical PSOMCS and GAMCS run is plotted in
Fig. 4a. The superiority of our method in terms of speed
can be clearly observed. GAMCS takes 34,857 seconds
to reach the maximum fitness. PSOMCS takes only 1493
seconds for the same. This is an over 23 fold improve-
ment in performance. In comparison, APM would not
only require that the desired EFMs be assigned weights,
but also the time taken by it would have been outside
the boundaries of this plot. The cMCS corresponding to
the optimum obtained by both GAMCS and PSOMCS are
exactly the same. Figure 4b is one of the designs corre-
sponding to a high fitness. This design was in the solution
pool of both the PSO and GA methods. In this design, a
minimum ethanol yield of 1.33 is guaranteed even when
the growth rate is 0.044. Also, as can be expected, pro-
duction of competing by-products: acetate, lactate and
succinate is blocked. Additionally, flux through the oxida-
tive part of the pentose phosphate pathway is blocked
and so is the pyruvate-malate cycling. Multiple cMCS
resulting in similar design characteristics were returned
by our method.

To test the capabilities of our method we applied it
to the genome-scale model of E. coli presented in [25].
Our aim was to find cMCS that result in an scenario of
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growth-coupled ethanol yield. A few strategies were used
in [8, 9] to reduce the network size. These strategies are
aimed at reducing the network size and improving com-
putational efficiency, which takes real growth conditions
into account and removing all superfluous components.
First, the network was reduced to grow anaerobically on
glucose as the only carbon source. The resulting net-
work has 1413 reactions and 971 metabolites. Network
compression was done by combining reactions operat-
ing at fixed ratios into reaction subsets. Exchange reac-
tions, spontaneous reactions and reactions essential for
the ethanol and biomass production were excluded from
participating in cMCS by setting their corresponding zp,
zn variables to zero. The machine we used for this test
had 24 CPUs, 396GB RAM, Intel Xeon E5-2667 2.90
GHz processor, running on Ubuntu 14.4 LTS. The cMCS
cardinality was limited to 5. With 4 particles being pro-
cessed in parallel, the program was run for 40 iterations.
It took 14 iterations (~ 74 hours) to find the optimal
design. One of the designs is shown in Fig. 5 along with
designs obtained using OptKnock and RobustKnock on
the same machine. The envelope of the strain specific
phenotypic solution space was calculated with flux vari-
ability analysis FVA [26] of the iAF1260 network while
considering the respective knockouts predicted by each
method. The minimally required biomass production was
set at 0.006 and both were limited by unit glucose uptake
and a maximum knockout size of 5. OptKnock took
4 minutes to run while RobustKnock ran for 71 min-
utes. The minimal ethanol yields were 0 in both cases.
As can be observed, PSOMCS offers a better design
with the ethanol production being strongly coupled to
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Fig. 4 Comparing the runtimes of PSOMCS and GAMCS. a Plotting the runtimes of PSOMCS and the GA we had previously implemented clearly
shows PSOMCS is orders of magnitude faster than GAMCS. Note that the time axis is logarithmic and that both algorithms reach the same
maximum fitness. The change in knockout sizes are indecated by the numbers along the line. b Both methods also produce similar designs, an
example of which is shown. This design is obtained with 5 knockouts (R_GND R_SUCOAS R_MALS R_ACt2r R_LDH_D). The plot was generated by
applying the knockouts on the complete set of 429275 EFMs of the Escherichia coli core model. R_norm is the sum of uptake rates for the five
carbon substrates, glucose, galactose, mannose, arabinose and xylose under aerobic conditions
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ethanol yield
T

0.5

0 L : L : L

PSOMCS ——
OptKnock -
RobustKnock -
Wild-type -

0 0.005 0.01

RobustKnock

0.015
biomass yield

Fig. 5 Design for a genome-scale £. coli model. E. coli was designed for enhanced ethanol production using the genome-scale iAF1260 model. For
comparison, designs obtained using OptKnock and RobustKnock are also presented. The design using PSOMCS guarantees a minimal ethanol yield
of 0.9, in contrast this is 0 for both RobustKnock and OptKnock. All designs have a maximum biomass production rate greater than 0.01 with the one
for PSOMCS being comparatively lower. The maximum yield for all the designs is 2. The given plots have been generated by using FVA on the
iAF1260 model while considering the respective knockouts produced by each method. The FBA solution space at maximum growth is highlighted,
with crosses indicating the maximum and squares the minimum ethanol yield. All designs involve 5 knockouts - (R_ACALD R_GLUDy R_Htex R_PGiI
R_TKT2) for PSOMCS, (R_ACALD R_H2tex R_PHEt2rpp R_PPKr R_TYRtex) for OptKnock and (R_ACKr R_F6PA R_FBA R_GLCptspp R_PGCD) for

T
0.02 0.025 0.03 0.035

biomass production and at no point falls below a yield
of 0.9.

Discussion
Here we have presented a method, PSOMCS, to design
strains with high minimal product yield using knockouts
of minimal possible size. To do this, we employ a PSO
together with the direct enumeration of cMCS devel-
oped in [7-9]. This method has made it possible to find
c¢MCS in large and genome-scale networks. However, it is
not designed to optimize engineering goals. That is, we
we would like to find not only the optimal intervention
strategy for a given design but the best possible design
too. Finding intervention strategies that achieve this is
an important goal of metabolic engineering, especially in
the production of industrially important chemicals. We
deliver on this goal by using a PSO built on top of the
base provided by the direct enumeration of cMCS. Our
method thus expands the utility of this method. Addi-
tionally we would like to point out that in the case of
optimizing for a single reaction, solving (5) with contin-
uous values within the [min:max] range for that reaction
would suffice. However, in the presence of multiple objec-
tives this task becomes computationally exhaustive and
infeasible, thereby justifying the use of a metaheuristic
approach such as the one used here.

There have been other methods with a similar strat-
egy as ours, which is the use of a metaheuristic in

combination with another method like linear program-
ming. Most methods have relied on genetic algorithms
[6, 12, 27], evolutionary algorithms and simulated anneal-
ing [13] and also an artificial bees algorithm [14]. Ours
is the first attempt at using the dual method in a similar
fashion, along with the use of a PSO.

As shown by the comparison with OptKnock and
RobustKnock in Fig. 5, although all designs have the same
highest ethanol yield of 2, PSOMCS provides a design with
the highest guaranteed minimal ethanol yield. Robust-
Knock was developed to overcome the ’too-optimistic’
nature of OptKnock and this is reflected in the nature
of their respective designs. Also of note is the fact that
both OptKnock and RobustKnock need a minimal level
of biomass production to be manually specified while
PSOMCS does not. In fact, if we reduce the minimal
biomass production requirement to 0.001 (in order to
mimic the PSOMCS settings), RobustKnock runs for over
90 hours without finding the optimum. Running Opt-
Knock and RobustKnock multiple times with different
biomass levels will result in different solutions, some of
which will be better than others. PSOMCS eliminates this
need to manually set reaction fluxes and searches the
entire feasible space of biomass yields to find the optimal
one. Growth-coupling is a key principle in metabolic engi-
neering. It requires that growth should only be feasible
if a desired compound, like ethanol, is mandatorily pro-
duced as by-product. It can be seen in Fig. 5 that PSOMCS
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achieves this with a growth rate about one third of the
wild-type. However, growth-coupling does not enforce
nor require that the maximal product yield is attained at
a non-zero growth rate. In fact Fig. 5 illustrates the rule
rather than the exception, as typically the maximum prod-
uct yield is achieved at zero growth [28, 29]. Furthermore,
an ideal production state will be characterized by zero
growth, where all available resources are used for prod-
uct formation. In this senses, biomass production can be
seen as an “unwanted” by-product. Recent advances in
fermentation processes employ zero-growth approaches
[30, 31]. However, these approaches are associated with
many challenges which go far beyond the scope of the
presented work. Nevertheless, Fig. 5 indicates that the
presented designs retain their wild-type behavior to be
operated as optimal zero-growth factories.

In heuristic search algorithms, performance comes at
the cost of being too specific to the problem being solved
[32]. By virtue of having few parameters, PSOs are less
affected by this problem. In our implementation, we have
used parameter values as found in the general PSO litera-
ture without the need to adjust them. The only parameters
that we adjusted were the number of particles and the
number of iterations. We clearly use fewer particles than
is typical. This is because we found a population size of
10 to be sufficient for our needs (see Additional file 1:
Figure S1). Although we have sampled the entire solution
space, particles can easily be forced to explore a subspace.
Certain reactions can be excluded from being considered
for knockouts by forcing their corresponding indicator
variables in the dual system to be 0. Our fitness func-
tion is specific to our target design, however new fitness
functions can be thought of depending on the desired
final objective. Our method produces cMCS leading to
designs with similar characteristics as the one used in [24].
Our method also returns multiple solutions. The limiting
factor in our method is the MILP for the dual system.

MILPs are more difficult to solve than LPs and may
consume large amounts of time as well as memory [33].
During our runs, the search tree generated by CPLEX’s
Branch and Cut algorithm for a single MILP grew to con-
sume over 130 GB of memory when limited to a knockout
size of 6. This memory consumption grows quickly with
increasing knockout size, thereby limiting the ability of
PSOMCS to find the optimal solution.

Improvements in run time can be made by forcing
PSOMCS to explore only a part of the flux space leading
to a smaller solution space to be explored. For instance
lets consider the design in Fig. 5, with a minimal biomass
yield of 0.01, the optimal design presented here was found
within 24 hours. Further improvements to performance
could be obtained by following the strategies outlined in
[34]. Also, algorithmic improvements in solving MILPs
could be useful in this regard.
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Here we have dealt only with knockout strategies
to design better strains. It can easily be extended to
include the concept of regulatory MCS introduced in [9]
which combine reaction up/downregulation with knock-
outs. There are other constraint based methods deal-
ing with intervention strategies like gene knock-ins and
up/downregulation. PSOs and swarm intelligence algorithms
in general may be used to compliment these methods.

Conclusion

PSOMCS finds the best possible design in metabolic net-
works given multiple objectives with the corresponding
c¢cMCS. We have demonstrated its capability in finding
optimal knockouts and designs in genome-scale metabolic
networks. It finds competitive designs compared to stan-
dard tools and is orders of magnitude faster than EFM
based tools in finding the optimal solution. PSOMCS
could be used to predict minimal knockouts resulting in
optimal yields in industrially important microorganisms.
As the size and quality of metabolic models increase,
methods like the one presented here will be even more
useful.

Additional file
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